1
|
Jiang Y, Li Y, Duan L, Jiang B. Amniotic Fluid-Derived Stem Cells: An Overlooked Source of Stem Cells for Translational Research. DNA Cell Biol 2025; 44:144-152. [PMID: 40096350 DOI: 10.1089/dna.2024.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Amniotic fluid-derived stem cells (AFSCs) represent a promising yet underutilized resource for research and clinical applications. While AFSCs share phenotypic and functional characteristics with stem cells derived from somatic tissues such as bone marrow, adipose tissue, placenta, and umbilical cord, their unique developmental origin grants them several superior qualities. These include enhanced multipotency, tissue-specific genotypic profiles, and the ability to form single-cell colonies. Such features position AFSCs as highly valuable for translational research and tissue engineering. This review seeks to underscore the distinctive attributes of AFSCs, particularly their relevance in developmental research and engineering. By emphasizing these qualities, we aim to stimulate further exploration into their use in patient-specific induced pluripotent stem cells and organoid development, potentially unlocking their full therapeutic potential. The unique capabilities of AFSCs make them an exceptional candidate for advancing regenerative medicine, offering new avenues for treating a variety of conditions that currently have limited therapeutic options.
Collapse
Affiliation(s)
- Yu Jiang
- West China Second University Hosptial, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, China
| | - Li Duan
- Department of Orthopedics, Shenzhen Key Lab of Tissue Engineering, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Bin Jiang
- Department of Orthopedics, Shenzhen Key Lab of Tissue Engineering, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- R&D Division, Eureka Biotech Inc., Philadelphia, PA, USA
| |
Collapse
|
2
|
Xiao Y, Zeng F, Sun J. The improvement of inflammatory infiltration and pregnancy outcome in mice with recurrent spontaneous abortion by human amniotic mesenchymal stem cells. Biol Reprod 2024; 111:351-360. [PMID: 38718142 PMCID: PMC11327314 DOI: 10.1093/biolre/ioae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 08/17/2024] Open
Abstract
Recurrent spontaneous abortion is thought to be mostly triggered by immune-related causes. Mesenchymal stem cells, which exhibit the traits of multi-directional differentiation capacity and low immunogenicity, have recently been recommended as a viable treatment for spontaneous abortion-prone mice to increase the success of pregnancy. Amniotic membrane tissue is a byproduct of pregnancy and delivery that has a wide range of potential uses due to its easy access to raw materials and little ethical constraints. To construct an abortion-prone mouse model for this investigation, CBA/J female mice were coupled with male DBA/2 mice, while CBA/J female mice were paired with male BALB/c mice as a control. The identical volume of human amniotic mesenchymal stem cells or phosphate buffer was injected intraperitoneally on the 4.5th day of pregnancy. CBA/J female mice were sacrificed by cervical dislocation on the 13.5th day of pregnancy, the embryo absorption rate was calculated, and the uterus, decidua tissues and placenta were gathered for examination. Through detection, it was discovered that human amniotic mesenchymal stem cells significantly increased the expression of interleukin 10 and transforming growth factor beta, while they significantly decreased the expression of interleukin 1 beta and interleukin 6, improved vascular formation and angiogenesis, and minimized the embryo absorption rate and inflammatory cell infiltration in the recurrent spontaneous abortion + human amniotic mesenchymal stem cells group. In any case, human amniotic mesenchymal stem cells regulate inflammatory factors and cell balance at the maternal-fetal interface, which result in a reduction in the rate of embryo absorption and inflammatory infiltration and provide an innovative perspective to the clinical therapy of recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Yi Xiao
- Graduate School of China Medical University, Shenyang 110000, China
| | - Fanyu Zeng
- School of Public Health, Fudan University, Shanghai 200000, China
| | - Jingli Sun
- Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, Shenyang 110000, China
| |
Collapse
|
3
|
