1
|
Gien H, Rouzina I, Morse M, McCauley MJ, Williams MC. Single-molecule measurements of double-stranded DNA condensation. Biophys J 2025:S0006-3495(25)00207-3. [PMID: 40170351 DOI: 10.1016/j.bpj.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025] Open
Abstract
Electrostatically driven double-stranded DNA (dsDNA) condensation is critical in regulating many biological processes, including bacteriophage and virus replication and the packaging of chromosomal DNA in sperm heads. Here, we review single-molecule measurements of dsDNA condensed by cationic proteins, polypeptides, and small multivalent cations. Optical tweezers (OT) measurements of dsDNA collapsed by cationic condensing agents reveal a critical condensing force unique to each condensing agent that is tunable with condensing agent concentration and ionic strength. DNA globules visualized via atomic force microscopy, transmission electron microscopy, and cryoelectron microscopy reveal condensed dsDNA adopting several conformations including highly ordered toroids with a measurable central hole and, more recently, the maximally dense, yarn-ball-like structures observed with dsDNA condensed by the HIV-1 nucleocapsid protein. The combination of these approaches provides multifaceted insight into the shape and size of electrostatically condensed dsDNA globules and the kinetics of their formation and dissolution. We also review the physics of dsDNA condensation, including recent studies that show dsDNA globule size is tunable with ionic strength. Overall, this review provides important insights into understanding dsDNA condensate-regulated biological processes, as well as potential uses for gene delivery.
Collapse
Affiliation(s)
- Helena Gien
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio
| | - Michael Morse
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Micah J McCauley
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
2
|
Villanueva Valencia JR, Tsimtsirakis E, Krueger S, Evilevitch A. Temperature-induced DNA density transition in phage λ capsid revealed with contrast-matching SANS. Proc Natl Acad Sci U S A 2023; 120:e2220518120. [PMID: 37903276 PMCID: PMC10636372 DOI: 10.1073/pnas.2220518120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
Structural details of a genome packaged in a viral capsid are essential for understanding how the structural arrangement of a viral genome in a capsid controls its release dynamics during infection, which critically affects viral replication. We previously found a temperature-induced, solid-like to fluid-like mechanical transition of packaged λ-genome that leads to rapid DNA ejection. However, an understanding of the structural origin of this transition was lacking. Here, we use small-angle neutron scattering (SANS) to reveal the scattering form factor of dsDNA packaged in phage λ capsid by contrast matching the scattering signal from the viral capsid with deuterated buffer. We used small-angle X-ray scattering and cryoelectron microscopy reconstructions to determine the initial structural input parameters for intracapsid DNA, which allows accurate modeling of our SANS data. As result, we show a temperature-dependent density transition of intracapsid DNA occurring between two coexisting phases-a hexagonally ordered high-density DNA phase in the capsid periphery and a low-density, less-ordered DNA phase in the core. As the temperature is increased from 20 °C to 40 °C, we found that the core-DNA phase undergoes a density and volume transition close to the physiological temperature of infection (~37 °C). The transition yields a lower energy state of DNA in the capsid core due to lower density and reduced packing defects. This increases DNA mobility, which is required to initiate rapid genome ejection from the virus capsid into a host cell, causing infection. These data reconcile our earlier findings of mechanical DNA transition in phage.
Collapse
Affiliation(s)
| | - Efthymios Tsimtsirakis
- Department of Experimental Medical Science and NanoLund, Lund University, Lund22184, Sweden
| | - Susan Krueger
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD20899-6102
| | - Alex Evilevitch
- Department of Experimental Medical Science and NanoLund, Lund University, Lund22184, Sweden
| |
Collapse
|
3
|
He W, Qiu X, Kirmizialtin S. Sequence-Dependent Orientational Coupling and Electrostatic Attraction in Cation-Mediated DNA-DNA Interactions. J Chem Theory Comput 2023; 19:6827-6838. [PMID: 37728274 PMCID: PMC10569048 DOI: 10.1021/acs.jctc.3c00520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 09/21/2023]
Abstract
Condensation of DNA is vital for its biological functions and controlled nucleic acid assemblies. However, the mechanisms of DNA condensation are not fully understood due to the inability of experiments to access cation distributions and the complex interplay of energetic and entropic forces during assembly. By constructing free energy surfaces using exhaustive sampling and detailed analysis of cation distributions, we elucidate the mechanism of DNA condensation in different salt conditions and with different DNA sequences. We found that DNA condensation is facilitated by the correlated dynamics of the localized cations at the grooves of DNA helices. These dynamics are strongly dependent on the salt conditions and DNA sequences. In the presence of magnesium ions, major groove binding facilitates attraction. In contrast, in the presence of polyvalent cations, minor groove binding serves to create charge patterns, leading to condensation. Our findings present a novel advancement in the field and have broad implications for understanding and controlling nucleic acid complexes in vivo and in vitro.
Collapse
Affiliation(s)
- Weiwei He
- Chemistry
Program, Science Division, New York University
Abu Dhabi, Abu Dhabi 129188, United
Arab Emirates
- Department
of Chemistry, New York University, New York, New York 10012, United States
| | - Xiangyun Qiu
- Department
of Physics, George Washington University, Washington, District of
Columbia 20052, United States
| | - Serdal Kirmizialtin
- Chemistry
Program, Science Division, New York University
Abu Dhabi, Abu Dhabi 129188, United
Arab Emirates
- Department
of Chemistry, New York University, New York, New York 10012, United States
| |
Collapse
|
4
|
Wang L, Li S, Wang K, Wang N, Liu Q, Sun Z, Wang L, Wang L, Liu Q, Song C, Yang Q. Spermine enhances antiviral and anticancer responses by stabilizing DNA binding with the DNA sensor cGAS. Immunity 2023; 56:272-288.e7. [PMID: 36724787 DOI: 10.1016/j.immuni.2023.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/25/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023]
Abstract
Self-nonself discrimination is vital for the immune system to mount responses against pathogens while maintaining tolerance toward the host and innocuous commensals during homeostasis. Here, we investigated how indiscriminate DNA sensors, such as cyclic GMP-AMP synthase (cGAS), make this self-nonself distinction. Screening of a small-molecule library revealed that spermine, a well-known DNA condenser associated with viral DNA, markedly elevates cGAS activation. Mechanistically, spermine condenses DNA to enhance and stabilize cGAS-DNA binding, optimizing cGAS and downstream antiviral signaling. Spermine promotes condensation of viral, but not host nucleosome, DNA. Deletion of viral DNA-associated spermine, by propagating virus in spermine-deficient cells, reduced cGAS activation. Spermine depletion subsequently attenuated cGAS-mediated antiviral and anticancer immunity. Collectively, our results reveal a pathogenic DNA-associated molecular pattern that facilitates nonself recognition, linking metabolism and pathogen recognition.
Collapse
Affiliation(s)
- Lina Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Siru Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Kai Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Na Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Qiaoling Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zhen Sun
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Li Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lulu Wang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Chengli Song
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Qingkai Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
5
|
Farzan M, Ross A, Müller C, Allmendinger A. Liquid crystal phase formation and non-Newtonian behavior of oligonucleotide formulations. Eur J Pharm Biopharm 2022; 181:270-281. [PMID: 36435312 DOI: 10.1016/j.ejpb.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Viscosity behavior of liquid oligonucleotide therapeutics and its dependence on formulation properties has been poorly studied to date. We observed a high increase in viscosity and solidification of therapeutic oligonucleotide formulations with increasing oligonucleotide concentration creating challenges during drug product manufacturing. In this study, we characterized the viscosity behavior of three different single strand DNA oligonucleotides based on oligonucleotide concentration and formulation composition. We subsequently studied the underlying mechanism for increased viscosity at higher oligonucleotide concentrations by dynamic light scattering (DLS), 1H nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and polarized light microscopy. Viscosity was highly dependent on formulation composition, oligonucleotide sequence, and concentration, and especially dependent on the presence and combination of different individual ions, such as the presence of sodium chloride in the formulation. In samples with elevated viscosity, the viscosity behavior was characterized by non-Newtonian, shear-thinning flow behavior. We further studied these samples by DLS and 1H NMR, which revealed the presence of supra-molecular assemblies, and further characterization by polarized light and DSC characterized these assemblies as liquid crystals in the formulation. The present study links the macroscopic viscosity behavior of oligonucleotide formulations to the formation of supra-molecular assemblies and to the presence of liquid crystals, and highlights the importance of formulation composition selection for these therapeutics.
