1
|
Nath H, Kundu S. Protein (Lysozyme) Concentration-Dependent Structure, Morphology, and Hysteresis Behavior of a Three-Component (Lysozyme-DMPA-Cholesterol) Protein-Lipid Langmuir Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3865-3876. [PMID: 39904633 DOI: 10.1021/acs.langmuir.4c04000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Protein (lysozyme)-lipid (DMPA and cholesterol) three-component mixed films (LDC) with varied lysozyme concentration (i.e., LDC_Lx) are investigated at the air-water interface. Elastic modulus-surface pressure (Cs-1-Π) curves derived from Π-A isotherms show that mechanical behavior is strongly dependent on the monolayer composition, and for the same reason, the hysteresis behavior modifies. It is evidenced that the LDC_L0.3 monolayer (lysozyme: 0.3 mg/mL) has significant hysteresis, which is reversible in nature, while the other mixed monolayers do not show such hysteresis behavior. Morphology at the air-water interface via Brewster angle microscopy (BAM) and at the air-solid interface via atomic force microscopy (AFM) shows that the presence of protein in the LDC_Lx monolayer modifies the lateral distribution of molecules, thereby forming a stripe-like pattern at the air-water interface (in optical length scale) with barrier compression or root-like structure on the solid surface at higher Π (in micron length scale), which is not observed in the case of lipid films. Moreover, lysozyme-added LDC_Lx films show an increase in thickness with compression, which is not observed for lipid films, as evidenced from the electron density profiles (EDPs). The morphology modification and thickness variation of LDC_Lx films with compression are most probably due to the reorientation of lysozyme molecules. This structural modification in LDC_Lx films with Π, however, seems to be reversible under expansion, as can be evidenced from the similar in situ morphology observation and similar thickness of the films deposited during both first and second compression. A variation in the strength of interaction forces among film-forming molecules depending on the monolayer composition basically affects the lateral distribution and organizational orientation with surface pressure, thus ultimately influencing macroscopically the monolayer properties such as elastic, hysteresis, morphological, and structural on water and solid surfaces.
Collapse
Affiliation(s)
- Himadri Nath
- Soft Nano Laboratory (SNL), Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarathi Kundu
- Soft Nano Laboratory (SNL), Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Ookubo M, Tashiro Y, Asano K, Kamei Y, Tanaka Y, Honda T, Yokoyama T, Honda M. "Rich arginine and strong positive charge" antimicrobial protein protamine: From its action on cell membranes to inhibition of bacterial vital functions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184323. [PMID: 38614236 DOI: 10.1016/j.bbamem.2024.184323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Protamine, an antimicrobial protein derived from salmon sperm with a molecular weight of approximately 5 kDa, is composed of 60-70 % arginine and is a highly charged protein. Here, we investigated the mechanism of antimicrobial action of protamine against Cutibacterium acnes (C. acnes) focusing on its rich arginine content and strong positive charge. Especially, we focused on the attribution of dual mechanisms of antimicrobial protein, including membrane disruption or interaction with intracellular components. We first determined the dose-dependent antibacterial activity of protamine against C. acnes. In order to explore the interaction between bacterial membrane and protamine, we analyzed cell morphology, zeta potential, membrane permeability, and the composition of membrane fatty acid. In addition, the localization of protamine in bacteria was observed using fluorescent-labeled protamine. For investigation of the intracellular targets of protamine, bacterial translation was examined using a cell-free translation system. Based on our results, the mechanism of the antimicrobial action of protamine against C. acnes is as follows: 1) electrostatic interactions with the bacterial cell membrane; 2) self-internalization into the bacterial cell by changing the composition of the bacterial membrane; and 3) inhibition of bacterial growth by blocking translation inside the bacteria. However, owing to its strong electric charge, protamine can also interact with DNA, RNA, and other proteins inside the bacteria, and may inhibit various bacterial life processes beyond the translation process.
Collapse
Affiliation(s)
- Momoka Ookubo
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Yuka Tashiro
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Kosuke Asano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
| | - Yoshiharu Kamei
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan; The advanced center for innovations in next-generation medicine (INGEM), Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Takayuki Honda
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Takeshi Yokoyama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan; The advanced center for innovations in next-generation medicine (INGEM), Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Michiyo Honda
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan.
| |
Collapse
|
3
|
Pradhan S, Mirdha L, Sengupta T, Chakraborty H. Phosphatidylglycerol Acts as a Switch for Cholesterol-Dependent Membrane Binding of ApoE Signal Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8126-8132. [PMID: 38568020 DOI: 10.1021/acs.langmuir.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The apolipoprotein E (ApoE) signal peptide is a short stretch of N-terminal amino acids that direct the ApoE protein to the endoplasmic reticulum after synthesis. Previous studies have shown that this peptide can bind to lipid membranes in a cholesterol-dependent manner; however, the mechanism of this interaction is yet to be clarified. In this study, we aimed to investigate how the composition of neighboring lipids affects the membrane-binding of the ApoE signal peptide. We found that a negatively charged lipid, such as phosphatidylglycerol, can act as a switch that reduces the binding efficiency of the peptide to cholesterol-rich membranes. Interestingly, phosphatidylethanolamine does not activate the cholesterol-dependent binding of the ApoE signal peptide yet acts synergistically to enhance the cholesterol sensitivity in phosphatidylglycerol-containing membranes. To the best of our knowledge, this is the first report of modulation of the affinity of a peptide for a membrane by a neighboring lipid rather than by the lipid-binding domain of the peptide. Our findings revealed a novel role of lipid diversity in modulating the membrane binding of the ApoE signal peptide and its potential implications in the unidirectional trafficking of a newly synthesized protein from the ribosomes to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Sasmita Pradhan
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Lipika Mirdha
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Tanusree Sengupta
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
4
|
Otrin N, Otrin L, Bednarz C, Träger TK, Hamdi F, Kastritis PL, Ivanov I, Sundmacher K. Protein-Rich Rafts in Hybrid Polymer/Lipid Giant Unilamellar Vesicles. Biomacromolecules 2024; 25:778-791. [PMID: 38190609 PMCID: PMC10865357 DOI: 10.1021/acs.biomac.3c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
Considerable attention has been dedicated to lipid rafts due to their importance in numerous cell functions such as membrane trafficking, polarization, and signaling. Next to studies in living cells, artificial micrometer-sized vesicles with a minimal set of components are established as a major tool to understand the phase separation dynamics and their intimate interplay with membrane proteins. In parallel, mixtures of phospholipids and certain amphiphilic polymers simultaneously offer an interface for proteins and mimic this segregation behavior, presenting a tangible synthetic alternative for fundamental studies and bottom-up design of cellular mimics. However, the simultaneous insertion of complex and sensitive membrane proteins is experimentally challenging and thus far has been largely limited to natural lipids. Here, we present the co-reconstitution of the proton pump bo3 oxidase and the proton consumer ATP synthase in hybrid polymer/lipid giant unilamellar vesicles (GUVs) via fusion/electroformation. Variations of the current method allow for tailored reconstitution protocols and control of the vesicle size. In particular, mixing of protein-free and protein-functionalized nanosized vesicles in the electroformation film results in larger GUVs, while separate reconstitution of the respiratory enzymes enables higher ATP synthesis rates. Furthermore, protein labeling provides a synthetic mechanism for phase separation and protein sequestration, mimicking lipid- and protein-mediated domain formation in nature. The latter means opens further possibilities for re-enacting phenomena like supercomplex assembly or symmetry breaking and enriches the toolbox of bottom-up synthetic biology.