Skliutė G, Staponkutė G, Skliutas E, Malinauskas M, Navakauskienė R. Molecular changes in endometrium origin stromal cells during initiation of cardiomyogenic differentiation induced with Decitabine, Angiotensin II and TGF- β1. Sci Rep 2024; 14:16966. [PMID: 39043870 PMCID: PMC11266582 DOI: 10.1038/s41598-024-68108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
Stem cells' differentiation toward cardiac lineage is a complex process dependent on various alterations in molecular basis and regulation pathways. The aim of the study is to show that endometrium-derived stromal cells - menstrual, endometrial and endometriotic, could be an attractive source for examination of the mechanisms underlying cardiomyogenesis. After treatment with Decitabine, Angiotensin II and TGF-β1, cells demonstrated morphological dedifferentiation into early cardiomyocyte-like cells and expressed CD36, CD106, CD172a typically used to sort for human pluripotent stem cell-derived cardiomyocytes. RT-qPCR revealed changed cells' genetic profiles, as majority of cardiac lineage differentiation related genes and cardiac ion channels (calcium, sodium, potassium) coding genes were upregulated after 6 and 13 days of exposure. Additionally, analysis of expression of various signaling proteins (FOXO1, PDGFB, TGFBR1, mTOR, VEGFA, WNT4, Notch1) coding genes showed differences between cell cultures as they seem to employ distinct signaling pathways through differentiation initiation. Early stages of differentiation had biggest impact on cardiomyogenesis related proteins (Nkx-2.5, EZH2, FOXO3a, H3K9Ac) levels, as we noticed after conducting Western blot and as expected, early cardiac transcription factor Nkx-2.5 was highly expressed and localized in nucleus of differentiating cells. These findings led us to assess endometrium origin stromal cells' potential to differentiate towards cardiomyogenic lineage and better understand the regulation of complex differentiation processes in ex vivo model systems.
Collapse
Affiliation(s)
- Giedrė Skliutė
- Department of Molecular Cell Biology, Life Sciences Center, Institute of Biochemistry, Vilnius University, Saulėtekio Av. 7, 10257, Vilnius, Lithuania.
| | - Giedrė Staponkutė
- Department of Molecular Cell Biology, Life Sciences Center, Institute of Biochemistry, Vilnius University, Saulėtekio Av. 7, 10257, Vilnius, Lithuania
| | - Edvinas Skliutas
- Faculty of Physics, Laser Research Center, Vilnius University, Saulėtekio Av. 10, 10223, Vilnius, Lithuania
| | - Mangirdas Malinauskas
- Faculty of Physics, Laser Research Center, Vilnius University, Saulėtekio Av. 10, 10223, Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Life Sciences Center, Institute of Biochemistry, Vilnius University, Saulėtekio Av. 7, 10257, Vilnius, Lithuania.
| |
Collapse
|
4
|
Wen Y, Yang H, Hong Y. Transcriptomic Approaches to Cardiomyocyte-Biomaterial Interactions: A Review. ACS Biomater Sci Eng 2024; 10:4175-4194. [PMID: 38934720 DOI: 10.1021/acsbiomaterials.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Biomaterials, essential for supporting, enhancing, and repairing damaged tissues, play a critical role in various medical applications. This Review focuses on the interaction of biomaterials and cardiomyocytes, emphasizing the unique significance of transcriptomic approaches in understanding their interactions, which are pivotal in cardiac bioengineering and regenerative medicine. Transcriptomic approaches serve as powerful tools to investigate how cardiomyocytes respond to biomaterials, shedding light on the gene expression patterns, regulatory pathways, and cellular processes involved in these interactions. Emerging technologies such as bulk RNA-seq, single-cell RNA-seq, single-nucleus RNA-seq, and spatial transcriptomics offer promising avenues for more precise and in-depth investigations. Longitudinal studies, pathway analyses, and machine learning techniques further improve the ability to explore the complex regulatory mechanisms involved. This review also discusses the challenges and opportunities of utilizing transcriptomic techniques in cardiomyocyte-biomaterial research. Although there are ongoing challenges such as costs, cell size limitation, sample differences, and complex analytical process, there exist exciting prospects in comprehensive gene expression analyses, biomaterial design, cardiac disease treatment, and drug testing. These multimodal methodologies have the capacity to deepen our understanding of the intricate interaction network between cardiomyocytes and biomaterials, potentially revolutionizing cardiac research with the aim of promoting heart health, and they are also promising for studying interactions between biomaterials and other cell types.