Collapse
Affiliation(s)
- Maryam Farzan
- Pharmaceutical Development & Supplies, Pharmaceutical Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, 4070 Basel, Switzerland.
| | - Alfred Ross
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche, Grenzacherstr. 124, 4070 Basel, Switzerland
| | - Claudia Müller
- Pharmaceutical Development & Supplies, Pharmaceutical Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, 4070 Basel, Switzerland
| | - Andrea Allmendinger
- Pharmaceutical Development & Supplies, Pharmaceutical Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, 4070 Basel, Switzerland; Pharmaceutical Technology and Biopharmacy, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany.
| |
Collapse
|
6
|
A Biophysical Study of DNA Condensation Mediated by Histones and Protamines. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Fraccia TP, Zanchetta G. Liquid–liquid crystalline phase separation in biomolecular solutions. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Barberi L, Livolant F, Leforestier A, Lenz M. Local structure of DNA toroids reveals curvature-dependent intermolecular forces. Nucleic Acids Res 2021; 49:3709-3718. [PMID: 33784405 PMCID: PMC8053110 DOI: 10.1093/nar/gkab197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/17/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023] Open
Abstract
In viruses and cells, DNA is closely packed and tightly curved thanks to polyvalent cations inducing an effective attraction between its negatively charged filaments. Our understanding of this effective attraction remains very incomplete, partly because experimental data is limited to bulk measurements on large samples of mostly uncurved DNA helices. Here we use cryo electron microscopy to shed light on the interaction between highly curved helices. We find that the spacing between DNA helices in spermine-induced DNA toroidal condensates depends on their location within the torus, consistent with a mathematical model based on the competition between electrostatic interactions and the bending rigidity of DNA. We use our model to infer the characteristics of the interaction potential, and find that its equilibrium spacing strongly depends on the curvature of the filaments. In addition, the interaction is much softer than previously reported in bulk samples using different salt conditions. Beyond viruses and cells, our characterization of the interactions governing DNA-based dense structures could help develop robust designs in DNA nanotechnologies.
Collapse
Affiliation(s)
- Luca Barberi
- Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France
| | | | | | - Martin Lenz
- Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France.,PMMH, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, F-75005 Paris, France
| |
Collapse
|
9
|
The pressure difference of water, a neglected but crucial inter-surface force in aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Fraccia TP, Jia TZ. Liquid Crystal Coacervates Composed of Short Double-Stranded DNA and Cationic Peptides. ACS NANO 2020; 14:15071-15082. [PMID: 32852935 DOI: 10.1021/acsnano.0c05083] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phase separation of nucleic acids and proteins is a ubiquitous phenomenon regulating subcellular compartment structure and function. While complex coacervation of flexible single-stranded nucleic acids is broadly investigated, coacervation of double-stranded DNA (dsDNA) is less studied because of its propensity to generate solid precipitates. Here, we reverse this perspective by showing that short dsDNA and poly-l-lysine coacervates can escape precipitation while displaying a surprisingly complex phase diagram, including the full set of liquid crystal (LC) mesophases observed to date in bulk dsDNA. Short dsDNA supramolecular aggregation and packing in the dense coacervate phase are the main parameters regulating the global LC-coacervate phase behavior. LC-coacervate structure was characterized upon variations in temperature and monovalent salt, DNA, and peptide concentrations, which allow continuous reversible transitions between all accessible phases. A deeper understanding of LC-coacervates can gain insights to decipher structures and phase transition mechanisms within biomolecular condensates, to design stimuli-responsive multiphase synthetic compartments with different degrees of order and to exploit self-assembly driven cooperative prebiotic evolution of nucleic acids and peptides.
Collapse
Affiliation(s)
- Tommaso P Fraccia
- Institut Pierre-Gilles de Gennes, Chimie Biologie Innovation, ESPCI Paris, CNRS, PSL Research University, 75005 Paris, France
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, 1001 Fourth Ave., Suite 3201, Seattle, Washington 98154, United States
| |
Collapse
|
11
|
Zeng D, Salvatore P, Karlsen KK, Zhang J, Wengel J, Ulstrup J. Reprint of "Electrochemical intercalator binding to single- and double-strand DNA- and LNA-based molecules on Au(111)-electrode surfaces". J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Zeng D, Salvatore P, Karlsen KK, Zhang J, Wengel J, Ulstrup J. Electrochemical intercalator binding to single- and double-strand DNA- and LNA-based molecules on Au(111)-electrode surfaces. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Esumi M, Sakurai S, Tanaka M. The effect of spermidine on guanine decomposition via photoinduced electron transfer in DNA. Org Biomol Chem 2020; 18:47-51. [DOI: 10.1039/c9ob01860c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The addition of spermidine caused the attenuation of guanine decomposition via photoinduced electron transfer in pyrene-modified DNA, and higher added concentrations of spermidine resulted in the promotion of decomposition in condensed DNA.
Collapse
Affiliation(s)
- Mayu Esumi
- Department of Engineering Science
- Graduate School of Informatics and Engineering
- The University of Electro-Communications
- Chofu
- Japan
| | - Shunsuke Sakurai
- Department of Engineering Science
- Graduate School of Informatics and Engineering
- The University of Electro-Communications
- Chofu
- Japan
| | - Makiko Tanaka
- Department of Engineering Science
- Graduate School of Informatics and Engineering
- The University of Electro-Communications
- Chofu
- Japan
| |
Collapse
|
14
|
Roodhuizen JA, Hendrikx PJTM, Hilbers PAJ, de Greef TFA, Markvoort AJ. Counterion-Dependent Mechanisms of DNA Origami Nanostructure Stabilization Revealed by Atomistic Molecular Simulation. ACS NANO 2019; 13:10798-10809. [PMID: 31502824 PMCID: PMC6764110 DOI: 10.1021/acsnano.9b05650] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/09/2019] [Indexed: 05/18/2023]
Abstract
The DNA origami technique has proven to have tremendous potential for therapeutic and diagnostic applications like drug delivery, but the relatively low concentrations of cations in physiological fluids cause destabilization and degradation of DNA origami constructs preventing in vivo applications. To reveal the mechanisms behind DNA origami stabilization by cations, we performed atomistic molecular dynamics simulations of a DNA origami rectangle in aqueous solvent with varying concentrations of magnesium and sodium as well as polyamines like oligolysine and spermine. We explored the binding of these ions to DNA origami in detail and found that the mechanism of stabilization differs between ion types considerably. While sodium binds weakly and quickly exchanges with the solvent, magnesium and spermine bind close to the origami with spermine also located in between helices, stabilizing the crossovers characteristic for DNA origami and reducing repulsion of parallel helices. In contrast, oligolysine of length ten prevents helix repulsion by binding to adjacent helices with its flexible side chains, spanning the gap between the helices. Shorter oligolysine molecules with four subunits are weak stabilizers as they lack both the ability to connect helices and to prevent helix repulsion. This work thus shows how the binding modes of ions influence the stabilization of DNA origami nanostructures on a molecular level.
Collapse
Affiliation(s)
- Job A.
L. Roodhuizen
- Computational Biology Group, Department of Biomedical Engineering and Institute for Complex
Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Philip J. T. M. Hendrikx
- Computational Biology Group, Department of Biomedical Engineering and Institute for Complex
Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter A. J. Hilbers
- Computational Biology Group, Department of Biomedical Engineering and Institute for Complex
Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tom F. A. de Greef
- Computational Biology Group, Department of Biomedical Engineering and Institute for Complex
Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- E-mail:
| | - Albert J. Markvoort
- Computational Biology Group, Department of Biomedical Engineering and Institute for Complex
Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- E-mail:
| |
Collapse
|
15
|
Wang J, Ye X, Ni H, Zhang J, Ju S, Ding W. Transfection Efficiency Evaluation and Endocytosis Exploration of Different Polymer Condensed Agents. DNA Cell Biol 2019; 38:1048-1055. [PMID: 31433200 DOI: 10.1089/dna.2018.4464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
DNA condensed agents can improve the transfection efficiency of the cationic liposome delivery system. However, various condensed agents have distinct transfection efficiency and cellular cytotoxicity. The object of this study was to screen the optimal agents with the high transfection efficiency and low cytotoxicity from four polymer compressive materials, polyethylenimine (PEI), chitosan, poly-l-lysine (PLL), and spermidine. DNA was precompressed with these four agents and then combined to cationic liposomes. Subsequently, the entrapment and transfection efficiency of the obtained complexes were investigated. Finally, the particle sizes, cytotoxicity, and endocytosis fashion of these copolymers (Lipo-PEI, Lipo-chitosan, Lipo-PLL, and Lipo-spermidine) were examined. It was found that these four copolymers had significantly lower cytotoxicity and higher transfection efficiency (45.5%, 42.4%, 36.8%, and 47.4%, respectively) than those in the control groups. The transfection efficiency of Lipo-PEI and Lipo-spermidine copolymers were better than the other two copolymers. In 293T cells, nystatin significantly inhibited the transfection efficiency of Lipo-PEI-DNA and Lipo-spermidine-DNA (51.88% and 46.05%, respectively), which suggest that the endocytosis pathway of Lipo-spermidine and Lipo-PEI copolymers was probably caveolin dependent. Our study indicated that these dual-degradable copolymers especially liposome-spermidine copolymer could be used as the potential biocompatible gene delivery carriers.