Collapse
Affiliation(s)
- Nika Otrin
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Lado Otrin
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Claudia Bednarz
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Toni K. Träger
- Interdisciplinary
Research Center HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, 06120 Halle/Saale, Germany
| | - Farzad Hamdi
- Interdisciplinary
Research Center HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, 06120 Halle/Saale, Germany
| | - Panagiotis L. Kastritis
- Interdisciplinary
Research Center HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, 06120 Halle/Saale, Germany
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 11635 Athens, Greece
| | - Ivan Ivanov
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Kai Sundmacher
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| |
Collapse
|
5
|
Aryal CM, Pan J. Probing the interactions of the HIV-1 matrix protein-derived polybasic region with lipid bilayers: insights from AFM imaging and force spectroscopy. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:57-67. [PMID: 38172352 DOI: 10.1007/s00249-023-01697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/18/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
The human immunodeficiency virus type 1 (HIV-1) matrix protein contains a highly basic region, MA-HBR, crucial for various stages of viral replication. To elucidate the interactions between the polybasic peptide MA-HBR and lipid bilayers, we employed liquid-based atomic force microscopy (AFM) imaging and force spectroscopy on lipid bilayers of differing compositions. In 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, AFM imaging revealed the formation of annulus-shaped protrusions upon exposure to the polybasic peptide, accompanied by distinctive mechanical responses characterized by enhanced bilayer puncture forces. Importantly, our AFM-based force spectroscopy measurements unveiled that MA-HBR induces interleaflet decoupling within the cohesive bilayer organization. This is evidenced by a force discontinuity observed within the bilayer's elastic deformation regime. In POPC/cholesterol bilayers, MA-HBR caused similar yet smaller annular protrusions, demonstrating an intriguing interplay with cholesterol-rich membranes. In contrast, in bilayers containing anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) lipids, MA-HBR induced unique annular protrusions, granular nanoparticles, and nanotubules, showcasing its distinctive effects in anionic lipid-enriched environments. Notably, our force spectroscopy data revealed that anionic POPS lipids weakened interleaflet adhesion within the bilayer, resulting in interleaflet decoupling, which potentially contributes to the specific bilayer perturbations induced by MA-HBR. Collectively, our findings highlight the remarkable variations in how the polybasic peptide, MA-HBR, interacts with lipid bilayers of differing compositions, shedding light on its role in host membrane restructuring during HIV-1 infection.
Collapse
Affiliation(s)
- Chinta M Aryal
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA
- , 2920 Burnet Ave Apt 3, Cincinnati, OH, 45219, USA
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
6
|
Shimokawa N, Hamada T. Physical Concept to Explain the Regulation of Lipid Membrane Phase Separation under Isothermal Conditions. Life (Basel) 2023; 13:life13051105. [PMID: 37240749 DOI: 10.3390/life13051105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Lateral phase separation within lipid bilayer membranes has attracted considerable attention in the fields of biophysics and cell biology. Living cells organize laterally segregated compartments, such as raft domains in an ordered phase, and regulate their dynamic structures under isothermal conditions to promote cellular functions. Model membrane systems with minimum components are powerful tools for investigating the basic phenomena of membrane phase separation. With the use of such model systems, several physicochemical characteristics of phase separation have been revealed. This review focuses on the isothermal triggering of membrane phase separation from a physical point of view. We consider the free energy of the membrane that describes lateral phase separation and explain the experimental results of model membranes to regulate domain formation under isothermal conditions. Three possible regulation factors are discussed: electrostatic interactions, chemical reactions and membrane tension. These findings may contribute to a better understanding of membrane lateral organization within living cells that function under isothermal conditions and could be useful for the development of artificial cell engineering.
Collapse
Affiliation(s)
- Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| | - Tsutomu Hamada
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| |
Collapse
|
7
|
Riu F, Ruda A, Ibba R, Sestito S, Lupinu I, Piras S, Widmalm G, Carta A. Antibiotics and Carbohydrate-Containing Drugs Targeting Bacterial Cell Envelopes: An Overview. Pharmaceuticals (Basel) 2022; 15:942. [PMID: 36015090 PMCID: PMC9414505 DOI: 10.3390/ph15080942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
Certain bacteria constitute a threat to humans due to their ability to escape host defenses as they easily develop drug resistance. Bacteria are classified into gram-positive and gram-negative according to the composition of the cell membrane structure. Gram-negative bacteria have an additional outer membrane (OM) that is not present in their gram-positive counterpart; the latter instead hold a thicker peptidoglycan (PG) layer. This review covers the main structural and functional properties of cell wall polysaccharides (CWPs) and PG. Drugs targeting CWPs are discussed, both noncarbohydrate-related (β-lactams, fosfomycin, and lipopeptides) and carbohydrate-related (glycopeptides and lipoglycopeptides). Bacterial resistance to these drugs continues to evolve, which calls for novel antibacterial approaches to be developed. The use of carbohydrate-based vaccines as a valid strategy to prevent bacterial infections is also addressed.
Collapse
Affiliation(s)
- Federico Riu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Alessandro Ruda
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Ilenia Lupinu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| |
Collapse
|
8
|
Truzzolillo D. Mixing-demixing transition and void formation in quasi-2D binary mixtures on a sphere. J Chem Phys 2022; 156:034904. [DOI: 10.1063/5.0080352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. Truzzolillo
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Universitè de Montpellier, F-34095 Montpellier, France
| |
Collapse
|
9
|
Molotkovsky RJ, Galimzyanov TR, Ermakov YA. Heterogeneity in Lateral Distribution of Polycations at the Surface of Lipid Membrane: From the Experimental Data to the Theoretical Model. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6623. [PMID: 34772149 PMCID: PMC8585412 DOI: 10.3390/ma14216623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Natural and synthetic polycations of different kinds attract substantial attention due to an increasing number of their applications in the biomedical industry and in pharmacology. The key characteristic determining the effectiveness of the majority of these applications is the number of macromolecules adsorbed on the surface of biological cells or their lipid models. Their study is complicated by a possible heterogeneity of polymer layer adsorbed on the membrane. Experimental methods reflecting the structure of the layer include the electrokinetic measurements in liposome suspension and the boundary potential of planar bilayer lipid membranes (BLM) and lipid monolayers with a mixed composition of lipids and the ionic media. In the review, we systematically analyze the methods of experimental registration and theoretical description of the laterally heterogeneous structures in the polymer layer published in the literature and in our previous studies. In particular, we consider a model based on classical theory of the electrical double layer, used to analyze the available data of the electrokinetic measurements in liposome suspension with polylysines of varying molecular mass. This model suggests a few parameters related to the heterogeneity of the polymer layer and allows determining the conditions for its appearance at the membrane surface. A further development of this theoretical approach is discussed.
Collapse
Affiliation(s)
- Rodion J. Molotkovsky
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| | | | - Yury A. Ermakov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| |
Collapse
|
10
|
Recent developments in membrane curvature sensing and induction by proteins. Biochim Biophys Acta Gen Subj 2021; 1865:129971. [PMID: 34333084 DOI: 10.1016/j.bbagen.2021.129971] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/11/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Membrane-bound intracellular organelles have characteristic shapes attributed to different local membrane curvatures, and these attributes are conserved across species. Over the past decade, it has been confirmed that specific proteins control the large curvatures of the membrane, whereas many others due to their specific structural features can sense the curvatures and bind to the specific geometrical cues. Elucidating the interplay between sensing and induction is indispensable to understand the mechanisms behind various biological processes such as vesicular trafficking and budding. SCOPE OF REVIEW We provide an overview of major classes of membrane proteins and the mechanisms of curvature sensing and induction. We then discuss the importance of membrane elastic characteristics to induce the membrane shapes similar to intracellular organelles. Finally, we survey recently available assays developed for studying the curvature sensing and induction by many proteins. MAJOR CONCLUSIONS Recent theoretical/computational modeling along with experimental studies have uncovered fascinating connections between lipid membrane and protein interactions. However, the phenomena of protein localization and synchronization to generate spatiotemporal dynamics in membrane morphology are yet to be fully understood. GENERAL SIGNIFICANCE The understanding of protein-membrane interactions is essential to shed light on various biological processes. This further enables the technological applications of many natural proteins/peptides in therapeutic treatments. The studies of membrane dynamic shapes help to understand the fundamental functions of membranes, while the medicinal roles of various macromolecules (such as proteins, peptides, etc.) are being increasingly investigated.