Collapse
Affiliation(s)
- Yufeng Wen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
5
|
He J, Yu J, Han C, Yang W, Zhang C, Hao W, Duan Y. The SNHG10-miR-495-3p-PTEN axis is involved in sevoflurane-mediated protective effects in cardiomyocytes against hypoxia/reoxygenation injury. Toxicol In Vitro 2024; 94:105724. [PMID: 37884162 DOI: 10.1016/j.tiv.2023.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 08/14/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Myocardial infarction (MI) has been considered a leading cause of death worldwide. Relieving ischemia-reperfusion myocardial damage is one of the major roles in treating MI. Sevoflurane postconditioning provides myocardial protection, and this study probes the mechanism of sevoflurane-mediated protective effects. A hypoxia/reoxygenation (H/R) model was constructed in cardiomyocytes, which were pretreated with 2.4% sevoflurane. Alterations in SNHG10, miR-495-3p, and PTEN levels were determined, and gain- or loss-of functional assays were conducted to confirm the role of the SNHG10/miR-495-3p axis, which is potentially regulated by sevoflurane. Cell viability, oxidative stress, and inflammatory reactions were all evaluated. The results indicated that sevoflurane post-conditioning attenuated H/R-induced cardiomyocyte damage and reduced the SHNH10 level. SNHG10 overexpression reversed sevoflurane-mediated protective effects on cardiomyocytes. Moreover, SNHG10 targeted miR-495-3p and restrained its expression, while miR-495-3p targeted PTEN, suppressed PTEN levels, and promoted HIF-1α expression. miR-495-3p overexpression decreased SNHG10-mediated myocardial injury and enhanced HIF-1α levels. However, no additional protection was found when sevoflurane was administered to H/R-exposed cardiomyocytes following treatment with the HIF-1α inhibitor LW6. Overall, sevoflurane protects cardiomyocytes from H/R by modulating the SNHG10-miR-495-3p-PTEN-HIF-1α axis.
Collapse
Affiliation(s)
- Jiandong He
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jing Yu
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Chongfang Han
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Wenqu Yang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Chunmin Zhang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Weihong Hao
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yinglei Duan
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
6
|
Najibi R, Kazemitabar SK, Kiani G, Hasanzadeh N, Gholami M, Hajimazdarany S, Ahmadi AA. Embryonic stem cell differentiation to primordial germ cell like cells by Nigella sativa, Brassica Oleracea and Oenothera biennis extracts. AMERICAN JOURNAL OF STEM CELLS 2022; 11:79-93. [PMID: 36660740 PMCID: PMC9845841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVES This study aimed to investigate the induction effects of methanolic extracts of Nigella sativa (NiS), Brassica Oleracea (BrO), and Oenothera biennia (Obi) on transgenic embryonic stem cells (ESCs) and to evaluate the ability of germ cells (GCs) production using these pluripotent cells. METHODS ESCs were amplified using a feeder layer. Embryoid bodies enzymatically dissociated to single cells and induced the extracts in gelatinized plates. Then RNA extraction and cDNA synthesis were performed. In the presence of appropriate primers, the desired genes were quantitatively evaluated by quantitative polymerase chain reaction (qPCR). RESULTS The copies of all genes in the control group showed a decreasing trend during the first to third weeks. Compared to the control group, the expression level of sex determining region Y-box 2 gene (Sox2) showed the highest level. All four evaluated genes increased in all Obi groups compared to the control group. There is also a slight increase in the Nanog homeobox gene (Nanog). Obi extract in different concentrations has increased the expression of the Sox2 gene. Increased expression of this gene along with octamer-binding transcription factor 4 gene (Oct4) and Nanog indicates a condition close to germ cell-like cells (GCLCs). CONCLUSIONS According to the results of this study, NiS can increase expression of the Oct4, Sox2, Nanog, and stimulated by retinoic acid gene 8 (STRA8) genes and so increase the hope of GCs production. Storage of cells for 21 days in the presence of the extract compared to 14 days has a negative effect on cell growth and differentiation. The effects of meiosis onset and GCs production can be expected in the presence of some herbal extracts. Optimal utilization of these extracts requires further study in the field of different extracts and fractions of each extract to more effectively and purposefully direct the differentiation of stem cells.