Collapse
Affiliation(s)
- Jianhua Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, P.R. China.,Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, P.R. China
| | - Xiaolei Ye
- Ningbo Institute of Medical Sciences, Ningbo University, Ningbo, P.R. China
| | - Hongbing Ni
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Weifeng Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, P.R. China.,Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, P.R. China
| |
Collapse
|
16
|
Kanemura A, Yoshikawa Y, Fukuda W, Tsumoto K, Kenmotsu T, Yoshikawa K. Opposite effect of polyamines on In vitro gene expression: Enhancement at low concentrations but inhibition at high concentrations. PLoS One 2018; 13:e0193595. [PMID: 29494707 PMCID: PMC5832264 DOI: 10.1371/journal.pone.0193595] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/14/2018] [Indexed: 11/18/2022] Open
Abstract
Background Polyamines have various biological functions including marked effects on the structure and function of genomic DNA molecules. Changes in the higher-order structure of DNA caused by polyamines are expected to be closely related to genetic activity. To clarify this issue, we examined the relationship between gene expression and the higher-order structure of DNA under different polyamine concentrations. Principal findings We studied the effects of polyamines, spermidine SPD(3+) and spermine SP(4+), on gene expression by a luciferase assay. The results showed that gene expression is increased by ca. 5-fold by the addition of SPD(3+) at 0.3 mM, whereas it is completely inhibited above 2 mM. Similarly, with SP(4+), gene expression is maximized at 0.08 mM and completely inhibited above 0.6 mM. We also performed atomic force microscopy (AFM) observations on DNA under different polyamine concentrations. AFM revealed that a flower-like conformation is generated at polyamine concentrations associated with maximum expression as measured by the luciferase assay. On the other hand, DNA molecules exhibit a folded compact conformation at polyamine concentrations associated with the complete inhibition of expression. Based on these results, we discuss the plausible mechanism of the opposite effect, i.e., enhancement and inhibition, of polyamines on gene expression. Conclusion and significance It was found that polyamines exert opposite effect, enhancement and inhibition, on gene expression depending on their concentrations. Such an opposite effect is argued in relation to the conformational change of DNA: enhancement is due to the parallel ordering of DNA segments that is accompanied by a decrease in the negative charge of double-stranded DNA, and inhibition is caused by the compaction of DNA into a tightly packed state with almost perfect charge-neutralization.
Collapse
Affiliation(s)
- Ai Kanemura
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Wakao Fukuda
- College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Kanta Tsumoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, Mie, Japan
| | - Takahiro Kenmotsu
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
17
|
Gimsa J, Wysotzki P, Perutkova Š, Weihe T, Elter P, Marszałek P, Kralj-Iglič V, Müller T, Iglič A. Spermidine-Induced Attraction of Like-Charged Surfaces Is Correlated with the pH-Dependent Spermidine Charge: Force Spectroscopy Characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2725-2733. [PMID: 29382192 DOI: 10.1021/acs.langmuir.7b04199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ubiquitous molecule spermidine is known for its pivotal roles in the contact mediation, fusion, and reorganization of biological membranes and DNA. In our model system, borosilicate beads were attached to atomic force microscopy cantilevers and used to probe mica surfaces to study the details of the spermidine-induced attractions. The negative surface charges of both materials were largely constant over the measured pH range of pH 7.8 to 12. The repulsion observed between the surfaces turned into attraction after the addition of spermidine. The attractive force was correlated with the degree of spermidine protonation, which changed from +3 to +1 over the measured pH range. The force was maximal at pH 7.8. To explain the observed pH and spermidine concentration dependence, two different theoretical approaches were used: a chemical model of the charge equilibrium of spermidine and Monte-Carlo simulations of the orientation of the rodlike spermidine molecules in the gap between the borosilicate and mica surfaces. Monte-Carlo simulations of the orientational ordering of the rodlike spermidine molecules suggested the induction of attractive interactions between the surfaces if the gap was bridged by the molecules. For larger gaps, the orientational distribution function of the spermidine molecules predicted a considerable degree of parallel attachment of the molecules to the surfaces, resulting in reduced effective surface charge densities of both surfaces, which reduced their electrostatic repulsion.
Collapse
Affiliation(s)
- Jan Gimsa
- Department of Biophysics, Faculty of Natural Sciences, University of Rostock , 18057 Rostock, Germany
| | - Philipp Wysotzki
- Department of Biophysics, Faculty of Natural Sciences, University of Rostock , 18057 Rostock, Germany
| | - Šarka Perutkova
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana , 1000 Ljubljana, Slovenia
| | - Thomas Weihe
- Leibniz Institute for Plasma Science and Technology , 17489 Greifswald, Germany
| | - Patrick Elter
- Department of Life Science Engineering, University of Applied Sciences Mittelhessen , 35390 Gießen, Germany
| | - Piotr Marszałek
- Department of Mechanical Engineering and Material Science, and Center for Biologically Inspired Materials and Material Systems, Duke University , Durham, North Carolina 27708, United States
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana , 1000 Ljubljana, Slovenia
| | - Torsten Müller
- R&D Department, JPK Instruments AG , 12099 Berlin, Germany
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana , 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Hutchison JM, Rau DC, DeRouchey JE. Role of Disulfide Bonds on DNA Packaging Forces in Bull Sperm Chromatin. Biophys J 2017; 113:1925-1933. [PMID: 29117517 DOI: 10.1016/j.bpj.2017.08.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 01/06/2023] Open
Abstract
Short arginine-rich proteins called protamines mediate the near crystalline DNA packaging in most vertebrate sperm cells. Protamines are synthesized during spermiogenesis and condense the paternal genome into a transcriptionally inactive state in late-stage spermatids. Protamines from eutherian mammals, including bulls and humans, also contain multiple cysteine residues that form intra- and interprotamine sulfur-sulfur bonds during the final stages of sperm maturation. Although the cross-linked protamine network is known to stabilize the resulting nucleoprotamine structure, little is known about the role of disulfide bonds on DNA condensation in the mammalian sperm. Using small angle x-ray scattering, we show that isolated bull nuclei achieve slightly lower DNA packing densities compared to salmon nuclei despite salmon protamine lacking cysteine residues. Surprisingly, reduction of the intermolecular sulfur-sulfur bonds of bull protamine results in tighter DNA packing. Complete reduction of the intraprotamine disulfide bonds ultimately leads to decondensation, suggesting that disulfide-mediated secondary structure is also critical for proper protamine function. Lastly, comparison of multiple bull collections showed some to have aberrant x-ray scattering profiles consistent with incorrect disulfide bond formation. Together, these observations shed light on the biological functions of disulfide linkages for in vivo DNA packaging in sperm chromatin.
Collapse
Affiliation(s)
- James M Hutchison
- Department of Chemistry, University of Kentucky, Lexington, Kentucky; Program in Physical Biology, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Donald C Rau
- Program in Physical Biology, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Jason E DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
19
|
Katz AM, Tolokh IS, Pabit SA, Baker N, Onufriev AV, Pollack L. Spermine Condenses DNA, but Not RNA Duplexes. Biophys J 2017; 112:22-30. [PMID: 28076812 DOI: 10.1016/j.bpj.2016.11.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 10/25/2016] [Accepted: 11/14/2016] [Indexed: 11/17/2022] Open
Abstract
Interactions between the polyamine spermine and nucleic acids drive important cellular processes. Spermine condenses DNA and some RNAs, such as poly(rA):poly(rU). A large fraction of the spermine present in cells is bound to RNA but apparently does not condense it. Here, we study the effect of spermine binding to short duplex RNA and DNA, and compare our findings with predictions of molecular-dynamics simulations. When small numbers of spermine are introduced, RNA with a designed sequence containing a mixture of 14 GC pairs and 11 AU pairs resists condensation relative to DNA of an equivalent sequence or to 25 bp poly(rA):poly(rU) RNA. A comparison of wide-angle x-ray scattering profiles with simulation results suggests that spermine is sequestered deep within the major groove of mixed-sequence RNA. This prevents condensation by limiting opportunities to bridge to other molecules and stabilizes the RNA by locking it into a particular conformation. In contrast, for DNA, simulations suggest that spermine binds externally to the duplex, offering opportunities for intermolecular interaction. The goal of this study is to explain how RNA can remain soluble and available for interaction with other molecules in the cell despite the presence of spermine at concentrations high enough to precipitate DNA.