Collapse
|
11
|
Inhomogeneity of polylysine adsorption layers on lipid membranes revealed by theoretical analysis of electrokinetic data and molecular dynamics simulations. Bioelectrochemistry 2021; 141:107828. [PMID: 34020399 DOI: 10.1016/j.bioelechem.2021.107828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
The adsorption of large polycations on a charged lipid membrane is qualitatively different from the small inorganic cations, which almost uniformly populate the membrane surface. We assume that the polycationic adsorption layer might be laterally inhomogeneous starting from a certain polymer length, and this effect can be more visible for membranes with low anionic lipid content. To study systems with inhomogeneous adsorption layers, we carried out electrokinetic measurements of mobility of liposomes containing anionic and neutral phospholipids in the presence of polylysine molecules. Some of these systems were simulated by all-atom molecular dynamics. Here we proposed a theoretical approach accounting for the formation of separated regions at the membrane surface, which differ in charge density and surface potential. Our model allowed us to determine the adsorption layer's geometric parameters such as surface coverage and surface-bound monomer fraction of polymer, which correlate with the molecular dynamics (MD) simulations. We demonstrated that the configuration polylysine adopts on the membrane surface (tall or planar) depends on the polymer/membrane charge ratio. Both theory and MD indicate a decrease in the anionic lipid content, alongside with a decrease in the bound monomer fraction and corresponding increase in the extension length of the adsorbed polymers.
Collapse
|
12
|
Bossa GV, May S. Debye-Hückel Free Energy of an Electric Double Layer with Discrete Charges Located at a Dielectric Interface. MEMBRANES 2021; 11:129. [PMID: 33672797 PMCID: PMC7918844 DOI: 10.3390/membranes11020129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
Poisson-Boltzmann theory provides an established framework to calculate properties and free energies of an electric double layer, especially for simple geometries and interfaces that carry continuous charge densities. At sufficiently small length scales, however, the discreteness of the surface charges cannot be neglected. We consider a planar dielectric interface that separates a salt-containing aqueous phase from a medium of low dielectric constant and carries discrete surface charges of fixed density. Within the linear Debye-Hückel limit of Poisson-Boltzmann theory, we calculate the surface potential inside a Wigner-Seitz cell that is produced by all surface charges outside the cell using a Fourier-Bessel series and a Hankel transformation. From the surface potential, we obtain the Debye-Hückel free energy of the electric double layer, which we compare with the corresponding expression in the continuum limit. Differences arise for sufficiently small charge densities, where we show that the dominating interaction is dipolar, arising from the dipoles formed by the surface charges and associated counterions. This interaction propagates through the medium of a low dielectric constant and alters the continuum power of two dependence of the free energy on the surface charge density to a power of 2.5 law.
Collapse
Affiliation(s)
- Guilherme Volpe Bossa
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil;
| | - Sylvio May
- Department of Physics, North Dakota State University, Fargo North Dakota, ND 58108-6050, USA
| |
Collapse
|
13
|
Jin Y, Liang Q, Tieleman DP. Interactions between Band 3 Anion Exchanger and Lipid Nanodomains in Ternary Lipid Bilayers: Atomistic Simulations. J Phys Chem B 2020; 124:3054-3064. [DOI: 10.1021/acs.jpcb.0c01055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yapan Jin
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
14
|
Li M, Mandal A, Tyurin VA, DeLucia M, Ahn J, Kagan VE, van der Wel PCA. Surface-Binding to Cardiolipin Nanodomains Triggers Cytochrome c Pro-apoptotic Peroxidase Activity via Localized Dynamics. Structure 2019; 27:806-815.e4. [PMID: 30879887 DOI: 10.1016/j.str.2019.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/16/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
The peroxidation of cardiolipins by reactive oxygen species, which is regulated and enhanced by cytochrome c (cyt c), is a critical signaling event in mitochondrial apoptosis. We probe the molecular underpinnings of this mitochondrial death signal through structural and functional studies of horse heart cyt c binding to mixed-lipid membranes containing cardiolipin with mono- and polyunsaturated acyl chains. Lipidomics reveal the selective oxidation of polyunsaturated fatty acid (PUFA) cardiolipin (CL), while multidimensional solid-state NMR probes the structure and dynamics of the membrane and the peripherally bound protein. The hydrophilic milieu at the membrane interface stabilizes a native-like fold, but also leads to localized flexibility at the membrane-interacting protein face. PUFA CL acts as both a preferred substrate and a dynamic regulator by affecting the dynamics of the cyt c N70-I85 Ω loop, which covers the heme cavity.
Collapse
Affiliation(s)
- Mingyue Li
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Abhishek Mandal
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Maria DeLucia
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow 119146, Russian Federation
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
15
|
Fanani ML, Wilke N. Regulation of phase boundaries and phase-segregated patterns in model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1972-1984. [PMID: 29505769 DOI: 10.1016/j.bbamem.2018.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
Demixing of components has long been described in model membranes. It is a consequence of non-ideal lateral interactions between membrane components, and it causes the presence of segregated phases, forming patches (domains) of different properties, thus introducing heterogeneity into the membrane. In the present review we first describe the processes through which domains are generated, how they grow, and why they are rounded, striped or fractal-like, as well as why they get distributed forming defined patterns. Next, we focus on the effect of an additive on a lipid mixture, which usually induces shifts in demixing points, thus stabilizing or destabilizing the phase-segregated state. Results found for different model membranes are summarized, detailing the ways in which phase segregation and the generated patterns may be modulated. We focus on which are, from our viewpoint, the most relevant regulating factors affecting the surface texture observed in model membranes. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- María Laura Fanani
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Natalia Wilke
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina.
| |
Collapse
|
16
|
Abstract
The bacterial cytoplasmic membrane is composed of roughly equal proportions of lipids and proteins. The main lipid components are phospholipids, which vary in acyl chain length, saturation, and branching and carry head groups that vary in size and charge. Phospholipid variants determine membrane properties such as fluidity and charge that in turn modulate interactions with membrane-associated proteins. We summarize recent advances in understanding bacterial membrane structure and function, focusing particularly on the possible existence and significance of specialized membrane domains. We review the role of membrane curvature as a spatial cue for recruitment and regulation of proteins involved in morphogenic functions, especially elongation and division. Finally, we examine the role of the membrane, especially regulation of synthesis and fluid properties, in the life cycle of cell wall-deficient L-form bacteria.
