1
|
Ammar MM, Ben Said NM, Ben Said YN, Abdelsalam AM, Levushkin SP, Laptev A, Inoubli M, Chlif M. Comparative Analysis of Heart Rate Variability and Arterial Stiffness in Elite Male Athletes after COVID-19. J Clin Med 2024; 13:5990. [PMID: 39408050 PMCID: PMC11477989 DOI: 10.3390/jcm13195990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This study investigated the long-term cardiovascular effects of coronavirus disease (COVID-19) in elite male athletes by comparing the heart rate variability (HRV), arterial stiffness, and other cardiovascular parameters between those with and without prior COVID-19 infection. Methods: This cross-sectional study evaluated 120 elite male athletes (60 post COVID-19, 60 controls) using anthropometric measurements, body composition analysis, pulmonary function tests, HRV analysis, arterial stiffness assessments, hemodynamic monitoring, and microcirculatory function tests. Results: Athletes post COVID-19 showed significantly higher lean mass (p = 0.007), forced vital capacity (p = 0.001), and forced expiratory volume in 1 s (p = 0.007) than controls. HRV parameters did not significantly differ between the groups. Post-COVID-19 athletes exhibited peripheral vascular resistance (p = 0.048) and reflection index (p = 0.038). No significant differences were observed in the blood pressure, cardiac output, oxygen saturation, or microcirculatory oxygen absorption. Conclusions: Elite male athletes showed notable cardiovascular resilience after COVID-19, with only minor differences in vascular function. The maintained cardiac autonomic function and improved lung parameters in post-COVID-19 athletes suggests an adaptive response. These findings support the cardiovascular health of elite athletes following COVID-19 but emphasize the importance of continued monitoring.
Collapse
Affiliation(s)
- Mohamed M. Ammar
- Exercise Physiology Department, College of Sport Science and Physical Activities, King Saud University, Riyadh 11362, Saudi Arabia
| | - Noureddine M. Ben Said
- Biomechanics and Motor Behavior Department, College of Sport Science and Physical Activities, King Saud University, Riyadh 12371, Saudi Arabia; (N.M.B.S.); (A.M.A.)
| | | | - Ahmed M. Abdelsalam
- Biomechanics and Motor Behavior Department, College of Sport Science and Physical Activities, King Saud University, Riyadh 12371, Saudi Arabia; (N.M.B.S.); (A.M.A.)
| | - Sergey P. Levushkin
- Research Institute of Sports and Sports Medicine, Russian University of Sports «GTSOLIFK», Moscow 105122, Russia;
| | - Aleksey Laptev
- Laboratory of Scientific and Methodological Support for Athletes of National Teams, Institute of Sports and Sports Medicine, Moscow 105122, Russia;
| | - Mokhtar Inoubli
- Research Laboratory of Exercise Performance, Health, and Society, Institute of Sport and Physical Education, Manouba University, La Manouba 2010, Tunisia;
| | - Mehdi Chlif
- EA 3300, Exercise Physiology and Rehabilitation Laboratory, Sport Sciences Department, Picardie Jules Verne University, F-80025 Amiens, France
- National Center of Medicine and Science in Sports (NCMSS), Tunisian Research Laboratory Sports Performance Optimization, El Menzah, Tunis 263, Tunisia
| |
Collapse
|
2
|
Kiselev AR, Mureeva EN, Skazkina VV, Panina OS, Karavaev AS, Chernenkov YV. Full-Term and Preterm Newborns Differ More Significantly in Photoplethysmographic Waveform Variability than Heart Rate Variability. Life (Basel) 2024; 14:675. [PMID: 38929659 PMCID: PMC11204696 DOI: 10.3390/life14060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Features of cardiovascular autonomic regulation in infants are poorly studied compared with adults. However, the clinical significance of autonomic dysfunction in infants is very high. The goal of our research was to study the temporal and frequency-dependent features, as well as low-frequency synchronization in cardiovascular autonomic regulation in full-term vs. preterm newborns, based on the analysis of their heart rate variability (HRV) and photoplethysmographic waveform variability (PPGV). METHODS The study included three groups of newborns: 64 full-term newborns (with a gestational age at birth of 37-40 weeks) with a physiological course of the neonatal adaptation; 23 full-term newborns (with a gestational