Collapse
Affiliation(s)
- Andrea M Katz
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Igor S Tolokh
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia
| | - Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Nathan Baker
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Alexey V Onufriev
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia; Department of Physics, Virginia Tech, Blacksburg, Virginia
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York.
| |
Collapse
|
20
|
Chopra A, Krishnan S, Simmel FC. Electrotransfection of Polyamine Folded DNA Origami Structures. NANO LETTERS 2016; 16:6683-6690. [PMID: 27608719 DOI: 10.1021/acs.nanolett.6b03586] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
DNA origami structures are artificial molecular nanostructures in which DNA double helices are forced into a closely packed configuration by a multitude of DNA strand crossovers. We show that three different types of origami structures (a flat sheet, a hollow tube, and a compact origami block) can be formed in magnesium-free buffer solutions containing low (<1 mM) concentrations of the condensing agent spermidine. Much like in DNA condensation, the amount of spermidine required for origami folding is proportional to the DNA concentration. At excessive amounts, the structures aggregate and precipitate. In contrast to origami structures formed in conventional buffers, the resulting structures are stable in the presence of high electric field pulses, such as those commonly used for electrotransfection experiments. We demonstrate that spermidine-stabilized structures are stable in cell lysate and can be delivered into mammalian cells via electroporation.
Collapse
Affiliation(s)
- Aradhana Chopra
- Physik-Department E14, Technische Universität München , 85748 Garching, Germany
| | - Swati Krishnan
- Physik-Department E14, Technische Universität München , 85748 Garching, Germany
| | - Friedrich C Simmel
- Physik-Department E14, Technische Universität München , 85748 Garching, Germany
| |
Collapse
|
21
|
O' Lee DJ, Danilowicz C, Rochester C, Kornyshev AA, Prentiss M. Evidence of protein-free homology recognition in magnetic bead force-extension experiments. Proc Math Phys Eng Sci 2016; 472:20160186. [PMID: 27493568 PMCID: PMC4971244 DOI: 10.1098/rspa.2016.0186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Earlier theoretical studies have proposed that the homology-dependent pairing of large tracts of dsDNA may be due to physical interactions between homologous regions. Such interactions could contribute to the sequence-dependent pairing of chromosome regions that may occur in the presence or the absence of double-strand breaks. Several experiments have indicated the recognition of homologous sequences in pure electrolytic solutions without proteins. Here, we report single-molecule force experiments with a designed 60 kb long dsDNA construct; one end attached to a solid surface and the other end to a magnetic bead. The 60 kb constructs contain two 10 kb long homologous tracts oriented head to head, so that their sequences match if the two tracts fold on each other. The distance between the bead and the surface is measured as a function of the force applied to the bead. At low forces, the construct molecules extend substantially less than normal, control dsDNA, indicating the existence of preferential interaction between the homologous regions. The force increase causes no abrupt but continuous unfolding of the paired homologous regions. Simple semi-phenomenological models of the unfolding mechanics are proposed, and their predictions are compared with the data.
Collapse
Affiliation(s)
- D J O' Lee
- Department of Chemistry , Imperial College London , London SW7 2AZ, UK
| | - C Danilowicz
- Department of Physics , Harvard University, Cambridge , MA 02138, USA
| | - C Rochester
- Department of Chemistry , Imperial College London , London SW7 2AZ, UK
| | - A A Kornyshev
- Department of Chemistry , Imperial College London , London SW7 2AZ, UK
| | - M Prentiss
- Department of Physics , Harvard University, Cambridge , MA 02138, USA
| |
Collapse
|
22
|
Korolev N, Yu H, Lyubartsev AP, Nordenskiöld L. Molecular dynamics simulations demonstrate the regulation of DNA-DNA attraction by H4 histone tail acetylations and mutations. Biopolymers 2016; 101:1051-64. [PMID: 24740714 DOI: 10.1002/bip.22499] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/08/2023]
Abstract
The positively charged N-terminal histone tails play a crucial role in chromatin compaction and are important modulators of DNA transcription, recombination, and repair. The detailed mechanism of the interaction of histone tails with DNA remains elusive. To model the unspecific interaction of histone tails with DNA, all-atom molecular dynamics (MD) simulations were carried out for systems of four DNA 22-mers in the presence of 20 or 16 short fragments of the H4 histone tail (variations of the 16-23 a. a. KRHRKVLR sequence, as well as the unmodified fragment a. a.13-20, GGAKRHRK). This setup with high DNA concentration, explicit presence of DNA-DNA contacts, presence of unstructured cationic peptides (histone tails) and K(+) mimics the conditions of eukaryotic chromatin. A detailed account of the DNA interactions with the histone tail fragments, K(+) and water is presented. Furthermore, DNA structure and dynamics and its interplay with the histone tail fragments binding are analysed. The charged side chains of the lysines and arginines play major roles in the tail-mediated DNA-DNA attraction by forming bridges and by coordinating to the phosphate groups and to the electronegative sites in the minor groove. Binding of all species to DNA is dynamic. The structure of the unmodified fully-charged H4 16-23 a.a. fragment KRHRKVLR is dominated by a stretched conformation. The H4 tail a. a. fragment GGAKRHRK as well as the H4 Lys16 acetylated fragment are highly flexible. The present work allows capturing typical features of the histone tail-counterion-DNA structure, interaction and dynamics.
Collapse
Affiliation(s)
- Nikolay Korolev
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | | | | | | |
Collapse
|
23
|
Thomas TJ, Tajmir-Riahi HA, Thomas T. Polyamine–DNA interactions and development of gene delivery vehicles. Amino Acids 2016; 48:2423-31. [DOI: 10.1007/s00726-016-2246-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
|
24
|
Sung B, Leforestier A, Livolant F. Coexistence of coil and globule domains within a single confined DNA chain. Nucleic Acids Res 2015; 44:1421-7. [PMID: 26704970 PMCID: PMC4756835 DOI: 10.1093/nar/gkv1494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/09/2015] [Indexed: 11/17/2022] Open
Abstract
The highly charged DNA chain may be either in an extended conformation, the coil, or condensed into a highly dense and ordered structure, the toroid. The transition, also called collapse of the chain, can be triggered in different ways, for example by changing the ionic conditions of the solution. We observe individual DNA molecules one by one, kept separated and confined inside a protein shell (the envelope of a bacterial virus, 80 nm in diameter). For subcritical concentrations of spermine (4+), part of the DNA is condensed and organized in a toroid and the other part of the chain remains uncondensed around. Two states coexist along the same DNA chain. These ‘hairy’ globules are imaged by cryo-electron microscopy. We describe the global conformation of the chain and the local ordering of DNA segments inside the toroid.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- Laboratoire de Physique des Solides, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Amélie Leforestier
- Laboratoire de Physique des Solides, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Françoise Livolant
- Laboratoire de Physique des Solides, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| |
Collapse
|
25
|
Jin Y, Knobler CM, Gelbart WM. Controlling the extent of viral genome release by a combination of osmotic stress and polyvalent cations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022708. [PMID: 26382433 DOI: 10.1103/physreve.92.022708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Indexed: 06/05/2023]
Abstract
While several in vitro experiments on viral genome release have specifically studied the effects of external osmotic pressure and of the presence of polyvalent cations on the ejection of DNA from bacteriophages, few have systematically investigated how the extent of ejection is controlled by a combination of these effects. In this work we quantify the effect of osmotic pressure on the extent of DNA ejection from bacteriophage lambda as a function of polyvalent cation concentration (in particular, the tetravalent polyamine spermine). We find that the pressure required to completely inhibit ejection decreases from 38 to 17 atm as the spermine concentration is increased from 0 to 1.5 mM. Further, incubation of the phage particles in spermine concentrations as low as 0.15 mM--the threshold for DNA condensation in bulk solution-is sufficient to significantly limit the extent of ejection in the absence of osmolyte; for spermine concentrations below this threshold, the ejection is complete. In accord with recent investigations on the packaging of DNA in the presence of a condensing agent, we observe that the self-attraction induced by the polyvalent cation affects the ordering of the genome, causing it to get stuck in a broad range of nonequilibrated structures.