Collapse
Affiliation(s)
- Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX United Kingdom; ,
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX United Kingdom; ,
| |
Collapse
|
17
|
Duan X, Zhang Y, Li L, Zhang R, Ding M, Huang Q, Xu WS, Shi T, An L. Effects of Concentration and Ionization Degree of Anchoring Cationic Polymers on the Lateral Heterogeneity of Anionic Lipid Monolayers. J Phys Chem B 2017; 121:984-994. [DOI: 10.1021/acs.jpcb.6b12386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaozheng Duan
- State Key Laboratory
of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yang Zhang
- Northeast Normal University, Changchun 130024, P. R. China
| | - Liangyi Li
- State Key Laboratory
of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Ran Zhang
- State Key Laboratory
of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Mingming Ding
- State Key Laboratory
of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Wen-Sheng Xu
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tongfei Shi
- State Key Laboratory
of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lijia An
- State Key Laboratory
of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
18
|
|
19
|
Duan X, Zhang Y, Zhang R, Ding M, Shi T, An L, Huang Q, Xu WS. Spatial Rearrangement and Mobility Heterogeneity of an Anionic Lipid Monolayer Induced by the Anchoring of Cationic Semiflexible Polymer Chains. Polymers (Basel) 2016; 8:polym8060235. [PMID: 30979330 PMCID: PMC6432547 DOI: 10.3390/polym8060235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 01/19/2023] Open
Abstract
We use Monte Carlo simulations to investigate the interactions between cationic semiflexible polymer chains and a model fluid lipid monolayer composed of charge-neutral phosphatidyl-choline (PC), tetravalent anionic phosphatidylinositol 4,5-bisphosphate (PIP₂), and univalent anionic phosphatidylserine (PS) lipids. In particular, we explore how chain rigidity and polymer concentration influence the spatial rearrangement and mobility heterogeneity of the monolayer under the conditions where the cationic polymers anchor on the monolayer. We find that the anchored cationic polymers only sequester the tetravalent PIP₂ lipids at low polymer concentrations, where the interaction strength between the polymers and the monolayer exhibits a non-monotonic dependence on the degree of chain rigidity. Specifically, maximal anchoring occurs at low polymer concentrations, when the polymer chains have an intermediate degree of rigidity, for which the PIP₂ clustering becomes most enhanced and the mobility of the polymer/PIP₂ complexes becomes most reduced. On the other hand, at sufficiently high polymer concentrations, the anchoring strength decreases monotonically as the chains stiffen-a result that arises from the pronounced competitions among polymer chains. In this case, the flexible polymers can confine all PIP₂ lipids and further sequester the univalent PS lipids, whereas the stiffer polymers tend to partially dissociate from the monolayer and only sequester smaller PIP₂ clusters with greater mobilities. We further illustrate that the mobility gradient of the single PIP₂ lipids in the sequestered clusters is sensitively modulated by the cooperative effects between anchored segments of the polymers with different rigidities. Our work thus demonstrates that the rigidity and concentration of anchored polymers are both important parameters for tuning the regulation of anionic lipids.
Collapse
Affiliation(s)
- Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yang Zhang
- School of Business, Northeast Normal University, Changchun 130024, China.
| | - Ran Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Mingming Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Wen-Sheng Xu
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
20
|
N-terminal-mediated oligomerization of DnaA drives the occupancy-dependent rejuvenation of the protein on the membrane. Biosci Rep 2015; 35:BSR20150175. [PMID: 26272946 PMCID: PMC4721551 DOI: 10.1042/bsr20150175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/31/2015] [Indexed: 01/17/2023] Open
Abstract
Initiation of DNA replication in bacteria requires recharging of DnaA with ATP. We demonstrate in the present study that this process involves the N-terminal domain-mediated oligomerization of the protein on the membrane, which can be modelled as a surface density-driven phase transition switch. DnaA, the initiator of chromosome replication in most known eubacteria species, is activated once per cell division cycle. Its overall activity cycle is driven by ATP hydrolysis and ADP–ATP exchange. The latter can be promoted by binding to specific sequences on the chromosome and/or to acidic phospholipids in the membrane. We have previously shown that the transition into an active form (rejuvenation) is strongly co-operative with respect to DnaA membrane occupancy. Only at low membrane occupancy is DnaA reactivation efficiently catalysed by the acidic phospholipids. The present study was aimed at unravelling the molecular mechanism underlying the occupancy-dependent DnaA rejuvenation. We found that truncation of the DnaA N-terminal completely abolishes the co-operative transformation between the high and low occupancy states (I and II respectively) without affecting the membrane binding. The environmentally sensitive fluorophore specifically attached to the N-terminal cysteines of DnaA reported on occupancy-correlated changes in its vicinity. Cross-linking of DnaA with a short homobifunctional reagent revealed that state II of the protein on the membrane corresponds to a distinct oligomeric form of DnaA. The kinetic transition of DnaA on the membrane surface is described in the present study by a generalized 2D condensation phase transition model, confirming the existence of two states of DnaA on the membrane and pointing to the possibility that membrane protein density serves as an on-off switch in vivo. We conclude that the DnaA conformation attained at low surface density drives its N-terminal-mediated oligomerization, which is presumably a pre-requisite for facilitated nt exchange.
Collapse
|
21
|
Olumuyiwa-Akeredolu OOO, Pretorius E. Platelet and red blood cell interactions and their role in rheumatoid arthritis. Rheumatol Int 2015; 35:1955-64. [PMID: 26059943 DOI: 10.1007/s00296-015-3300-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/26/2015] [Indexed: 12/23/2022]
Abstract
Cytokines, lymphocytes, platelets and several biomolecules have long been implicated in the pathology of rheumatoid arthritis (RA), and the influences of antibody production and tagging, and cytokine, chemokine and enzyme production at specific rheumatoid joints were thought to be exclusive to the advancement of disease parameters. Another role player in RA is red blood cells (RBCs) which, of late, have been found to be involved in RA pathobiology, as there is a positive correlation between RBC counts and joint pathology, as well as with inflammatory biomarkers in the disease. There is also an association between RBC distribution width and the incidence of myocardial infarction amongst RA patients, and there is a change in the lipid distribution within RBC membranes. Of late, certain RBC-associated factors with previously obscure roles and cell-derived particles thought to be inconsequential to the other constituents of plasma were found to be active biomolecular players. Several of these have been discovered to be present in or originating from RBCs. Their influences have been shown to involve in membrane dynamics that cause structural and functional changes in both platelets and RBCs. RBC-derived microparticles are emerging entities found to play direct roles in immunomodulation via interactions with other plasma cells. These correlations highlight the direct influences of RBCs on exacerbating RA pathology. This review will attempt to shed more light on how RBCs, in the true inflammatory milieu of RA, are playing an even greater role than previously assumed.
Collapse
Affiliation(s)
- Oore-Ofe O Olumuyiwa-Akeredolu
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa.
| |
Collapse
|
22
|
Barden AO, Goler AS, Humphreys SC, Tabatabaei S, Lochner M, Ruepp MD, Jack T, Simonin J, Thompson AJ, Jones JP, Brozik JA. Tracking individual membrane proteins and their biochemistry: The power of direct observation. Neuropharmacology 2015; 98:22-30. [PMID: 25998277 DOI: 10.1016/j.neuropharm.2015.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Adam O Barden
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, WA, 99164-4630, United States
| | - Adam S Goler
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, WA, 99164-4630, United States
| | - Sara C Humphreys
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, WA, 99164-4630, United States
| | - Samaneh Tabatabaei
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, WA, 99164-4630, United States
| | - Martin Lochner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Thomas Jack
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Jonathan Simonin
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Andrew J Thompson
- Pharmacology Department, Cambridge University, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, WA, 99164-4630, United States
| | - James A Brozik
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, WA, 99164-4630, United States.
| |
Collapse
|
23
|
Duan X, Ding M, Zhang R, Li L, Shi T, An L, Huang Q, Xu WS. Effects of Chain Rigidity on the Adsorption of a Polyelectrolyte Chain on Mixed Lipid Monolayer: A Monte Carlo Study. J Phys Chem B 2015; 119:6041-9. [DOI: 10.1021/acs.jpcb.5b00515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaozheng Duan
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Mingming Ding
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ran Zhang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Liangyi Li
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Tongfei Shi
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lijia An
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Qingrong Huang
- Department
of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Wen-Sheng Xu
- James
Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
24
|
Shi X, Li X, Kaliszewski MJ, Zhuang X, Smith AW. Tuning the mobility coupling of quaternized polyvinylpyridine and anionic phospholipids in supported lipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1784-1791. [PMID: 25599116 DOI: 10.1021/la504241w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Binding of biomacromolecules to anionic lipids in the plasma membrane is a common motif in many cell signaling pathways. Previous work has shown that macromolecules with cationic sequences can form nanodomains with sequestered anionic lipids, which alters the lateral distribution and mobility of the membrane lipids. Such sequestration is believed to result from the formation of a lipid-macromolecule complex. To date, however, the molecular structure and dynamics of the lipid-polymer interface are poorly understood. We have investigated the behavior of polycationic quaternized polyvinylpyridine (QPVP) on supported lipid bilayers doped with phosphatidylserine (PS) or phosphatidylinositol phosphate (PIP) lipids using time-resolved fluorescence microscopy, including pulsed interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS is a dual-color fluorescence spectroscopy that translates fluctuations in fluorescence signal into a measurement of diffusion and colocalization. By labeling the polymer and lipids, we investigated the adsorption-induced translational mobility of lipids and systematically studied the influence of lipid charge density and solution ionic strength. Our results show that alteration of anionic lipid lateral mobility is dependent on the net charge of the lipid headgroup and is modulated by the ionic strength of the solution, indicating that electrostatic interactions drive the decrease in lateral mobility of anionic lipids by adsorbed QPVP. At physiological salt concentration we observe that the lipid lateral mobility is weakly influenced by QPVP and that there is no evidence of stable lipid-polymer complexes.