age at birth of 37-40 weeks) with a pathological course of the neonatal adaptation; and 17 preterm newborns (with a postconceptional age of 34 weeks or more). We conducted spectral analysis of HRV and PPGV, along with an assessment of the synchronization strength between low-frequency oscillations in HRV and in PPGV (synchronization index). We employed several options for the boundaries of the high-frequency (HF) band: 0.15-0.40 Hz, 0.2-2 Hz, 0.15-0.8 Hz, and 0.24-1.04 Hz. RESULTS Preterm newborns had higher heart rate, RMSSD, and PNN50 values relative to both groups of full-term newborns. Values of SDNN index and synchronization index (S index) were similar in all groups of newborns. Differences in frequency domain indices of HRV between groups of newborns depended on the considered options of HF band boundaries. Values of frequency domain indices of PPGV demonstrated similar differences between groups, regardless of the boundaries of considered options of HF bands and the location of PPG signal recording (forehead or leg). An increase in sympathetic influences on peripheral blood flow and a decrease in respiratory influences were observed along the following gradient: healthy full-term newborns → preterm newborns → full-term newborns with pathology. CONCLUSIONS Differences in frequency domain indices of autonomic regulation between the studied groups of newborns depended on the boundaries of the considered options of the HF band. Frequency domain indices of PPGV revealed significantly more pronounced differences between groups of newborns than analogous HRV indicators. An increase in sympathetic influences on peripheral blood flow and a decrease in respiratory influences were observed along the following gradient: healthy full-term newborns → preterm newborns → full-term newborns with pathology.
Collapse
Affiliation(s)
- Anton R. Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Elena N. Mureeva
- Department of Pediatrics and Neonatology, Saratov State Medical University, 410012 Saratov, Russia
| | - Viktoria V. Skazkina
- Department of Dynamic Modeling and Biomedical Engineering, Saratov State University, 410012 Saratov, Russia
| | - Olga S. Panina
- Department of Pediatrics and Neonatology, Saratov State Medical University, 410012 Saratov, Russia
| | - Anatoly S. Karavaev
- Department of Dynamic Modeling and Biomedical Engineering, Saratov State University, 410012 Saratov, Russia
| | - Yuri V. Chernenkov
- Department of Pediatrics and Neonatology, Saratov State Medical University, 410012 Saratov, Russia
| |
Collapse
|
3
|
Kwon CY. The Impact of SARS-CoV-2 Infection on Heart Rate Variability: A Systematic Review of Observational Studies with Control Groups. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:909. [PMID: 36673664 PMCID: PMC9859268 DOI: 10.3390/ijerph20020909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 05/13/2023]
Abstract
Autonomic nervous system (ANS) dysfunction can arise after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and heart rate variability (HRV) tests can assess its integrity. This review investigated the relationship between the impact of SARS-CoV-2 infection on HRV parameters. Comprehensive searches were conducted in four electronic databases. Observational studies with a control group reporting the direct impact of SARS-CoV-2 infection on the HRV parameters in July 2022 were included. A total of 17 observational studies were included in this review. The square root of the mean squared differences of successive NN intervals (RMSSD) was the most frequently investigated. Some studies found that decreases in RMSSD and high frequency (HF) power were associated with SARS-CoV-2 infection or the poor prognosis of COVID-19. Also, decreases in RMSSD and increases in the normalized unit of HF power were related to death in critically ill COVID-19 patients. The findings showed that SARS-CoV-2 infection, and the severity and prognosis of COVID-19, are likely to be reflected in some HRV-related parameters. However, the considerable heterogeneity of the included studies was highlighted. The methodological quality of the included observational studies was not optimal. The findings suggest rigorous and accurate measurements of HRV parameters are highly needed on this topic.