Collapse
Affiliation(s)
- Reza Najibi
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU)Sari, Iran
| | - Seyed Kamal Kazemitabar
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU)Sari, Iran
| | - Ghaffar Kiani
- Department of Biotechnology and Plant Breeding, College of Agricultural Science, Sari Agricultural Sciences and Natural Resources University (SANRU)Sari, Iran
| | | | - Mana Gholami
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad UniversityTehran, Iran
| | - Shima Hajimazdarany
- Department of Biology, Faculty of Science, Babol Branch, Islamic Azad UniversityBabol, Iran
| | | |
Collapse
|
7
|
Yu H, Wang X, Cao H. Construction and investigation of a circRNA-associated ceRNA regulatory network in Tetralogy of Fallot. BMC Cardiovasc Disord 2021; 21:437. [PMID: 34521346 PMCID: PMC8442392 DOI: 10.1186/s12872-021-02217-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background As the most frequent type of cyanotic congenital heart disease (CHD), tetralogy of Fallot (TOF) has a relatively poor prognosis without corrective surgery. Circular RNAs (circRNAs) represent a novel class of endogenous noncoding RNAs that regulate target gene expression posttranscriptionally in heart development. Here, we investigated the potential role of the ceRNA network in the pathogenesis of TOF. Methods To identify circRNA expression profiles in TOF, microarrays were used to screen the differentially expressed circRNAs between 3 TOF and 3 control human myocardial tissue samples. Then, a dysregulated circRNA-associated ceRNA network was constructed using the established multistep screening strategy. Results In summary, a total of 276 differentially expressed circRNAs were identified, including 214 upregulated and 62 downregulated circRNAs in TOF samples. By constructing the circRNA-associated ceRNA network based on bioinformatics data, a total of 19 circRNAs, 9 miRNAs, and 34 mRNAs were further screened. Moreover, by enlarging the sample size, the qPCR results validated the positive correlations between hsa_circ_0007798 and HIF1A. Conclusions The findings in this study provide a comprehensive understanding of the ceRNA network involved in TOF biology, such as the hsa_circ_0007798/miR-199b-5p/HIF1A signalling axis, and may offer candidate diagnostic biomarkers or potential therapeutic targets for TOF. In addition, we propose that the ceRNA network regulates TOF progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02217-w.
Collapse
Affiliation(s)
- Haifei Yu
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primates, National Health and Family Planning Commission, Fuzhou, Fujian, People's Republic of China
| | - Xinrui Wang
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primates, National Health and Family Planning Commission, Fuzhou, Fujian, People's Republic of China. .,Medical Research Centre, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| | - Hua Cao
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, People's Republic of China. .,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primates, National Health and Family Planning Commission, Fuzhou, Fujian, People's Republic of China. .,Medical Research Centre, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
8
|
Verma K, Pant M, Paliwal S, Dwivedi J, Sharma S. An Insight on Multicentric Signaling of Angiotensin II in Cardiovascular system: A Recent Update. Front Pharmacol 2021; 12:734917. [PMID: 34489714 PMCID: PMC8417791 DOI: 10.3389/fphar.2021.734917] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
The multifaceted nature of the renin-angiotensin system (RAS) makes it versatile due to its involvement in pathogenesis of the cardiovascular disease. Angiotensin II (Ang II), a multifaceted member of RAS family is known to have various potential effects. The knowledge of this peptide has immensely ameliorated after meticulous research for decades. Several studies have evidenced angiotensin I receptor (AT1 R) to mediate the majority Ang II-regulated functions in the system. Functional crosstalk between AT1 R mediated signal transduction cascades and other signaling pathways has been recognized. The review will provide an up-to-date information and recent discoveries involved in Ang II receptor signal transduction and their functional significance in the cardiovascular system for potential translation in therapeutics. Moreover, the review also focuses on the role of stem cell-based therapies in the cardiovascular system.
