1
|
Boisselier É, Demers É, Cantin L, Salesse C. How to gather useful and valuable information from protein binding measurements using Langmuir lipid monolayers. Adv Colloid Interface Sci 2017; 243:60-76. [PMID: 28372794 DOI: 10.1016/j.cis.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
This review presents data on the influence of various experimental parameters on the binding of proteins onto Langmuir lipid monolayers. The users of the Langmuir methodology are often unaware of the importance of choosing appropriate experimental conditions to validate the data acquired with this method. The protein Retinitis pigmentosa 2 (RP2) has been used throughout this review to illustrate the influence of these experimental parameters on the data gathered with Langmuir monolayers. The methods detailed in this review include the determination of protein binding parameters from the measurement of adsorption isotherms, infrared spectra of the protein in solution and in monolayers, ellipsometric isotherms and fluorescence micrographs.
Collapse
Affiliation(s)
- Élodie Boisselier
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| | - Éric Demers
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Line Cantin
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Christian Salesse
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
2
|
Zheng S, Qiu D, Adams M, Li J, Mantri RV, Gandhi R. Investigating the Degradation Behaviors of a Therapeutic Monoclonal Antibody Associated with pH and Buffer Species. AAPS PharmSciTech 2017; 18:42-48. [PMID: 26340951 DOI: 10.1208/s12249-015-0403-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/21/2015] [Indexed: 12/15/2022] Open
Abstract
This study aimed in understanding the degradation behaviors of an IgG 1 subtype therapeutic monoclonal antibody A (mAb-A) associated with pH and buffer species. The information obtained in this study can augment conventional, stability-based screening paradigms by providing the direction necessary for efficient experimental design. Differential scanning calorimetry (DSC) was used for studying conformational stability. Dynamic light scattering (DLS) was utilized to generate B 22*, a modified second virial coefficient for the character of protein-protein interaction. Size-exclusion chromatography (SEC) and hydrophobic interaction chromatography (HIC) were employed to separate degradation products. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used for determining the molecular size and liquid chromatography mass spectrometry (LC-MS) were used for identifying the sequence of the separated fragments. The results showed that both pH and buffer species played the roles in controlling the degradation behaviors of mAb-A, but the pH was more significant. In particular, pH 4.5 induced additional thermal transition peaks occurring at a low temperature compared with pH 6.5. A continual temperature-stress study illustrated that the additional thermal transition peaks related to the least stable structure and a greater fragmentation. Although mAb-A showed the comparable conformational structures and an identical amount of aggregates at time zero between the different types of buffer species at pH 6.5, the aggregation formation rate showed a buffer species-dependent discrepancy over a temperature-stress period. It was found that the levels of aggregations associated with the magnitudes of protein-protein interaction forces.
Collapse
|
3
|
Lhor M, Bernier SC, Horchani H, Bussières S, Cantin L, Desbat B, Salesse C. Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Adv Colloid Interface Sci 2014; 207:223-39. [PMID: 24560216 PMCID: PMC4028306 DOI: 10.1016/j.cis.2014.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Membrane binding of proteins such as short chain dehydrogenase reductases or tail-anchored proteins relies on their N- and/or C-terminal hydrophobic transmembrane segment. In this review, we propose guidelines to characterize such hydrophobic peptide segments using spectroscopic and biophysical measurements. The secondary structure content of the C-terminal peptides of retinol dehydrogenase 8, RGS9-1 anchor protein, lecithin retinol acyl transferase, and of the N-terminal peptide of retinol dehydrogenase 11 has been deduced by prediction tools from their primary sequence as well as by using infrared or circular dichroism analyses. Depending on the solvent and the solubilization method, significant structural differences were observed, often involving α-helices. The helical structure of these peptides was found to be consistent with their presumed membrane binding. Langmuir monolayers have been used as membrane models to study lipid-peptide interactions. The values of maximum insertion pressure obtained for all peptides using a monolayer of 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE) are larger than the estimated lateral pressure of membranes, thus suggesting that they bind membranes. Polarization modulation infrared reflection absorption spectroscopy has been used to determine the structure and orientation of these peptides in the absence and in the presence of a DOPE monolayer. This lipid induced an increase or a decrease in the organization of the peptide secondary structure. Further measurements are necessary using other lipids to better understand the membrane interactions of these peptides.