Collapse
Affiliation(s)
- Xiaojun Shi
- Department of Chemistry, The University of Akron , 190 Buchtel Common, Akron, Ohio 44325-3601, United States
| | | | | | | | | |
Collapse
|
25
|
Vangaveti S, Travesset A. Separation of the Stern and diffuse layer in coarse-grained models: the cases of phosphatidyl serine, phosphatidic acid, and PIP2 monolayers. J Chem Phys 2014; 141:245102. [PMID: 25554186 DOI: 10.1063/1.4904885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present here a method to separate the Stern and diffuse layer in general systems into two regions that can be analyzed separately. The Stern layer can be described in terms of Bjerrum pairing and the diffuse layer in terms of Poisson-Boltzmann theory (monovalent) or strong coupling theory plus a slowly decaying tail (divalent). We consider three anionic phospholipids: phosphatidyl serine, phosphatidic acid, and phosphatidylinositol(4,5)bisphosphate (PIP2), which we describe within a minimal coarse-grained model as a function of ionic concentration. The case of mixed lipid systems is also considered, which shows a high level of binding cooperativity as a function of PIP2 localization. Implications for existing experimental systems of lipid heterogeneities are also discussed.
Collapse
Affiliation(s)
- S Vangaveti
- Department of Physics and Astronomy and Ames Laboratory, Iowa State University, Ames, Iowa 50010, USA
| | - A Travesset
- Department of Physics and Astronomy and Ames Laboratory, Iowa State University, Ames, Iowa 50010, USA
| |
Collapse
|
26
|
Himeno H, Shimokawa N, Komura S, Andelman D, Hamada T, Takagi M. Charge-induced phase separation in lipid membranes. SOFT MATTER 2014; 10:7959-67. [PMID: 25154325 DOI: 10.1039/c4sm01089b] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phase separation in lipid bilayers that include negatively charged lipids is examined experimentally. We observed phase-separated structures and determined the membrane miscibility temperatures in several binary and ternary lipid mixtures of unsaturated neutral lipid, dioleoylphosphatidylcholine (DOPC), saturated neutral lipid, dipalmitoylphosphatidylcholine (DPPC), unsaturated charged lipid, dioleoylphosphatidylglycerol (DOPG((-))), saturated charged lipid, dipalmitoylphosphatidylglycerol (DPPG((-))), and cholesterol. In binary mixtures of saturated and unsaturated charged lipids, the combination of the charged head with the saturation of the hydrocarbon tail is a dominant factor in the stability of membrane phase separation. DPPG((-)) enhances phase separation, while DOPG((-)) suppresses it. Furthermore, the addition of DPPG((-)) to a binary mixture of DPPC/cholesterol induces phase separation between DPPG((-))-rich and cholesterol-rich phases. This indicates that cholesterol localization depends strongly on the electric charge on the hydrophilic head group rather than on the ordering of the hydrocarbon tails. Finally, when DPPG((-)) was added to a neutral ternary system of DOPC/DPPC/cholesterol (a conventional model of membrane rafts), a three-phase coexistence was produced. We conclude by discussing some qualitative features of the phase behaviour in charged membranes using a free energy approach.
Collapse
Affiliation(s)
- Hiroki Himeno
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Kawai C, Ferreira JC, Baptista MS, Nantes IL. Not Only Oxidation of Cardiolipin Affects the Affinity of Cytochrome c for Lipid Bilayers. J Phys Chem B 2014; 118:11863-72. [DOI: 10.1021/jp504518g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cintia Kawai
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André-SP, Brazil
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo-SP, Brazil
| | - Juliana C. Ferreira
- Departamento
Biofísica, Universidade Federal de São Paulo, 04021-001 São Paulo-SP, Brazil
| | - Mauricio S. Baptista
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo-SP, Brazil
| | - Iseli L. Nantes
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André-SP, Brazil
| |
Collapse
|
28
|
Duan X, Li Y, Zhang R, Shi T, An L, Huang Q. Compositional redistribution and dynamic heterogeneity in mixed lipid membrane induced by polyelectrolyte adsorption: effects of chain rigidity. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:27. [PMID: 25143187 DOI: 10.1140/epje/i2014-14071-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/21/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Monte Carlo simulation is employed to investigate the interaction between a polyelectrolyte and a fluid mixed membrane containing neutral (phosphatidyl-choline, PC), monovalent anionic (phosphatidylserine, PS), and multivalent anionic (phosphatidylinositol, PIP2) lipids. The effects of the intrinsic polyelectrolyte rigidity and solution ionic strength on the lateral rearrangement and dynamics of different anionic lipid species are systematically studied. Our results show that, the increase of polyelectrolyte chain rigidity reduces the loss of polyelectrolyte conformational entropy and the energy gains in electrostatic interaction, but raises the demixing entropy loss of the segregated anionic lipids. Therefore, the polyelectrolyte/membrane adsorption strength exhibits a non-monotonic dependence on the polyelectrolyte rigid parameter k ang, and there exists a certain optimal k ang for which the adsorption strength is maximal. Because the less loss of chain conformational entropy dominates the increase of the demixing entropy loss of the segregated anionic lipids and the decreases of the electrostatic energy gains, the semiflexible polyelectrolyte adsorbs onto the membrane more firmly than the flexible one. Whereas, for the adsorption of rigid polyelectrolyte, larger anionic lipid demixing entropy loss and less energy gain in the electrostatic interaction dominate over the decrease of the polyelectrolyte conformation entropy loss, leading to the desorption of the chain from the membrane. By decreasing the ionic concentration of the salt solution, the certain optimal k ang shifts to larger values. The cooperative effects of the adsorbing polyelectrolyte beads determine the concentration gradients and hierarchical mobility of the bound anionic lipids, as well as the polyelectrolyte dynamics.
Collapse
Affiliation(s)
- Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | | | | | | | | | | |
Collapse
|
29
|
Pataraia S, Liu Y, Lipowsky R, Dimova R. Effect of cytochrome c on the phase behavior of charged multicomponent lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2036-45. [DOI: 10.1016/j.bbamem.2014.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/14/2014] [Accepted: 04/18/2014] [Indexed: 11/25/2022]
|
30
|
Effect of polyelectrolyte adsorption on lateral distribution and dynamics of anionic lipids: a Monte Carlo study of a coarse-grain model. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:377-91. [DOI: 10.1007/s00249-014-0969-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 01/12/2023]
|
31
|
Su C, Xia Y, Sun J, Wang N, Zhu L, Chen T, Huang Y, Liang D. Liposomes physically coated with peptides: preparation and characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6219-6227. [PMID: 24826785 DOI: 10.1021/la501296r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Physically coating liposomes with peptides of desirable functions is an economic, versatile, and less time-consuming approach to prepare drug delivery vehicles. In this work, we designed three peptides-Ac-WWKKKGGNNN-NH2 (W2K3), Ac-WWRRRGGNNN-NH2(W2R3), Ac-WWGGGGGNNN-NH2(W2G3)-and studied their coating ability on negatively charged liposomes. It was found that the coating was mainly driven by the electrostatic interaction between the peptides' cationic side groups and the acidic lipids, which also mediated the "anchoring " of Trp residuals in the interfacial region of lipid bilayers. At the same conditions, the amount of the coated W2R3 was more than that of W2K3, but the stability of the liposome coated with W2R3 was deteriorated. This was caused by the delocalized charge of the guanidinium group of arginine. The coating of the peptide rendered the liposome pH-responsive behavior but did not prominently change the phase transition temperature. The liposome coated with peptides displayed appropriate pH/temperature dual responsive characteristics and was able to release the content in a controlled manner.