Collapse
Affiliation(s)
- Yan Jin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Molecular Biology Institute (MBI), University of California, Los Angeles, California 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| |
Collapse
|
26
|
Li J, Wijeratne SS, Qiu X, Kiang CH. DNA under Force: Mechanics, Electrostatics, and Hydration. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:246-267. [PMID: 28347009 PMCID: PMC5312857 DOI: 10.3390/nano5010246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/16/2015] [Accepted: 02/12/2015] [Indexed: 11/16/2022]
Abstract
Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.
Collapse
Affiliation(s)
- Jingqiang Li
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
| | - Sithara S Wijeratne
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
| | - Xiangyun Qiu
- Department of Physics, George Washington University, Washington, DC 20052, USA.
| | - Ching-Hwa Kiang
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
27
|
Wang Y, Zhang X, Yang G. Single molecular analysis of the interaction between DNA and chitosan. RSC Adv 2015. [DOI: 10.1039/c4ra15612a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
DNA condenses into toroids and further to globules when the concentration of chitosan increases, and the corresponding condensing force goes up simultaneously.
Collapse
Affiliation(s)
- Yanwei Wang
- School of Physics and Electronic Information
- Wenzhou University
- Wenzhou
- China
| | - Xu Zhang
- School of Physics and Electronic Information
- Wenzhou University
- Wenzhou
- China
| | - Guangcan Yang
- School of Physics and Electronic Information
- Wenzhou University
- Wenzhou
- China
| |
Collapse
|
28
|
Rocha MS, Cavalcante AG, Silva R, Ramos EB. On the effects of intercalators in DNA condensation: a force spectroscopy and gel electrophoresis study. J Phys Chem B 2014; 118:4832-9. [PMID: 24720756 DOI: 10.1021/jp501589d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this work we have characterized the effects of the intercalator ethidium bromide (EtBr) on the DNA condensation process by using force spectroscopy and gel electrophoresis. We have tested two condensing agents: spermine (spm(4+)), a tetravalent cationic amine which promotes cation-induced DNA condensation, and poly(ethylene glycol) (PEG), a neutral polymer which promotes DNA ψ-condensation. Two different types of experiments were performed. In the first type, bare DNA molecules disperse in solution are first treated with EtBr for intercalation, and then the condensing agent is added to the sample with the purpose of verifying the effects of the intercalator in hindering DNA condensation. In the second experiment type, the bare DNA molecules are first condensed, and then the intercalator is added to the sample in order to verify its influence on the previously condensed DNA. The results obtained with the two different experimental techniques used agree very well, indicating that previously intercalated EtBr can hinder both cation-induced and ψ-condensation, being more efficient in the first case. On the other hand, EtBr has little effect on the previously formed cation-induced condensates, but is efficient in unfolding the ψ-condensates.
Collapse
Affiliation(s)
- M S Rocha
- Laboratório de Física Biológica, Departamento de Física, Universidade Federal de Viçosa , Viçosa, Minas Gerais, 36570-000, Brazil
| | | | | | | |
Collapse
|
29
|
Qiu X, Giannini J, Howell SC, Xia Q, Ke F, Andresen K. Ion competition in condensed DNA arrays in the attractive regime. Biophys J 2014; 105:984-92. [PMID: 23972850 DOI: 10.1016/j.bpj.2013.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 06/30/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022] Open
Abstract
Physical origin of DNA condensation by multivalent cations remains unsettled. Here, we report quantitative studies of how one DNA-condensing ion (Cobalt(3+) Hexammine, or Co(3+)Hex) and one nonDNA-condensing ion (Mg(2+)) compete within the interstitial space in spontaneously condensed DNA arrays. As the ion concentrations in the bath solution are systematically varied, the ion contents and DNA-DNA spacings of the DNA arrays are determined by atomic emission spectroscopy and x-ray diffraction, respectively. To gain quantitative insights, we first compare the experimentally determined ion contents with predictions from exact numerical calculations based on nonlinear Poisson-Boltzmann equations. Such calculations are shown to significantly underestimate the number of Co(3+)Hex ions, consistent with the deficiencies of nonlinear Poisson-Boltzmann approaches in describing multivalent cations. Upon increasing the concentration of Mg(2+), the Co(3+)Hex-condensed DNA array expands and eventually redissolves as a result of ion competition weakening DNA-DNA attraction. Although the DNA-DNA spacing depends on both Mg(2+) and Co(3+)Hex concentrations in the bath solution, it is observed that the spacing is largely determined by a single parameter of the DNA array, the fraction of DNA charges neutralized by Co(3+)Hex. It is also observed that only ∼20% DNA charge neutralization by Co(3+)Hex is necessary for spontaneous DNA condensation. We then show that the bath ion conditions can be reduced to one variable with a simplistic ion binding model, which is able to describe the variations of both ion contents and DNA-DNA spacings reasonably well. Finally, we discuss the implications on the nature of interstitial ions and cation-mediated DNA-DNA interactions.
Collapse
Affiliation(s)
- Xiangyun Qiu
- Department of Physics, George Washington University, Washington, DC, USA.
| | | | | | | | | | | |
Collapse
|
30
|
DNA compaction induced by a cationic polymer or surfactant impact gene expression and DNA degradation. PLoS One 2014; 9:e92692. [PMID: 24671109 PMCID: PMC3966812 DOI: 10.1371/journal.pone.0092692] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/24/2014] [Indexed: 01/08/2023] Open
Abstract
There is an increasing interest in achieving gene regulation in biotechnological and biomedical applications by using synthetic DNA-binding agents. Most studies have so far focused on synthetic sequence-specific DNA-binding agents. Such approaches are relatively complicated and cost intensive and their level of sophistication is not always required, in particular for biotechnological application. Our study is inspired by in vivo data that suggest that DNA compaction might contribute to gene regulation. This study exploits the potential of using synthetic DNA compacting agents that are not sequence-specific to achieve gene regulation for in vitro systems. The semi-synthetic in vitro system we use include common cationic DNA-compacting agents, poly(amido amine) (PAMAM) dendrimers and the surfactant hexadecyltrimethylammonium bromide (CTAB), which we apply to linearized plasmid DNA encoding for the luciferase reporter gene. We show that complexing the DNA with either of the cationic agents leads to gene expression inhibition in a manner that depends on the extent of compaction. This is demonstrated by using a coupled in vitro transcription-translation system. We show that compaction can also protect DNA against degradation in a dose-dependent manner. Furthermore, our study shows that these effects are reversible and DNA can be released from the complexes. Release of DNA leads to restoration of gene expression and makes the DNA susceptible to degradation by Dnase. A highly charged polyelectrolyte, heparin, is needed to release DNA from dendrimers, while DNA complexed with CTAB dissociates with the non-ionic surfactant C12E5. Our results demonstrate the relation between DNA compaction by non-specific DNA-binding agents and gene expression and gene regulation can be achieved in vitro systems in a reliable dose-dependent and reversible manner.
Collapse
|
31
|
Hanhijärvi KJ, Ziedaite G, Pietilä MK, Hæggström E, Bamford DH. DNA ejection from an archaeal virus--a single-molecule approach. Biophys J 2013; 104:2264-72. [PMID: 23708366 DOI: 10.1016/j.bpj.2013.03.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 10/26/2022] Open
Abstract
The translocation of genetic material from the viral capsid to the cell is an essential part of the viral infection process. Whether the energetics of this process is driven by the energy stored within the confined nucleic acid or cellular processes pull the genome into the cell has been the subject of discussion. However, in vitro studies of genome ejection have been limited to a few head-tailed bacteriophages with a double-stranded DNA genome. Here we describe a DNA release system that operates in an archaeal virus. This virus infects an archaeon Haloarcula hispanica that was isolated from a hypersaline environment. The DNA-ejection velocity of His1, determined by single-molecule experiments, is comparable to that of bacterial viruses. We found that the ejection process is modulated by the external osmotic pressure (polyethylene glycol (PEG)) and by increased ion (Mg(2+) and Na(+)) concentration. The observed ejection was unidirectional, randomly paused, and incomplete, which suggests that cellular processes are required to complete the DNA transfer.
