1
|
Lee H, Nguyen AT, Choi H, Kim KY, Kim H. Anti-cancer Effects of 1,4-Dialkoxynaphthalene-Imidazolium Salt Derivatives through ERK5 kinase activity inhibition. Sci Rep 2025; 15:13648. [PMID: 40254676 PMCID: PMC12009964 DOI: 10.1038/s41598-025-96306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/27/2025] [Indexed: 04/22/2025] Open
Abstract
ERK5 has emerged as a promising therapeutic target in cancer treatment due to its pivotal role in regulating tumor cell proliferation and survival. In this study, we synthesized novel derivatives of 1,4-dialkoxynaphthalene-2-acyl or 2-alkyl-imidazolium salt (NAIMS), assessed their binding affinity with the ERK5 protein through molecular modeling, and evaluated their anti-cancer activity through the ERK5 kinase assay. Based on the MTT assay and qRT-PCR analysis of 21 synthesized NAIMS, the IC50 values for 4c, 4e, and 4k (8.5 μM, 6.8 μM, and 8.9 μM, respectively) and the inhibition rate of the expression of PCNA for 4c, 4e, and 4k (50%, 61.1%, and 70.2% of 5 μM respectively) were chosen for comprehensive biological research. Further analyses including DAPI staining, and flow cytometry confirmed that 4c, 4e, and 4k induced late-stage apoptosis, and triggered cell cycle arrest in the G2/M phase of HeLa cells. Moreover, molecular modeling analysis showed that 4e exhibited strong and stable molecular interactions at the ERK5 ATP-binding site. Our results strongly suggest that NAIMS compounds, especially 4e, could serve as novel inhibitors of ERK5, presenting promising lead compound to develop for cancer treatment.
Collapse
Affiliation(s)
- Haena Lee
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Giheung, Yongin, Gyeonggi-Do, 1732, Republic of Korea
| | - Anh-Thu Nguyen
- Department of Genetics and Biotechnology, College of Life Science, Graduate School of Biotechnology, Kyung Hee University, Giheung, Yongin, Gyeonggi-Do, 1732, Republic of Korea
| | - Hyunkyung Choi
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea.
| | - Ki-Young Kim
- Department of Genetics and Biotechnology, College of Life Science, Graduate School of Biotechnology, Kyung Hee University, Giheung, Yongin, Gyeonggi-Do, 1732, Republic of Korea.
| | - Hakwon Kim
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Giheung, Yongin, Gyeonggi-Do, 1732, Republic of Korea.
| |
Collapse
|
2
|
Filippelli A, Ciccone V, Del Gaudio C, Simonis V, Frosini M, Tusa I, Menconi A, Rovida E, Donnini S. ERK5 mediates pro-tumorigenic phenotype in non-small lung cancer cells induced by PGE2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119810. [PMID: 39128596 DOI: 10.1016/j.bbamcr.2024.119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, with non-small cell lung cancer (NSCLC) constituting approximately 84 % of all lung cancer cases. The role of inflammation in the initiation and progression of NSCLC tumors has been the focus of extensive research. Among the various inflammatory mediators, prostaglandin E2 (PGE2) plays a pivotal role in promoting the aggressiveness of epithelial tumors through multiple mechanisms, including the stimulation of growth, evasion of apoptosis, invasion, and induction of angiogenesis. The Extracellular signal-Regulated Kinase 5 (ERK5), the last discovered member among conventional mitogen-activated protein kinases (MAPK), is implicated in cancer-associated inflammation. In this study, we explored whether ERK5 is involved in the process of tumorigenesis induced by PGE2. Using A549 and PC9 NSCLC cell lines, we found that PGE2 triggers the activation of ERK5 via the EP1 receptor. Moreover, both genetic and pharmacological inhibition of ERK5 reduced PGE2-induced proliferation, migration, invasion and stemness of A549 and PC9 cells, indicating that ERK5 plays a critical role in PGE2-induced tumorigenesis. In summary, our study underscores the pivotal role of the PGE2/EP1/ERK5 axis in driving the malignancy of NSCLC cells in vitro. Targeting this axis holds promise as a potential avenue for developing novel therapeutic strategies aimed at controlling the advancement of NSCLC.
Collapse
Affiliation(s)
| | - Valerio Ciccone
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Cinzia Del Gaudio
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Vittoria Simonis
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Maria Frosini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy.