Collapse
Affiliation(s)
- Chan-Young Kwon
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Dongeui University, 52-57, Yangjeong-ro, Busanjin-gu, Busan 47227, Republic of Korea
| |
Collapse
|
4
|
Scala I, Rizzo PA, Bellavia S, Brunetti V, Colò F, Broccolini A, Della Marca G, Calabresi P, Luigetti M, Frisullo G. Autonomic Dysfunction during Acute SARS-CoV-2 Infection: A Systematic Review. J Clin Med 2022; 11:jcm11133883. [PMID: 35807167 PMCID: PMC9267913 DOI: 10.3390/jcm11133883] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Although autonomic dysfunction (AD) after the recovery from Coronavirus disease 2019 (COVID-19) has been thoroughly described, few data are available regarding the involvement of the autonomic nervous system (ANS) during the acute phase of SARS-CoV-2 infection. The primary aim of this review was to summarize current knowledge regarding the AD occurring during acute COVID-19. Secondarily, we aimed to clarify the prognostic value of ANS involvement and the role of autonomic parameters in predicting SARS-CoV-2 infection. According to the PRISMA guidelines, we performed a systematic review across Scopus and PubMed databases, resulting in 1585 records. The records check and the analysis of included reports’ references allowed us to include 22 articles. The studies were widely heterogeneous for study population, dysautonomia assessment, and COVID-19 severity. Heart rate variability was the tool most frequently chosen to analyze autonomic parameters, followed by automated pupillometry. Most studies found ANS involvement during acute COVID-19, and AD was often related to a worse outcome. Further studies are needed to clarify the role of autonomic parameters in predicting SARS-CoV-2 infection. The evidence emerging from this review suggests that a complex autonomic nervous system imbalance is a prominent feature of acute COVID-19, often leading to a poor prognosis.
Collapse
Affiliation(s)
- Irene Scala
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
| | - Pier Andrea Rizzo
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
| | - Simone Bellavia
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
| | - Valerio Brunetti
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.B.); (G.F.)
| | - Francesca Colò
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
| | - Aldobrando Broccolini
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.B.); (G.F.)
| | - Giacomo Della Marca
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.B.); (G.F.)
| | - Paolo Calabresi
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.B.); (G.F.)
| | - Marco Luigetti
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.B.); (G.F.)
- Correspondence: ; Tel.: +39-06-30154435
| | - Giovanni Frisullo
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.B.); (G.F.)
| |
Collapse
|
5
|
Association of Cardiac Autonomic Responses with Clinical Outcomes of Myasthenia Gravis: Short-Term Analysis of the Heart-Rate and Blood Pressure Variability. J Clin Med 2022; 11:jcm11133697. [PMID: 35806988 PMCID: PMC9267657 DOI: 10.3390/jcm11133697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction: The aim of the study was to assess cardiac and autonomic function in patients with myasthenia gravis (MG) and to explore its relationship with disease outcomes. Methods: Thirty-eight patients with an MG were enrolled (median age 40.5 years; median disease duration 5.5 years). Cardiovascular parameters, baroreflex sensitivity (BRS), spectral indices of short-term heart rate (HRV), and systolic blood pressure variability (SBPV) were compared with age- and gender-matched controls (n = 30). Cardiac autonomic function was assessed during the response to standing (tilt) and deep breathing tests (expiration/inspiration ratio-E/I). Results: HR and BP responses to the tilt test were similar in both groups. MG patients, as compared to controls, were characterized by altered SBPV at rest, significantly reduced HR response to the deep breathing test (p < 0.001), increased sympathovagal balance after tilt (delta LF/HF-RRI, p = 0.037), and lower values of BRS (p = 0.007) and hemodynamic parameters, i.e., cardiac index, index contractility, left ventricular work index, at rest and during tilt. There was no association between disease duration and autonomic parameters. Disease severity, as determined by MGFA (Myasthenia Gravis Foundation of America) corrected for age and sex, was an independent predictor of diminished vagal tone (E/I ratio) and increased sympathetic response to tilt (delta LF/HF-RRI) as measured with HRV. Lower BRS was associated with greater disease severity and older age. Hemodynamic parameters were predominantly predicted by age and sex. Conclusion: Our results confirm cardiac autonomic dysfunction among MG patients with predominant parasympathetic impairment. Clinicians should consider evaluation of autonomic balance in MG patients with, or at risk for, cardiovascular disease.
Collapse
|