Collapse
Affiliation(s)
- K J Hanhijärvi
- Department of Physics, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
32
|
Kornyshev AA, Leikin S. Helical structure determines different susceptibilities of dsDNA, dsRNA, and tsDNA to counterion-induced condensation. Biophys J 2013; 104:2031-41. [PMID: 23663846 DOI: 10.1016/j.bpj.2013.03.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/06/2013] [Accepted: 03/18/2013] [Indexed: 11/18/2022] Open
Abstract
Recent studies of counterion-induced condensation of nucleic acid helices into aggregates produced several puzzling observations. For instance, trivalent cobalt hexamine ions condensed double-stranded (ds) DNA oligomers but not their more highly charged dsRNA counterparts. Divalent alkaline earth metal ions condensed triple-stranded (ts) DNA oligomers but not dsDNA. Here we show that these counterintuitive experimental results can be rationalized within the electrostatic zipper model of interactions between molecules with helical charge motifs. We report statistical mechanical calculations that reveal dramatic and nontrivial interplay between the effects of helical structure and thermal fluctuations on electrostatic interaction between oligomeric nucleic acids. Combining predictions for oligomeric and much longer helices, we also interpret recent experimental studies of the role of counterion charge, structure, and chemistry. We argue that an electrostatic zipper attraction might be a major or even dominant force in nucleic acid condensation.
Collapse
Affiliation(s)
- Alexei A Kornyshev
- Department of Chemistry, Imperial College London, London, United Kingdom
| | | |
Collapse
|
33
|
Salvatore P, Zeng D, Karlsen KK, Chi Q, Wengel J, Ulstrup J. Electrochemistry of single metalloprotein and DNA-based molecules at Au(111) electrode surfaces. Chemphyschem 2013; 14:2101-11. [PMID: 23788363 DOI: 10.1002/cphc.201300299] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Indexed: 11/10/2022]
Abstract
We have briefly overviewed recent efforts in the electrochemistry of single transition metal complex, redox metalloprotein, and redox-marked oligonucleotide (ON) molecules. We have particularly studied self-assembled molecular monolayers (SAMs) of several 5'-C6-SH single- (ss) and double-strand (ds) ONs immobilized on Au(111) electrode surfaces via Au-S bond formation, using a combination of nucleic acid chemistry, electrochemistry and electrochemically controlled scanning tunnelling microscopy (in situ STM). Ds ONs stabilized by multiply charged cations and locked nucleic acid (LNA) monomers have been primary targets, with a view on stabilizing the ds-ONs and improving voltammetric signals of intercalating electrochemical redox probes. Voltammetric signals of the intercalator anthraquinone monosulfonate (AQMS) at ds-DNA/Au(111) surfaces diluted by mercaptohexanol are significantly sharpened and more robust in the presence than in the absence of [Co(NH3)6](3+). AQMS also displays robust Faradaic voltammetric signals specific to the ds form on binding to similar LNA/Au(111) surfaces, but this signal only evolves after successive voltammetric scanning into negative potential ranges. Triply charged spermidine (Spd) invokes itself a strong voltammetric signal, which is specific to the ds form and fully matched sequences. This signal is of non-Faradaic, capacitive origin but appears in the same potential range as the Faradaic AQMS signal. In situ STM shows that molecular scale structures of the size of Spd-stabilized ds-ONs are densely packed over the Au(111) surface in potential ranges around the capacitive peak potential.
Collapse
Affiliation(s)
- Princia Salvatore
- Department of Chemistry, Kemitorvet, Building 207, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
34
|
DeRouchey J, Hoover B, Rau DC. A comparison of DNA compaction by arginine and lysine peptides: a physical basis for arginine rich protamines. Biochemistry 2013; 52:3000-9. [PMID: 23540557 DOI: 10.1021/bi4001408] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protamines are small, highly positively charged peptides used to package DNA at very high densities in sperm nuclei. Tight DNA packing is considered essential for the minimization of DNA damage by mutagens and reactive oxidizing species. A striking and general feature of protamines is the almost exclusive use of arginine over lysine for the positive charge to neutralize DNA. We have investigated whether this preference for arginine might arise from a difference in DNA condensation by arginine and lysine peptides. The forces underlying DNA compaction by arginine, lysine, and ornithine peptides are measured using the osmotic stress technique coupled with X-ray scattering. The equilibrium spacings between DNA helices condensed by lysine and ornithine peptides are significantly larger than the interhelical distances with comparable arginine peptides. The DNA surface-to-surface separation, for example, is some 50% larger with polylysine than with polyarginine. DNA packing by lysine rich peptides in sperm nuclei would allow much greater accessibility to small molecules that could damage DNA. The larger spacing with lysine peptides is caused by both a weaker attraction and a stronger short-range repulsion relative to that of the arginine peptides. A previously proposed model for binding of polyarginine and protamine to DNA provides a convenient framework for understanding the differences between the ability of lysine and arginine peptides to assemble DNA.
Collapse
Affiliation(s)
- Jason DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | |
Collapse
|
35
|
DNA self-assembly: from chirality to evolution. Int J Mol Sci 2013; 14:8252-70. [PMID: 23591841 PMCID: PMC3645741 DOI: 10.3390/ijms14048252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/03/2013] [Accepted: 03/21/2013] [Indexed: 01/12/2023] Open
Abstract
Transient or long-term DNA self-assembly participates in essential genetic functions. The present review focuses on tight DNA-DNA interactions that have recently been found to play important roles in both controlling DNA higher-order structures and their topology. Due to their chirality, double helices are tightly packed into stable right-handed crossovers. Simple packing rules that are imposed by DNA geometry and sequence dictate the overall architecture of higher order DNA structures. Close DNA-DNA interactions also provide the missing link between local interactions and DNA topology, thus explaining how type II DNA topoisomerases may sense locally the global topology. Finally this paper proposes that through its influence on DNA self-assembled structures, DNA chirality played a critical role during the early steps of evolution.
Collapse
|
36
|
Leforestier A. Polymorphism of DNA conformation inside the bacteriophage capsid. J Biol Phys 2013; 39:201-13. [PMID: 23860869 PMCID: PMC3662419 DOI: 10.1007/s10867-013-9315-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022] Open
Abstract
Double-stranded DNA bacteriophage genomes are packaged into their icosahedral capsids at the highest densities known so far (about 50 % w:v). How the molecule is folded at such density and how its conformation changes upon ejection or packaging are fascinating questions still largely open. We review cryo-TEM analyses of DNA conformation inside partially filled capsids as a function of the physico-chemical environment (ions, osmotic pressure, temperature). We show that there exists a wide variety of DNA conformations. Strikingly, the different observed structures can be described by some of the different models proposed over the years for DNA organisation inside bacteriophage capsids: either spool-like structures with axial or concentric symmetries, or liquid crystalline structures characterised by a DNA homogeneous density. The relevance of these conformations for the understanding of DNA folding and unfolding upon ejection and packaging in vivo is discussed.
Collapse
Affiliation(s)
- Amélie Leforestier
- Laboratoire de Physqiue des Solides, CNRS, UMR 8502, Université Paris Sud, Orsay, France.
| |
Collapse
|
37
|
Lander GC, Johnson JE, Rau DC, Potter CS, Carragher B, Evilevitch A. DNA bending-induced phase transition of encapsidated genome in phage λ. Nucleic Acids Res 2013; 41:4518-24. [PMID: 23449219 PMCID: PMC3632124 DOI: 10.1093/nar/gkt137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The DNA structure in phage capsids is determined by DNA-DNA interactions and bending energy. The effects of repulsive interactions on DNA interaxial distance were previously investigated, but not the effect of DNA bending on its structure in viral capsids. By varying packaged DNA length and through addition of spermine ions, we transform the interaction energy from net repulsive to net attractive. This allowed us to isolate the effect of bending on the resulting DNA structure. We used single particle cryo-electron microscopy reconstruction analysis to determine the interstrand spacing of double-stranded DNA encapsidated in phage λ capsids. The data reveal that stress and packing defects, both resulting from DNA bending in the capsid, are able to induce a long-range phase transition in the encapsidated DNA genome from a hexagonal to a cholesteric packing structure. This structural observation suggests significant changes in genome fluidity as a result of a phase transition affecting the rates of viral DNA ejection and packaging.