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| |
Collapse
|
3
|
Alharbi B, Alnajjar LI, Alhassan HH, Khan S, Jawaid T, Abdullaev BS, Alshammari N, Yadav DK, Adnan M, Shamsi A. Identification of mitogen-activated protein kinase 7 inhibitors from natural products: Combined virtual screening and dynamic simulation studies. J Mol Recognit 2024; 37:e3067. [PMID: 37956676 DOI: 10.1002/jmr.3067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Mitogen-activated protein kinase 7 (MAPK7) is a serine/threonine protein kinase that belongs to the MAPK family and plays a vital role in various cellular processes such as cell proliferation, differentiation, gene transcription, apoptosis, metabolism, and cell survival. The elevated expression of MAPK7 has been associated with the onset and progression of multiple aggressive tumors in humans, underscoring the potential of targeting MAPK7 pathways in therapeutic research. This pursuit holds promise for the advancement of anticancer drug development by developing potential MAPK7 inhibitors. To look for potential MAPK7 inhibitors, we exploited structure-based virtual screening of natural products from the ZINC database. First, the Lipinski rule of five criteria was used to filter a large library of ~90,000 natural compounds, followed by ADMET and pan-assay interference compounds (PAINS) filters. Then, top hits were chosen based on their strong binding affinity as determined by molecular docking. Further, interaction analysis was performed to find effective and specific compounds that can precisely bind to the binding pocket of MAPK7. Consequently, two compounds, ZINC12296700 and ZINC02123081, exhibited significant binding affinity and demonstrated excellent drug-like properties. All-atom molecular dynamics simulations for 200 ns confirmed the stability of MAPK7-ZINC12296700 and MAPK7-ZINC02123081 docked complexes. According to the molecular mechanics Poisson-Boltzmann surface area investigation, the binding affinities of both complexes were considerable. Overall, the result suggests that ZINC12296700 and ZINC02123081 might be used as promising leads to develop novel MAPK7 inhibitors. Since these compounds would interfere with the kinase activity of MAPK7, therefore, may be implemented to control cell growth and proliferation in cancer after required validations.
Collapse
Affiliation(s)
- Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Lina I Alnajjar
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Bekhzod S Abdullaev
- Department of Strategic Development, Innovation and Research, New Uzbekistan University, Tashkent, Uzbekistan
- Department of Oncology, School of Medicine, Central Asian University, Tashkent, Uzbekistan
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea
- Arontier Co., Seoul, Republic of Korea
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
4
|
Hwang J, Moon H, Kim H, Kim KY. Identification of a Novel ERK5 (MAPK7) Inhibitor, MHJ-627, and Verification of Its Potent Anticancer Efficacy in Cervical Cancer HeLa Cells. Curr Issues Mol Biol 2023; 45:6154-6169. [PMID: 37504304 PMCID: PMC10377775 DOI: 10.3390/cimb45070388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), a member of the mitogen-activated protein kinase (MAPK) family, is involved in key cellular processes. However, overexpression and upregulation of ERK5 have been reported in various cancers, and ERK5 is associated with almost every biological characteristic of cancer cells. Accordingly, ERK5 has become a novel target for the development of anticancer drugs as inhibition of ERK5 shows suppressive effects of the deleterious properties of cancer cells. Herein, we report the synthesis and identification of a novel ERK5 inhibitor, MHJ-627, and verify its potent anticancer efficacy in a yeast model and the cervical cancer HeLa cell line. MHJ-627 successfully inhibited the kinase activity of ERK5 (IC50: 0.91 μM) and promoted the mRNA expression of tumor suppressors and anti-metastatic genes. Moreover, we observed significant cancer cell death, accompanied by a reduction in mRNA levels of the cell proliferation marker, proliferating cell nuclear antigen (PCNA), following ERK5 inhibition due to MHJ-627 treatment. We expect this finding to serve as a lead compound for further identification of inhibitors for ERK5-directed novel approaches for oncotherapy with increased specificity.