Collapse
Affiliation(s)
- Cuicui Su
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Strahl H, Bürmann F, Hamoen LW. The actin homologue MreB organizes the bacterial cell membrane. Nat Commun 2014; 5:3442. [PMID: 24603761 PMCID: PMC3955808 DOI: 10.1038/ncomms4442] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/13/2014] [Indexed: 02/07/2023] Open
Abstract
The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate bacterial cell wall synthesis. We noticed that the MreB cytoskeleton influences fluorescent staining of the cytoplasmic membrane. Detailed analyses combining an array of mutants, using specific lipid staining techniques and spectroscopic methods, revealed that MreB filaments create specific membrane regions with increased fluidity (RIFs). Interference with these fluid lipid domains (RIFs) perturbs overall lipid homeostasis and affects membrane protein localization. The influence of MreB on membrane organization and fluidity may explain why the active movement of MreB stimulates membrane protein diffusion. These novel MreB activities add additional complexity to bacterial cell membrane organization and have implications for many membrane-associated processes. The formation of lipid domains in eukaryotic cells is controlled by the cortical actin cytoskeleton. Here, the authors show that the bacterial actin homologue MreB has a comparable activity, influencing the formation of regions of increased fluidity that determine the distribution of membrane proteins.
Collapse
Affiliation(s)
- Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle NE2 4AX, UK
| | - Frank Bürmann
- Max Planck Institute of Biochemistry, Chromosome Organization and Dynamics, Am Klopferspitz 18, Martinsried D-82152, Germany
| | - Leendert W Hamoen
- 1] Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle NE2 4AX, UK [2] Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
33
|
Blosser MC, Starr JB, Turtle CW, Ashcraft J, Keller SL. Minimal effect of lipid charge on membrane miscibility phase behavior in three ternary systems. Biophys J 2014; 104:2629-38. [PMID: 23790371 DOI: 10.1016/j.bpj.2013.04.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/11/2013] [Accepted: 04/08/2013] [Indexed: 11/15/2022] Open
Abstract
Giant unilamellar vesicles composed of a ternary mixture of phospholipids and cholesterol exhibit coexisting liquid phases over a range of temperatures and compositions. A significant fraction of lipids in biological membranes are charged. Here, we present phase diagrams of vesicles composed of phosphatidylcholine (PC) lipids, which are zwitterionic; phosphatidylglycerol (PG) lipids, which are anionic; and cholesterol (Chol). Specifically, we use DiPhyPG-DPPC-Chol and DiPhyPC-DPPG-Chol. We show that miscibility in membranes containing charged PG lipids occurs over similarly high temperatures and broad lipid compositions as in corresponding membranes containing only uncharged lipids, and that the presence of salt has a minimal effect. We verified our results in two ways. First, we used mass spectrometry to ensure that charged PC/PG/Chol vesicles formed by gentle hydration have the same composition as the lipid stocks from which they are made. Second, we repeated the experiments by substituting phosphatidylserine for PG as the charged lipid and observed similar phenomena. Our results consistently support the view that monovalent charged lipids have only a minimal effect on lipid miscibility phase behavior in our system.
Collapse
Affiliation(s)
- Matthew C Blosser
- Departments of Chemistry and Physics, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
34
|
Duan X, Zhang R, Li Y, Shi T, An L, Huang Q. Monte Carlo Study of Polyelectrolyte Adsorption on Mixed Lipid Membrane. J Phys Chem B 2013; 117:989-1002. [DOI: 10.1021/jp310017j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaozheng Duan
- State Key Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.
R. China
| | - Ran Zhang
- State Key Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.
R. China
| | - Yunqi Li
- Food Science Department, Rutgers University, New Brunswick, New Jersey 08901,
United States
| | - Tongfei Shi
- State Key Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.
R. China
| | - Lijia An
- State Key Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.
R. China
| | - Qingrong Huang
- Food Science Department, Rutgers University, New Brunswick, New Jersey 08901,
United States
| |
Collapse
|
35
|
Jing B, Hutin M, Connor E, Cronin L, Zhu Y. Polyoxometalate macroion induced phase and morphology instability of lipid membrane. Chem Sci 2013. [DOI: 10.1039/c3sc51404h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Ohkubo YZ, Pogorelov TV, Arcario MJ, Christensen GA, Tajkhorshid E. Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model. Biophys J 2012; 102:2130-9. [PMID: 22824277 DOI: 10.1016/j.bpj.2012.03.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/21/2012] [Accepted: 03/06/2012] [Indexed: 11/26/2022] Open
Abstract
Characterizing atomic details of membrane binding of peripheral membrane proteins by molecular dynamics (MD) has been significantly hindered by the slow dynamics of membrane reorganization associated with the phenomena. To expedite lateral diffusion of lipid molecules without sacrificing the atomic details of such interactions, we have developed a novel membrane representation, to our knowledge, termed the highly mobile membrane-mimetic (HMMM) model to study binding and insertion of various molecular species into the membrane. The HMMM model takes advantage of an organic solvent layer to represent the hydrophobic core of the membrane and short-tailed phospholipids for the headgroup region. We demonstrate that using these components, bilayer structures are formed spontaneously and rapidly, regardless of the initial position and orientation of the lipids. In the HMMM membrane, lipid molecules exhibit one to two orders of magnitude enhancement in lateral diffusion. At the same time, the membrane atomic density profile of the headgroup region produced by the HMMM model is essentially identical to those obtained for full-membrane models, indicating the faithful representation of the membrane surface by the model. We demonstrate the efficiency of the model in capturing spontaneous binding and insertion of peripheral proteins by using the membrane anchor (γ-carboxyglutamic-acid-rich domain; GLA domain) of human coagulation factor VII as a test model. Achieving full insertion of the GLA domain consistently in 10 independent unbiased simulations within short simulation times clearly indicates the robustness of the HMMM model in capturing membrane association of peripheral proteins very efficiently and reproducibly. The HMMM model will provide significant improvements to the current all-atom models by accelerating lipid dynamics to examine protein-membrane interactions more efficiently.
Collapse
Affiliation(s)
- Y Zenmei Ohkubo
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
37
|
Różycki B, Boura E, Hurley JH, Hummer G. Membrane-elasticity model of Coatless vesicle budding induced by ESCRT complexes. PLoS Comput Biol 2012; 8:e1002736. [PMID: 23093927 PMCID: PMC3475702 DOI: 10.1371/journal.pcbi.1002736] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/23/2012] [Indexed: 01/08/2023] Open
Abstract
The formation of vesicles is essential for many biological processes, in particular for the trafficking of membrane proteins within cells. The Endosomal Sorting Complex Required for Transport (ESCRT) directs membrane budding away from the cytosol. Unlike other vesicle formation pathways, the ESCRT-mediated budding occurs without a protein coat. Here, we propose a minimal model of ESCRT-induced vesicle budding. Our model is based on recent experimental observations from direct fluorescence microscopy imaging that show ESCRT proteins colocalized only in the neck region of membrane buds. The model, cast in the framework of membrane elasticity theory, reproduces the experimentally observed vesicle morphologies with physically meaningful parameters. In this parameter range, the minimum energy configurations of the membrane are coatless buds with ESCRTs localized in the bud neck, consistent with experiment. The minimum energy configurations agree with those seen in the fluorescence images, with respect to both bud shapes and ESCRT protein localization. On the basis of our model, we identify distinct mechanistic pathways for the ESCRT-mediated budding process. The bud size is determined by membrane material parameters, explaining the narrow yet different bud size distributions in vitro and in vivo. Our membrane elasticity model thus sheds light on the energetics and possible mechanisms of ESCRT-induced membrane budding.