Collapse
Affiliation(s)
- Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Sixty years after Hershey and Chase showed that nucleic acid is the major component of phage particles that is ejected into cells, we still do not fully understand how the process occurs. Advances in electron microscopy have revealed the structure of the condensed DNA confined in a phage capsid, and the mechanisms and energetics of packaging a phage genome are beginning to be better understood. Condensing DNA subjects it to high osmotic pressure, which has been suggested to provide the driving force for its ejection during infection. However, forces internal to a phage capsid cannot, alone, cause complete genome ejection into cells. Here, we describe the structure of the DNA inside mature phages and summarize the current models of genome ejection, both in vitro and in vivo.
Collapse
Affiliation(s)
- Ian J Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
39
|
Tan ZJ, Chen SJ. Ion-mediated RNA structural collapse: effect of spatial confinement. Biophys J 2013; 103:827-36. [PMID: 22947944 DOI: 10.1016/j.bpj.2012.06.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 12/28/2022] Open
Abstract
RNAs are negatively charged molecules that reside in cellular environments with macromolecular crowding. Macromolecular confinement can influence the ion effects in RNA folding. In this work, using the recently developed tightly bound ion model for ion fluctuation and correlation, we investigate the effect of confinement on ion-mediated RNA structural collapse for a simple model system. We find that for both Na(+) and Mg(2+), the ion efficiencies in mediating structural collapse/folding are significantly enhanced by the structural confinement. This enhancement of ion efficiency is attributed to the decreased electrostatic free-energy difference between the compact conformation ensemble and the (restricted) extended conformation ensemble due to the spatial restriction.
Collapse
Affiliation(s)
- Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, People's Republic of China.
| | | |
Collapse
|
40
|
Argudo D, Purohit PK. Competition between supercoils and toroids in single molecule DNA condensation. Biophys J 2012; 103:118-28. [PMID: 22828338 DOI: 10.1016/j.bpj.2012.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/04/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022] Open
Abstract
The condensation of free DNA into toroidal structures in the presence of multivalent ions and polypeptides is well known. Recent single molecule experiments have shown that condensation into toroids occurs even when the DNA molecule is subjected to tensile forces. Here we show that the combined tension and torsion of DNA in the presence of condensing agents dramatically modifies this picture by introducing supercoiled DNA as a competing structure in addition to toroids. We combine a fluctuating elastic rod model of DNA with phenomenological models for DNA interaction in the presence of condensing agents to compute the minimum energy configuration for given tension and end-rotations. We show that for each tension there is a critical number of end-rotations above which the supercoiled solution is preferred and below which toroids are the preferred state. Our results closely match recent extension rotation experiments on DNA in the presence of spermine and other condensing agents. Motivated by this, we construct a phase diagram for the preferred DNA states as a function of tension and applied end-rotations and identify a region where new experiments or simulations are needed to determine the preferred state.
Collapse
Affiliation(s)
- David Argudo
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
41
|
Salvatore P, Karlsen KK, Hansen AG, Zhang J, Nichols RJ, Ulstrup J. Polycation induced potential dependent structural transitions of oligonucleotide monolayers on Au(111)-surfaces. J Am Chem Soc 2012; 134:19092-8. [PMID: 23098321 DOI: 10.1021/ja306877s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have studied self-assembled molecular monolayers (SAMs) of several 3'-C3-SH conjugated single-strand (ss) and double-strand (ds) 20-base oligonucleotides (ONs) immobilized on single-crystal, atomically planar Au(111)-electrode surfaces in the presence of the triply positively charged base spermidine (Spd). This cation binds strongly to the polyanionic ON backbone and stabilizes the ds-form relative to the ss-form. A combination of chemical ON synthesis, melting temperature measurements, cyclic voltammetry (CV), and in situ scanning tunneling microscopy (STM) in aqueous biological buffer under electrochemical potential control was used. Spd binding was found to increase notably the ds-ON melting temperature. CV displays capacitive features associated with ss- and ds-ON. A robust capacitive peak around -0.35 V versus saturated calomel electrode (SCE), specific to ds-ON and highly sensitive to base pair mismatches, was consistently observed. The peak is likely to be caused by surface structural reorganization around the peak potential and located close to reported peak potentials of several DNA intercalating or covalently tethered redox molecules reported as probes for long-range electron transfer.
Collapse
Affiliation(s)
- Princia Salvatore
- Department of Chemistry, Building 207, and Nano•DTU, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
42
|
Perry CC, Urata SM, Lee M, Aguilera JA, Milligan JR. Radioprotective effects produced by the condensation of plasmid DNA with avidin and biotinylated gold nanoparticles. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2012; 51:457-468. [PMID: 22825766 DOI: 10.1007/s00411-012-0429-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/28/2012] [Indexed: 06/01/2023]
Abstract
The treatment of aqueous solutions of plasmid DNA with the protein avidin results in significant changes in physical, chemical, and biochemical properties. These effects include increased light scattering, formation of micron-sized particles containing both DNA and protein, and plasmid protection against thermal denaturation, radical attack, and nuclease digestion. All of these changes are consistent with condensation of the plasmid by avidin. Avidin can be displaced from the plasmid at higher ionic strengths. Avidin is not displaced from the plasmid by an excess of a tetra-arginine ligand, nor by the presence of biotin. Therefore, this system offers the opportunity to reversibly bind biotin-labeled species to a condensed DNA-protein complex. An example application is the use of biotinylated gold nanoparticles. This system offers the ability to examine in better detail the chemical mechanisms involved in important radiobiological effects. Examples include protein modulation of radiation damage to DNA, and radiosensitization by gold nanoparticles.
Collapse
Affiliation(s)
- Christopher C Perry
- Department of Biochemistry, Loma Linda University, 11085 Campus Street, Loma Linda, CA, 92350, USA
| | | | | | | | | |
Collapse
|
43
|
Norris V, Menu-Bouaouiche L, Becu JM, Legendre R, Norman R, Rosenzweig JA. Hyperstructure interactions influence the virulence of the type 3 secretion system in yersiniae and other bacteria. Appl Microbiol Biotechnol 2012; 96:23-36. [PMID: 22949045 DOI: 10.1007/s00253-012-4325-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/06/2023]
Abstract
A paradigm shift in our thinking about the intricacies of the host-parasite interaction is required that considers bacterial structures and their relationship to bacterial pathogenesis. It has been proposed that interactions between extended macromolecular assemblies, termed hyperstructures (which include multiprotein complexes), determine bacterial phenotypes. In particular, it has been proposed that hyperstructures can alter virulence. Two such hyperstructures have been characterized in both pathogenic and nonpathogenic bacteria. Present within a number of both human and plant Gram-negative pathogens is the type 3 secretion system (T3SS) injectisome which in some bacteria serves to inject toxic effector proteins directly into targeted host cells resulting in their paralysis and eventual death (but which in other bacteria prevents the death of the host). The injectisome itself comprises multiple protein subunits, which are all essential for its function. The degradosome is another multiprotein complex thought to be involved in cooperative RNA decay and processing of mRNA transcripts and has been very well characterized in nonpathogenic Escherichia coli. Recently, experimental evidence has suggested that a degradosome exists in the yersiniae as well and that its interactions within the pathogens modulate their virulence. Here, we explore the possibility that certain interactions between hyperstructures, like the T3SS and the degradosome, can ultimately influence the virulence potential of the pathogen based upon the physical locations of hyperstructures within the cell.
Collapse
Affiliation(s)
- Vic Norris
- Department of Biology, University of Rouen, 76821 Mont-Saint-Aignan, Rouen, France.
| | | | | | | | | | | |
Collapse
|
44
|
Argudo D, Purohit PK. The dependence of DNA supercoiling on solution electrostatics. Acta Biomater 2012; 8:2133-43. [PMID: 22330280 DOI: 10.1016/j.actbio.2012.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 11/29/2022]
Abstract
We develop an elastic-isotropic rod model for twisted DNA in the plectonemic regime. We account for DNA elasticity, electrostatic interactions and entropic effects due to thermal fluctuations. We apply our model to single-molecule experiments on a DNA molecule attached to a substrate at one end, while subjected to a tensile force and twisted by a given number of turns at the other end. The free energy of the DNA molecule is minimized subject to the imposed end rotations. We compute values of the torsional stress, radius, helical angle and key features of the rotation-extension curves. We also include in our model the end loop energetic contributions and obtain estimates for the jumps in the external torque and extension of the DNA molecule seen in experiments. We find that, while the general trends seen in experiments are captured simply by rod mechanics, the details can be accounted for only with the proper choice of electrostatic and entropic interactions. We perform calculations with different ionic concentrations and show that our model yields excellent fits to mechanical data from a large number of experiments. Our methods also allow us to consider scenarios where we have multiple plectonemes or a series of loops forming in the DNA instead of plectonemes. For a given choice of electrostatic and entropic interactions, we find there is a range of forces in which the two regimes can coexist due to thermal motion.