Collapse
Affiliation(s)
- Jeonghye Hwang
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyejin Moon
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hakwon Kim
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ki-Young Kim
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
5
|
Cao H, Wang L, Geng C, Yang M, Mao W, Yang L, Ma Y, He M, Zhou Y, Liu L, Hu X, Yu J, Shen X, Gu X, Yin L, Shen Z. In leukemia, knock-down of the death inducer-obliterator gene would inhibit the proliferation of endothelial cells by inhibiting the expression of CDK6 and CCND1. PeerJ 2022; 10:e12832. [PMID: 35178295 PMCID: PMC8815367 DOI: 10.7717/peerj.12832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Endothelial cells (ECs) are a critical component of the hematopoietic niche, and the cross-talk between ECs and leukemia was reported recently. This study aimed to determine the genes involved in the proliferation inhibition of endothelial cells in leukemia. METHODS Human umbilical vein endothelial cells (HUVEC) were cultured alone or co-cultured with K562 cell lines. GeneChip assays were performed to identify the differentially expressed genes. The Celigo, MTT assay, and flow cytometric analysis were used to determine the effect of RNAi DIDO on cell growth and apoptosis. The differently expressed genes were verified by qRT-PCR (quantitative real-time PCR) and western-blot. RESULTS In K562-HUVEC co-cultured cell lines, 323 down-regulated probes were identified and the extracellular signal-regulated kinase 5 (ERK5) signaling pathway was significantly inhibited. Among the down-regulated genes, the death inducer-obliterator gene (DIDO) is a part of the centrosome protein and may be involved in cell mitosis. As shown in the public data, leukemia patients with lower expression of DIDO showed a better overall survival (OS). The HUVEC cells were infected with shDIDO lentivirus, and reduced expression, inhibited proliferation, and increased apoptosis was observed in shDIDO cells. In addition, the expression of Cyclin-Dependent Kinase 6 (CDK6) and Cyclin D1 (CCND1) genes was inhibited in shDIDO cells. Finally, the public ChIP-seq data were used to analyze the regulators that bind with DIDO, and the H3K4me3 and PolII (RNA polymerase II) signals were found near the Exon1 and exon2 sites of DIDO. CONCLUSION The knock-down of DIDO will inhibit the proliferation of endothelial cells in the leukemia environment. The expression of DIDO may be regulated by H3K4me3 and the inhibition of DIDO may lead to the down-regulation of CDK6 and CCND1. However, how DIDO interacts with CDK6 and CCND1 requires further study.
Collapse
Affiliation(s)
- Honghua Cao
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lilan Wang
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chengkui Geng
- Department of Orthopedics, Yan’an Hospital of Kunming City, The Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Man Yang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University & The Second People’s Hospital of Yunnan Province, Kunming Yunnan, Kunming, Yunnan, China
| | - Wenwen Mao
- Department of Geriatics, The Second Hospital of Kunming, Kunming, China
| | - Linlin Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yin Ma
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ming He
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yeying Zhou
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lianqing Liu
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuejiao Hu
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingxing Yu
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufen Shen
- Department of Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuezhong Gu
- Department of Hematology, The First People Hospital in Yunnan Province, Kunming, China
| | - Liefen Yin
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhenglei Shen
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Luiz JPM, Toller‐Kawahisa JE, Viacava PR, Nascimento DC, Pereira PT, Saraiva AL, Prado DS, Le Bert M, Giurisato E, Tournier C, Cunha TM, Cunha FQ, Quesniaux V, Ryffel B, Alves‐Filho JC. MEK5/ERK5 signaling mediates IL‐4‐induced M2 macrophage differentiation through regulation of c‐Myc expression. J Leukoc Biol 2020; 108:1215-1223. [DOI: 10.1002/jlb.1ma0520-016r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/27/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023] Open
Affiliation(s)
- João Paulo M. Luiz
- Center for Research in Inflammatory Diseases and Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto Brazil
| | - Juliana E. Toller‐Kawahisa
- Center for Research in Inflammatory Diseases and Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto Brazil
| | - Paula R. Viacava
- Center for Research in Inflammatory Diseases and Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto Brazil
| | - Daniele C. Nascimento
- Center for Research in Inflammatory Diseases and Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto Brazil
| | - Priscilla T. Pereira
- Center for Research in Inflammatory Diseases and Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto Brazil
| | - André L. Saraiva
- Center for Research in Inflammatory Diseases and Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto Brazil
| | - Douglas S. Prado
- Center for Research in Inflammatory Diseases and Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto Brazil
| | - Marc Le Bert
- CNRS, UMR7355 Orléans, France
- Experimental and Molecular Immunology and Neurogenetics University of Orléans Orléans France
| | - Emanuele Giurisato
- Division of Cancer Sciences School of Medical Sciences Faculty of Biology, Medicine and Health University of Manchester Manchester United Kingdom
| | - Cathy Tournier
- Division of Cancer Sciences School of Medical Sciences Faculty of Biology, Medicine and Health University of Manchester Manchester United Kingdom