Collapse
Affiliation(s)
- Bartosz Różycki
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
| | - Evzen Boura
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James H. Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gerhard Hummer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
38
|
Luo JJ, Wu FG, Qin SS, Yu ZW. In Situ Unfolded Lysozyme Induces the Lipid Lateral Redistribution of a Mixed Lipid Model Membrane. J Phys Chem B 2012; 116:12381-8. [DOI: 10.1021/jp304339t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun-Jie Luo
- Key Laboratory of Bioorganic Phosphorous
Chemistry
and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic
of China
| | - Fu-Gen Wu
- Key Laboratory of Bioorganic Phosphorous
Chemistry
and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic
of China
| | - Shan-Shan Qin
- Key Laboratory of Bioorganic Phosphorous
Chemistry
and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic
of China
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic Phosphorous
Chemistry
and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic
of China
| |
Collapse
|
39
|
French S, Puddephatt D, Habash M, Glasauer S. The dynamic nature of bacterial surfaces: Implications for metal–membrane interaction. Crit Rev Microbiol 2012; 39:196-217. [DOI: 10.3109/1040841x.2012.702098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Finding a needle in a haystack: the role of electrostatics in target lipid recognition by PH domains. PLoS Comput Biol 2012; 8:e1002617. [PMID: 22844242 PMCID: PMC3406000 DOI: 10.1371/journal.pcbi.1002617] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/01/2012] [Indexed: 11/19/2022] Open
Abstract
Interactions between protein domains and lipid molecules play key roles in controlling cell membrane signalling and trafficking. The pleckstrin homology (PH) domain is one of the most widespread, binding specifically to phosphatidylinositol phosphates (PIPs) in cell membranes. PH domains must locate specific PIPs in the presence of a background of approximately 20% anionic lipids within the cytoplasmic leaflet of the plasma membrane. We investigate the mechanism of such recognition via a multiscale procedure combining Brownian dynamics (BD) and molecular dynamics (MD) simulations of the GRP1 PH domain interacting with phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3). The interaction of GRP1-PH with PI(3,4,5)P3 in a zwitterionic bilayer is compared with the interaction in bilayers containing different levels of anionic ‘decoy’ lipids. BD simulations reveal both translational and orientational electrostatic steering of the PH domain towards the PI(3,4,5)P3-containing anionic bilayer surface. There is a payoff between non-PIP anionic lipids attracting the PH domain to the bilayer surface in a favourable orientation and their role as ‘decoys’, disrupting the interaction of GRP1-PH with the PI(3,4,5)P3 molecule. Significantly, approximately 20% anionic lipid in the cytoplasmic leaflet of the bilayer is nearly optimal to both enhance orientational steering and to localise GRP1-PH proximal to the surface of the membrane without sacrificing its ability to locate PI(3,4,5)P3 within the bilayer plane. Subsequent MD simulations reveal binding to PI(3,4,5)P3, forming protein-phosphate contacts comparable to those in X-ray structures. These studies demonstrate a computational framework which addresses lipid recognition within a cell membrane environment, offering a link between structural and cell biological characterisation. Cell signalling pathways are crucial for many biological processes including cell proliferation and survival. Signalling is governed by a complex network of interactions within the cell, and disruption of signalling can lead to a variety of human diseases. Often, a key event in the signalling cascade is the reversible recruitment of peripheral membrane proteins to the surface of the cell membrane, where they then bind to a specific lipid in order to perform their function. However, it is not clear how these proteins locate their target lipid in the complex multi-lipid environment of the plasma membrane. Here, we have used a combination of computational techniques to simulate the association of a signalling protein with the surface of the cell membrane. We demonstrate that the mechanism of membrane binding is dependent upon the lipid composition of the lipid bilayer, and the results show that orientational and positional steering of the protein is optimised when the anionic lipid content of our model membrane matches the physiological composition observed in cells.
Collapse
|
41
|
Dias RS, Pais AACC. Effect of the Architecture on Polyelectrolyte Adsorption and Condensation at Responsive Surfaces. J Phys Chem B 2012; 116:9246-54. [DOI: 10.1021/jp303540q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rita S. Dias
- Department of Chemistry, Coimbra University, Rua Larga, 3004-535 Coimbra, Portugal
| | | |
Collapse
|
42
|
Li BQ, Hu LL, Chen L, Feng KY, Cai YD, Chou KC. Prediction of protein domain with mRMR feature selection and analysis. PLoS One 2012; 7:e39308. [PMID: 22720092 PMCID: PMC3376124 DOI: 10.1371/journal.pone.0039308] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 05/17/2012] [Indexed: 11/30/2022] Open
Abstract
The domains are the structural and functional units of proteins. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop effective methods for predicting the protein domains according to the sequences information alone, so as to facilitate the structure prediction of proteins and speed up their functional annotation. However, although many efforts have been made in this regard, prediction of protein domains from the sequence information still remains a challenging and elusive problem. Here, a new method was developed by combing the techniques of RF (random forest), mRMR (maximum relevance minimum redundancy), and IFS (incremental feature selection), as well as by incorporating the features of physicochemical and biochemical properties, sequence conservation, residual disorder, secondary structure, and solvent accessibility. The overall success rate achieved by the new method on an independent dataset was around 73%, which was about 28–40% higher than those by the existing method on the same benchmark dataset. Furthermore, it was revealed by an in-depth analysis that the features of evolution, codon diversity, electrostatic charge, and disorder played more important roles than the others in predicting protein domains, quite consistent with experimental observations. It is anticipated that the new method may become a high-throughput tool in annotating protein domains, or may, at the very least, play a complementary role to the existing domain prediction methods, and that the findings about the key features with high impacts to the domain prediction might provide useful insights or clues for further experimental investigations in this area. Finally, it has not escaped our notice that the current approach can also be utilized to study protein signal peptides, B-cell epitopes, HIV protease cleavage sites, among many other important topics in protein science and biomedicine.
Collapse
Affiliation(s)
- Bi-Qing Li
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Le-Le Hu
- Institute of Systems Biology, Shanghai University, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Kai-Yan Feng
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, Shanghai, China
- Gordon Life Science Institute, San Diego, California, United States of America
- * E-mail: (YDC) (YC); (KCC) (KC)
| | - Kuo-Chen Chou
- Gordon Life Science Institute, San Diego, California, United States of America
- * E-mail: (YDC) (YC); (KCC) (KC)
| |
Collapse
|
43
|
Hanulová M, Weiss M. Membrane-mediated interactions – a physico-chemical basis for protein sorting. Mol Membr Biol 2012; 29:177-85. [DOI: 10.3109/09687688.2012.667838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Yang JA, Murphy CJ. Evidence for patchy lipid layers on gold nanoparticle surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5404-5416. [PMID: 22352432 DOI: 10.1021/la300325p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gold nanoparticles bearing multiple surface ligands are becoming favored candidates as multifunctional targeting, imaging, and therapeutic vehicles for biomedicine. The question of spatial location of different ligands on nanoparticle surfaces, especially with those of diameters less than 100 nm, is an important one that is difficult to quantitatively address. Here we functionalize the surface of 20, 50, and 90 nm gold nanoparticles with two different lipids, both single and mixed, using two different surface chemical procedures. Mass spectrometry supports the presence of both lipids in the mixed-lipid systems on nanoparticles, while electron microscopy evidence shows domain sizes for one lipid apparently a quarter to a half the projected diameter for 50 and 90 nm particles; but for 20 nm particles, there is no evidence for the existence of patches of the two lipids. Larger gold nanoparticles (90 nm) can be decorated with an array of 12 nm gold nanoparticles by use of a third lipid and antibody-antigen connectors; the display of the 12 nm particles about the 90 nm particles can be controlled to some extent by the initial surface chemistry and is quantified via a new angle analysis procedure.