Collapse
Affiliation(s)
- David Argudo
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
45
|
Liu B, Han L, Che S. Formation of impeller-like helical DNA-silica complexes by polyamines induced chiral packing. Interface Focus 2012; 2:608-16. [PMID: 24098845 DOI: 10.1098/rsfs.2011.0119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/01/2012] [Indexed: 11/12/2022] Open
Abstract
The helicity of DNA and its long-range chiral packing are widespread phenomena; however, the packing mechanism remains poorly understood both in vivo and in vitro. Here, we report the extraordinary DNA chiral self-assembly by silica mineralization, together with circular dichroism measurements and electron microscopy studies on the structure and morphology of the products. Mg(2+) ion and diethylenetriamine were found to induce right- and left-handed chiral DNA packing with two-dimensional-square p4mm mesostructures, respectively, to give corresponding enantiomeric impeller-like helical DNA-silica complexes. Moreover, formation of macroscopic impeller-like helical architectures depends on the types of polyamines and co-structure-directing agents and pH values of reaction solution. It has been suggested that interaction strength between negatively charged DNA phosphate strands and positively charged counterions may be the key factor for the induction of DNA packing handedness.
Collapse
Affiliation(s)
- Ben Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Composite Materials, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | | | | |
Collapse
|
46
|
DeRouchey JE, Rau DC. Role of amino acid insertions on intermolecular forces between arginine peptide condensed DNA helices: implications for protamine-DNA packaging in sperm. J Biol Chem 2011; 286:41985-41992. [PMID: 21994948 PMCID: PMC3234980 DOI: 10.1074/jbc.m111.295808] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/04/2011] [Indexed: 11/06/2022] Open
Abstract
In spermatogenesis, chromatin histones are replaced by arginine-rich protamines to densely compact DNA in sperm heads. Tight packaging is considered necessary to protect the DNA from damage. To better understand the nature of the forces condensing protamine-DNA assemblies and their dependence on amino acid content, the effect of neutral and negatively charged amino acids on DNA-DNA intermolecular forces was studied using model peptides containing six arginines. We have previously observed that the neutral amino acids in salmon protamine decrease the net attraction between protamine-DNA helices compared with the equivalent homo-arginine peptide. Using osmotic stress coupled with x-ray scattering, we have investigated the component attractive and repulsive forces that determine the net attraction and equilibrium interhelical distance as a function of the chemistry, position, and number of the amino acid inserted. Neutral amino acids inserted into hexa-arginine increase the short range repulsion while only slightly affecting longer range attraction. The amino acid content alone of salmon protamine is enough to rationalize the forces that package DNA in sperm heads. Inserting a negatively charged amino acid into hexa-arginine dramatically weakens the net attraction. Both of these observations have biological implications for protamine-DNA packaging in sperm heads.
Collapse
Affiliation(s)
- Jason E DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506.
| | - Donald C Rau
- Program in Physical Biology, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
47
|
DeRouchey JE, Rau DC. Salt effects on condensed protamine-DNA assemblies: anion binding and weakening of attraction. J Phys Chem B 2011; 115:11888-94. [PMID: 21894933 DOI: 10.1021/jp203834z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using osmotic stress coupled with X-ray scattering, we have directly examined the salt sensitivity of the intermolecular forces between helices in condensed protamine-DNA arrays. Thermodynamic forces are measured from the dependence of DNA helical interaxial spacings on external salt concentration or the osmotic pressure applied by neutral polymer solutions in equilibrium with the condensed phase. Force curves of salmon protamine-DNA condensates are highly dependent on salt species and concentration, indicating salt binding to protamine-DNA complexes. This dependence of the forces on salt species follows the Hofmeister series for anions. Chaotropic anions bind more tightly to protamine-DNA arrays than kosmotropic anions, thus more greatly disrupting the attractive thermodynamic forces. Variations with cation type are small compared with those observed for anions. Further, osmotic stress is used to estimate the number of ions bound in the condensed phase through a Gibbs-Duhem relationship. We estimate that at equilibrium, ∼1 Br(-) is bound per protamine molecule at 200 mM NaBr concentration. Remarkably, this one bound anion results in a change of ∼12% in the surface-to-surface distance between DNA helices. Potential biological implications of this attractive force salt sensitivity are discussed.
Collapse
Affiliation(s)
- Jason E DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States.
| | | |
Collapse
|
48
|
Abstract
Positively charged ions, atoms, or molecules compensate the high negative charge of the nucleic acid backbone. Their presence is critical to the biological function of DNA and RNA. This review focuses on experimental studies probing (a) interactions between small ions and nucleic acids and (b) ion-mediated interactions between nucleic acid duplexes. Experimental results on these simple model systems can be compared with specific theoretical models to validate their predictions. Small angle X-ray scattering (SAXS) provides unique insight into these interactions. Anomalous SAXS reports the spatial correlations of condensed (e.g., locally concentrated) counterions to individual DNA or RNA duplexes. SAXS very effectively reports interactions between nucleic acid helices, which range from strongly repulsive to strongly attractive depending on the ionic species present. The sign and strength of interparticle interactions are easily deduced from dramatic changes in the scattering profiles of interacting duplexes.
Collapse
Affiliation(s)
- Lois Pollack
- School of Applied & Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
49
|
Leforestier A, Siber A, Livolant F, Podgornik R. Protein-DNA interactions determine the shapes of DNA toroids condensed in virus capsids. Biophys J 2011; 100:2209-16. [PMID: 21539789 DOI: 10.1016/j.bpj.2011.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 11/29/2022] Open
Abstract
DNA toroids that form inside the bacteriophage capsid present different shapes according to whether they are formed by the addition of spermine or polyethylene glycol to the bathing solution. Spermine-DNA toroids present a convex, faceted section with no or minor distortions of the DNA interstrand spacing with respect to those observed in the bulk, whereas polyethylene glycol-induced toroids are flattened to the capsid inner surface and show a crescent-like, nonconvex shape. By modeling the energetics of the DNA toroid using a free-energy functional composed of energy contributions related to the elasticity of the wound DNA, exposed surface DNA energy, and adhesion between the DNA and the capsid, we established that the crescent shape of the toroidal DNA section comes from attractive interactions between DNA and the capsid. Such attractive interactions seem to be specific to the PEG condensation process and are not observed in the case of spermine-induced DNA condensation.
Collapse
Affiliation(s)
- Amélie Leforestier
- Laboratoire de Physique des Solides, Centre National de la Recherche Scientifique UMR 8502, Université Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
50
|
Dootz R, Toma AC, Pfohl T. Structural and dynamic properties of linker histone H1 binding to DNA. BIOMICROFLUIDICS 2011; 5:24104. [PMID: 21629560 PMCID: PMC3104041 DOI: 10.1063/1.3587096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/15/2011] [Indexed: 05/11/2023]
Abstract
Found in all eukaryotic cells, linker histones H1 are known to bind to and rearrange nucleosomal linker DNA. In vitro, the fundamental nature of H1∕DNA interactions has attracted wide interest among research communities-from biologists to physicists. Hence, H1∕DNA binding processes and structural and dynamical information about these self-assemblies are of broad importance. Targeting a quantitative understanding of H1 induced DNA compaction mechanisms, our strategy is based on using small-angle x-ray microdiffraction in combination with microfluidics. The usage of microfluidic hydrodynamic focusing devices facilitates a microscale control of these self-assembly processes, which cannot be achieved using conventional bulk setups. In addition, the method enables time-resolved access to structure formation in situ, in particular, to transient intermediate states. The observed time dependent structure evolution shows that the H1∕DNA interaction can be described as a two-step process: an initial unspecific binding of H1 to DNA is followed by a rearrangement of molecules within the formed assemblies. The second step is most likely induced by interactions between the DNA and the H1's charged side chains. This leads to an increase in lattice spacing within the DNA∕protein assembly and induces a decrease in the correlation length of the mesophases, probably due to a local bending of the DNA.
Collapse
|