| | - Thiago M. Cunha
- Center for Research in Inflammatory Diseases and Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto Brazil
| | - Fernando Q. Cunha
- Center for Research in Inflammatory Diseases and Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto Brazil
| | - Valerie Quesniaux
- CNRS, UMR7355 Orléans, France
- Experimental and Molecular Immunology and Neurogenetics University of Orléans Orléans France
| | - Bernhard Ryffel
- CNRS, UMR7355 Orléans, France
- Experimental and Molecular Immunology and Neurogenetics University of Orléans Orléans France
| | - José C. Alves‐Filho
- Center for Research in Inflammatory Diseases and Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto Brazil
| |
Collapse
|
7
|
Erazo T, Espinosa-Gil S, Diéguez-Martínez N, Gómez N, Lizcano JM. SUMOylation Is Required for ERK5 Nuclear Translocation and ERK5-Mediated Cancer Cell Proliferation. Int J Mol Sci 2020; 21:ijms21062203. [PMID: 32209980 PMCID: PMC7139592 DOI: 10.3390/ijms21062203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/09/2023] Open
Abstract
The MAP kinase ERK5 contains an N-terminal kinase domain and a unique C-terminal tail including a nuclear localization signal and a transcriptional activation domain. ERK5 is activated in response to growth factors and stresses and regulates transcription at the nucleus by either phosphorylation or interaction with transcription factors. MEK5-ERK5 pathway plays an important role regulating cancer cell proliferation and survival. Therefore, it is important to define the precise molecular mechanisms implicated in ERK5 nucleo-cytoplasmic shuttling. We previously described that the molecular chaperone Hsp90 stabilizes and anchors ERK5 at the cytosol and that ERK5 nuclear shuttling requires Hsp90 dissociation. Here, we show that MEK5 or overexpression of Cdc37—mechanisms that increase nuclear ERK5—induced ERK5 Small Ubiquitin-related Modifier (SUMO)-2 modification at residues Lys6/Lys22 in cancer cells. Furthermore, mutation of these SUMO sites abolished the ability of ERK5 to translocate to the nucleus and to promote prostatic cancer PC-3 cell proliferation. We also show that overexpression of the SUMO protease SENP2 completely abolished endogenous ERK5 nuclear localization in response to epidermal growth factor (EGF) stimulation. These results allow us to propose a more precise mechanism: in response to MEK5 activation, ERK5 SUMOylation favors the dissociation of Hsp90 from the complex, allowing ERK5 nuclear shuttling and activation of the transcription.
Collapse
|
8
|
Zhang M, Shi R, Guo Z, He J. Cancer-associated fibroblasts promote cell growth by activating ERK5/PD-L1 signaling axis in colorectal cancer. Pathol Res Pract 2020; 216:152884. [PMID: 32199628 DOI: 10.1016/j.prp.2020.152884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common diseases, accounting for about 10 % cancer-related deaths. Previous studies have found that caner-associated fibroblasts (CAFs) are closely related to the occurrence and metastasis of CRC, but the detailed mechanism is not precise. METHODS Tumor cells and fibroblasts were co-cultured with a transwell system. Cell Counting Kit-8 and colony formation assays were performed to test the ability of cell proliferation. The flow cytometry was used to detect cell apoptosis. Western Blot was performed to assess protein expression levels. Quantitative real-time PCR was performed to detect mRNA expression levels. ERK5-IN-1 was used to inhibit the autophosphorylation of ERK5. RESULTS CAFs promoted cell proliferation and inhibited cell apoptosis in CRC cells. CAFs promoted the phosphorylation of ERK5 and the expression of programmed death-ligand 1 (PD-L1). Activated ERK5 promotes cell proliferation and inhibited cell apoptosis in CRC cells. The expression levels of ERK5 correlated with the expression of PD-L1 in CRC cells. CAFs promote cell growth by activating the ERK5/PD-L1 signaling axis in colorectal cancer. CONCLUSIONS CAFs significantly promoted cell proliferation and inhibited cell apoptosis in CRC cells, which features are dependent on regulating the ERK5/PD-L1 signaling axis.
Collapse
Affiliation(s)
- Mengyan Zhang
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Ran Shi
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Zhongying Guo
- Department of Pathology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Jingdong He
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, PR China.
| |
Collapse
|
9
|
CRISPR/Cas9 engineering of ERK5 identifies its FAK/PYK2 dependent role in adhesion-mediated cell survival. Biochem Biophys Res Commun 2019; 513:179-185. [PMID: 30952431 DOI: 10.1016/j.bbrc.2019.03.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 01/10/2023]
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is now considered a key regulator of breast cancer cell proliferation, migration and invasion. It is also implicated in growth factor induced anti-apoptotic signaling. But its contribution to adhesion-induced survival signaling is not clear. In the present study, using CRISPR/Cas9 editing, we knocked-out ERK5 expression in several cancer cell lines. Then MDA-MB 231 breast cancer cells lacking ERK5 were used to understand its role in adhesion-mediated cell viability. We demonstrated that ERK5 deficient cells exhibited reduced cell attachment to matrix proteins fibronectin and vitronectin. The adhesion ability of these cells was further reduced upon chemical inhibition of focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2) by PF 431396. FAK/PYK2 inhibited ERK5 knock-out cells also showed markedly reduced cell-viability and increased apoptotic signaling. This was evident from the detection of cleaved PARP and caspase 9 in these cells. Thus, our data suggests a FAK/PYK2 regulated pro-survival role of ERK5 in response to cell adhesion.
Collapse
|