Collapse
Affiliation(s)
- Jie An Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
45
|
Kiselev VY, Leda M, Lobanov AI, Marenduzzo D, Goryachev AB. Lateral dynamics of charged lipids and peripheral proteins in spatially heterogeneous membranes: comparison of continuous and Monte Carlo approaches. J Chem Phys 2012; 135:155103. [PMID: 22029337 DOI: 10.1063/1.3652958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Biological membranes are complex environments whose physico-chemical properties are of utmost importance for the understanding of many crucial biological processes. Much attention has been given in the literature to the description of membranes along the z-axis perpendicular to the membrane. Here, we instead consider the lateral dynamics of lipids and peripheral proteins due to their electrostatic interaction. Previously, we constructed a Monte Carlo automaton capable of simulating mutual diffusive dynamics of charged lipids and associated positively charged peptides. Here, we derive and numerically analyze a system of Poisson-Boltzmann-Nernst-Planck (PBNP) equations that provide a mean-field approximation compatible with our Monte Carlo model. The thorough comparison between the mean-field PBNP equations and Monte Carlo simulations demonstrates that both the approaches are in a good qualitative agreement in all tested scenarios. We find that the two methods quantitatively deviate when the local charge density is high, presumably because the Poisson-Boltzmann formalism is applicable in the so-called weak coupling limit, whose validity is restricted to low charge densities. Nevertheless, we conclude that the mean-field PBNP approach provides a good approximation for the considerably more detailed Monte Carlo model at only a fraction of the associated computational cost and allows simulation of the membrane lateral dynamics on the space and time scales relevant for the realistic biological problems.
Collapse
Affiliation(s)
- Vladimir Yu Kiselev
- Centre for Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Shimokawa N, Komura S, Andelman D. Charged bilayer membranes in asymmetric ionic solutions: phase diagrams and critical behavior. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031919. [PMID: 22060415 DOI: 10.1103/physreve.84.031919] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Indexed: 05/31/2023]
Abstract
We consider the phase separation in an asymmetrically charged lipid bilayer membrane consisting of neutral and negatively charged lipids that are in contact with in and out ionic solutions having different ionic strengths. The two asymmetric leaflets are coupled through electrostatic interactions. Based on a free-energy approach, the critical point and phase diagrams are calculated for different ionic strengths of the two solutions and coupling parameter. An increase of the coupling constant or asymmetry in the salt concentration between the in and out solutions yields a higher phase-separation temperature because of electrostatic interactions. As a consequence, the phase-coexistence region increases for strong screening (small Debye length). Finally, possible three-phase coexistence regions in the phase diagram are predicted.
Collapse
Affiliation(s)
- Naofumi Shimokawa
- Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan.
| | | | | |
Collapse
|
47
|
Kiselev VY, Marenduzzo D, Goryachev AB. Lateral dynamics of proteins with polybasic domain on anionic membranes: a dynamic Monte-Carlo study. Biophys J 2011; 100:1261-70. [PMID: 21354399 DOI: 10.1016/j.bpj.2011.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 01/13/2011] [Indexed: 10/18/2022] Open
Abstract
Positively charged polybasic domains are essential for recruiting multiple signaling proteins, such as Ras GTPases and Src kinase, to the negatively charged cellular membranes. Much less, however, is known about the influence of electrostatic interactions on the lateral dynamics of these proteins. We developed a dynamic Monte-Carlo automaton that faithfully simulates lateral diffusion of the adsorbed positively charged oligopeptides as well as the dynamics of mono- (phosphatidylserine) and polyvalent (PIP(2)) anionic lipids within the bilayer. In agreement with earlier results, our simulations reveal lipid demixing that leads to the formation of a lipid shell associated with the peptide. The computed association times and average numbers of bound lipids demonstrate that tetravalent PIP(2) interacts with the peptide much more strongly than monovalent lipid. On the spatially homogeneous membrane, the lipid shell affects the behavior of the peptide only by weakly reducing its lateral mobility. However, spatially heterogeneous distributions of monovalent lipids are found to produce peptide drift, the velocity of which is determined by the total charge of the peptide-lipid complex. We hypothesize that this predicted phenomenon may affect the spatial distribution of proteins with polybasic domains in the context of cell-signaling events that alter the local density of monovalent anionic lipids.
Collapse
Affiliation(s)
- Vladimir Yu Kiselev
- Centre for Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
48
|
Trusova VM, Gorbenko GP, Molotkovsky JG, Kinnunen PKJ. Cytochrome c-lipid interactions: new insights from resonance energy transfer. Biophys J 2011; 99:1754-63. [PMID: 20858419 DOI: 10.1016/j.bpj.2010.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/25/2010] [Accepted: 06/07/2010] [Indexed: 01/01/2023] Open
Abstract
Resonance energy transfer (RET) from anthrylvinyl-labeled phosphatidylcholine (AV-PC) or cardiolipin (AV-CL) to cytochrome c (cyt c) heme moiety was employed to assess the molecular-level details of protein interactions with lipid bilayers composed of PC with 2.5 (CL2.5), 5 (CL5), 10 (CL10), or 20 (CL20) mol % CL under conditions of varying ionic strength and lipid/protein molar ratio. Monte Carlo analysis of multiple data sets revealed a subtle interplay between 1), exchange of the neutral and acidic lipid in the protein-lipid interaction zone; 2), CL transition into the extended conformation; and 3), formation of the hexagonal phase. The switch between these states was found to be controlled by CL content and salt concentration. At ionic strengths ≥ 40 mM, lipid bilayers with CL fraction not exceeding 5 mol % exhibited the tendency to transform from lamellar to hexagonal phase upon cyt c adsorption, whereas at higher contents of CL, transition into the extended conformation seems to become thermodynamically favorable. At lower ionic strengths, deviations from homogeneous lipid distributions were observed only for model membranes containing 2.5 mol % CL, suggesting the existence of a certain surface potential critical for assembly of lipid lateral domains in protein-lipid systems that may subsequently undergo morphological transformations depending on ambient conditions. These characteristics of cyt c-CL interaction are of great interest, not only from the viewpoint of regulating cyt c electron transfer and apoptotic propensities, but also to elucidate the general mechanisms by which membrane functional activities can be modulated by protein-lipid interactions.
Collapse
Affiliation(s)
- Valeriya M Trusova
- Department of Biological and Medical Physics, VN Karazin Kharkov National University, Kharkov, Ukraine
| | | | | | | |
Collapse
|
49
|
Trusova VM, Gorbenko GP, Akopova I, Molotkovsky JG, Gryczynski I, Borejdo J, Gryczynski Z. Morphological changes of supported lipid bilayers induced by lysozyme: planar domain formation vs. multilayer stacking. Colloids Surf B Biointerfaces 2010; 80:219-26. [PMID: 20620034 PMCID: PMC3277818 DOI: 10.1016/j.colsurfb.2010.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 06/10/2010] [Accepted: 06/16/2010] [Indexed: 01/14/2023]
Abstract
Total internal reflection fluorescence microscopy (TIRFM) has been utilized to explore the effect of cationic protein lysozyme (Lz) on the morphology of solid-supported lipid bilayers (SLBs) comprised of zwitterionic lipid phosphatidylcholine (PC) and its mixture with anionic lipid cardiolipin (CL). Kinetic TIRFM imaging of different systems revealed subtle interplay between lipid lateral segregation accompanied by exchange of neutral and acidic lipids in the protein-lipid interaction zone, and the formation of lipid multilayer stacks. The switch between these states was shown to be controlled by CL content. In weakly charged SLBs containing 5 mol% CL, assembling of CL molecules into planar domains upon Lz adsorption has been observed while at higher content of anionic lipid (25 mol%) in-plane domains tend to transform into multilayer stacks, thereby ensuring the most thermodynamically-favorable membrane conformation.
Collapse
Affiliation(s)
- Valeriya M Trusova
- Department of Biological and Medical Physics, VN Karazin Kharkov National University, 4 Svobody Sq, Kharkov 61077, Ukraine.
| | | | | | | | | | | | | |
Collapse
|
50
|
Phase separation of a mixture of charged and neutral lipids on a giant vesicle induced by small cations. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|