Collapse
Affiliation(s)
- Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Malvika Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
9
|
Valiulienė G, Zentelytė A, Beržanskytė E, Navakauskienė R. Metabolic Profile and Neurogenic Potential of Human Amniotic Fluid Stem Cells From Normal vs. Fetus-Affected Gestations. Front Cell Dev Biol 2021; 9:700634. [PMID: 34336852 PMCID: PMC8322743 DOI: 10.3389/fcell.2021.700634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
Human amniotic fluid stem cells (hAFSCs) possess some characteristics with mesenchymal stem cells (MSCs) and embryonic stem cells and have a broader differentiation potential compared to MSCs derived from other sources. Although hAFSCs are widely researched, their analysis mainly involves stem cells (SCs) obtained from normal, fetus-unaffected gestations. However, in clinical settings, knowledge about hAFSCs from normal gestations could be poorly translational, as hAFSCs from healthy and fetus-diseased gestations may differ in their differentiation and metabolic potential. Therefore, a more thorough investigation of hAFSCs derived from pathological gestations would provide researchers with the knowledge about the general characteristics of these cells that could be valuable for further scientific investigations and possible future clinical applicability. The goal of this study was to look into the neurogenic and metabolic potential of hAFSCs derived from diseased fetuses, when gestations were concomitant with polyhydramnios and compare them to hAFSCs derived from normal fetuses. Results demonstrated that these cells are similar in gene expression levels of stemness markers (SOX2, NANOG, LIN28A, etc.). However, they differ in expression of CD13, CD73, CD90, and CD105, as flow cytometry analysis revealed higher expression in hAFSCs from unaffected gestations. Furthermore, hAFSCs from “Normal” and “Pathology” groups were different in oxidative phosphorylation rate, as well as level of ATP and reactive oxygen species production. Although the secretion of neurotrophic factors BDNF and VEGF was of comparable degree, as evaluated with enzyme-linked immunosorbent assay (ELISA) test, hAFSCs from normal gestations were found to be more prone to neurogenic differentiation, compared to hAFSCs from polyhydramnios. Furthermore, hAFSCs from polyhydramnios were distinguished by higher secretion of pro-inflammatory cytokine TNFα, which was significantly downregulated in differentiated cells. Overall, these observations show that hAFSCs from pathological gestations with polyhydramnios differ in metabolic and inflammatory status and also possess lower neurogenic potential compared to hAFSCs from normal gestations. Therefore, further in vitro and in vivo studies are necessary to dissect the potential of hAFSCs from polyhydramnios in stem cell-based therapies. Future studies should also search for strategies that could improve the characteristics of hAFSCs derived from diseased fetuses in order for those cells to be successfully applied for regenerative medicine purposes.
Collapse
Affiliation(s)
- Giedrė Valiulienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aistė Zentelytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Elizabet Beržanskytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
10
|
Ma H, Li Y, Hou T, Li J, Yang L, Guo H, Li L, Xin M, Gong Z. Sevoflurane Postconditioning Attenuates Hypoxia/Reoxygenation Injury of Cardiomyocytes Under High Glucose by Regulating HIF-1α/MIF/AMPK Pathway. Front Pharmacol 2021; 11:624809. [PMID: 33692685 PMCID: PMC7938236 DOI: 10.3389/fphar.2020.624809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Subject: Cardiovascular disease, as a very common and serious coexisting disease in diabetic patients, and is one of the risk factors that seriously affect the prognosis and complications of surgical patients. Previous studies have shown that sevoflurane post-conditioning (SPostC) exerts a protective effect against myocardial ischemia/reperfusion injury by HIF-1α, but the protective effect is weakened or even disappeared under hyperglycemia. This study aims to explore whether regulating the HIF-1α/MIF/AMPK signaling pathway can restore the protective effect and reveal the mechanism of SPostC on cardiomyocyte hypoxia/reoxygenation injury under high glucose conditions. Methods: H9c2 cardiomyocytes were cultured in normal and high-concentration glucose medium to establish a hypoxia/reoxygenation (H/R) injury model of cardiomyocytes. SPostC was performed with 2.4% sevoflurane for 15 min before reoxygenation. Cell damage was determined by measuring cell viability, lactate dehydrogenase activity, and apoptosis; Testing cell energy metabolism by detecting reactive oxygen species (ROS) generation, ATP content and mitochondrial membrane potential; Analysis of the change of HIF-1α, MIF and AMPKα mRNA expression by RT-PCR. Western blotting was used to examine the expression of HIF-1α, MIF, AMPKα and p-AMPKα proteins. HIF-1α and MIF inhibitors and agonists were administered 40 min before hypoxia. Results: 1) SPostC exerts a protective effect by increasing cell viability, reducing LDH levels and cell apoptosis under low glucose (5 μM) after undergoing H/R injury; 2) High glucose concentration (35 μM) eliminated the cardioprotective effect of SPostC, which is manifested by a significantly decrease in the protein and mRNA expression level of the HIF-1α/MIF/AMPK signaling pathway, accompanied by decreased cell viability, increased LDH levels and apoptosis, increased ROS production, decreased ATP synthesis, and decreased mitochondrial membrane potential; 3. Under high glucose (35 μM), the expression levels of HIF-1α and MIF were up-regulated by using agonists, which can significantly increase the level of p-AMPKα protein, and the cardioprotective effect of SPostC was restored. Conclusion: The signal pathway of HIF-1α/MIF/AMPK of H9c2 cardiomyocytes may be the key point of SPostC against H/R injure. The cardioprotective of SPostC could be restored by upregulating the protein expression of HIF-1α and MIF under hyperglycemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhongcheng Gong
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
11
|
The Effect of Angiotensin II, Retinoic Acid, EGCG, and Vitamin C on the Cardiomyogenic Differentiation Induction of Human Amniotic Fluid-Derived Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:ijms21228752. [PMID: 33228183 PMCID: PMC7699548 DOI: 10.3390/ijms21228752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023] Open
Abstract
Human amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may be potentially applied in cell therapy or regenerative medicine as a new alternative source of stem cells. They could be particularly valuable in restoring cardiac tissue after myocardial infarction or other cardiovascular diseases. We investigated the potential of biologically active compounds, namely, angiotensin II, retinoic acid (RA), epigallocatechin-3-gallate (EGCG), vitamin C alone, and the combinations of RA, EGCG, and vitamin C with angiotensin II to induce cardiomyogenic differentiation of AF-MSCs. We observed that the upregulated expression of cardiac gene markers (NKX2-5, MYH6, TNNT2, and DES) and cardiac ion channel genes (sodium, calcium, the potassium) also the increased levels of Connexin 43 and Nkx2.5 proteins. Extracellular flux analysis, applied for the first time on AF-MSCs induced with biologically active compounds, revealed the switch in AF-MSCS energetic phenotype and enhanced utilization of oxidative phosphorylation for energy production. Moreover, we demonstrated changes in epigenetic marks associated with transcriptionally active (H3K4me3, H3K9ac, and H4hyperAc) or repressed (H3K27me3) chromatin. All in all, we demonstrated that explored biomolecules were able to induce alterations in AF-MSCs at the phenotypic, genetic, protein, metabolic, and epigenetic levels, leading to the formation of cardiomyocyte progenitors that may become functional heart cells in vitro or in vivo.
Collapse
|