Collapse
Affiliation(s)
- Mustapha Lhor
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sarah C Bernier
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Habib Horchani
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sylvain Bussières
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Line Cantin
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Bernard Desbat
- CBMN-UMR 5248 CNRS, Université de Bordeaux, IPB, Allée Geoffroy Saint Hilaire, 33600 Pessac, France
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
4
|
Dube N, Presley AD, Shu JY, Xu T. Amphiphilic Peptide-Polymer Conjugates with Side-Conjugation. Macromol Rapid Commun 2011; 32:344-53. [DOI: 10.1002/marc.201000603] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/23/2010] [Indexed: 11/08/2022]
|
5
|
Shu JY, Huang YJ, Tan C, Presley AD, Chang J, Xu T. Amphiphilic Peptide−Polymer Conjugates Based on the Coiled-Coil Helix Bundle. Biomacromolecules 2010; 11:1443-52. [DOI: 10.1021/bm100009e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica Y. Shu
- Departments of Materials Science and Engineering and Chemistry, University of California, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Yu-Ja Huang
- Departments of Materials Science and Engineering and Chemistry, University of California, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Cen Tan
- Departments of Materials Science and Engineering and Chemistry, University of California, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Andrew D. Presley
- Departments of Materials Science and Engineering and Chemistry, University of California, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Joseph Chang
- Departments of Materials Science and Engineering and Chemistry, University of California, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Ting Xu
- Departments of Materials Science and Engineering and Chemistry, University of California, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
6
|
Zou H, Liu J, Blasie JK. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, III: Molecular dynamics simulation incorporating a cyanophenylalanine spectroscopic probe. Biophys J 2009; 96:4188-99. [PMID: 19450489 DOI: 10.1016/j.bpj.2009.01.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/02/2008] [Accepted: 01/28/2009] [Indexed: 11/17/2022] Open
Abstract
A nitrile-derived amino acid, Phe(CN), has been used as an internal spectroscopic probe to study the binding of an inhalational anesthetic to a model membrane protein. The infrared spectra from experiment showed a blue-shift of the nitrile vibrational frequency in the presence of the anesthetic halothane. To interpret the infrared results and explore the nature of the interaction between halothane and the model protein, all-atom molecular dynamics (MD) simulations have been used to probe the structural and dynamic properties of the protein in the presence and absence of one halothane molecule. The frequency shift analyzed from MD simulations agrees well with the experimental infrared results. Decomposition of the forces acting on the nitrile probes demonstrates an indirect impact on the probes from halothane, namely a change of the protein's electrostatic local environment around the probes induced by halothane. Although the halothane remains localized within the designed hydrophobic binding cavity, it undergoes a significant amount of translational and rotational motion, modulated by the interaction of the trifluorine end of halothane with backbone hydrogens of the residues forming the cavity. This dominant interaction between halothane and backbone hydrogens outweighs the direct interaction between halothane and the nitrile groups, making it a good "spectator" probe of the halothane-protein interaction. These MD simulations provide insight into action of anesthetic molecules on the model membrane protein, and also support the further development of nitrile-labeled amino acids as spectroscopic probes within the designed binding cavity.
Collapse
Affiliation(s)
- Hongling Zou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
7
|
Strzalka J, Liu J, Tronin A, Churbanova IY, Johansson JS, Blasie JK. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, I: Structural investigations via X-ray reflectivity from Langmuir monolayers. Biophys J 2009; 96:4164-75. [PMID: 19450487 DOI: 10.1016/j.bpj.2009.01.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 01/15/2009] [Accepted: 01/21/2009] [Indexed: 11/16/2022] Open
Abstract
We previously reported the synthesis and structural characterization of a model membrane protein comprised of an amphiphilic 4-helix bundle peptide with a hydrophobic domain based on a synthetic ion channel and a hydrophilic domain with designed cavities for binding the general anesthetic halothane. In this work, we synthesized an improved version of this halothane-binding amphiphilic peptide with only a single cavity and an otherwise identical control peptide with no such cavity, and applied x-ray reflectivity to monolayers of these peptides to probe the distribution of halothane along the length of the core of the 4-helix bundle as a function of the concentration of halothane. At the moderate concentrations achieved in this study, approximately three molecules of halothane were found to be localized within a broad symmetric unimodal distribution centered about the designed cavity. At the lowest concentration achieved, of approximately one molecule per bundle, the halothane distribution became narrower and more peaked due to a component of approximately 19A width centered about the designed cavity. At higher concentrations, approximately six to seven molecules were found to be uniformly distributed along the length of the bundle, corresponding to approximately one molecule per heptad. Monolayers of the control peptide showed only the latter behavior, namely a uniform distribution along the length of the bundle irrespective of the halothane concentration over this range. The results provide insight into the nature of such weak binding when the dissociation constant is in the mM regime, relevant for clinical applications of anesthesia. They also demonstrate the suitability of both the model system and the experimental technique for additional work on the mechanism of general anesthesia, some of it presented in the companion parts II and III under this title.
Collapse
Affiliation(s)
- Joseph Strzalka
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
8
|
Liu J, Strzalka J, Tronin A, Johansson JS, Blasie JK. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, II: Fluorescence and vibrational spectroscopy using a cyanophenylalanine probe. Biophys J 2009; 96:4176-87. [PMID: 19450488 DOI: 10.1016/j.bpj.2009.01.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/02/2008] [Accepted: 01/07/2009] [Indexed: 11/15/2022] Open
Abstract
We demonstrate that cyano-phenylalanine (Phe(CN)) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-Phe(CN). The Trp to Phe(CN) mutation alters neither the alpha-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this Phe(CN) mutant hbAP-Phe(CN), based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescence is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-Phe(CN), enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four Phe(CN) probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-Phe(CN) therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the anesthetic binding cavity.
Collapse
Affiliation(s)
- Jing Liu
- Departments of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
9
|
Thode AB, Kruse SW, Nix JC, Jones DNM. The role of multiple hydrogen-bonding groups in specific alcohol binding sites in proteins: insights from structural studies of LUSH. J Mol Biol 2008; 376:1360-76. [PMID: 18234222 PMCID: PMC2293277 DOI: 10.1016/j.jmb.2007.12.063] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 12/21/2007] [Accepted: 12/21/2007] [Indexed: 11/16/2022]
Abstract
It is now generally accepted that many of the physiological effects of alcohol consumption are a direct result of binding to specific sites in neuronal proteins such as ion channels or other components of neuronal signaling cascades. Binding to these targets generally occurs in water-filled pockets and leads to alterations in protein structure and dynamics. However, the precise interactions required to confer alcohol sensitivity to a particular protein remain undefined. Using information from the previously solved crystal structures of the Drosophila melanogaster protein LUSH in complexes with short-chain alcohols, we have designed and tested the effects of specific amino acid substitutions on alcohol binding. The effects of these substitutions, specifically S52A, T57S, and T57A, were examined using a combination of molecular dynamics, X-ray crystallography, fluorescence spectroscopy, and thermal unfolding. These studies reveal that the binding of ethanol is highly sensitive to small changes in the composition of the alcohol binding site. We find that T57 is the most critical residue for binding alcohols; the T57A substitution completely abolishes binding, while the T57S substitution differentially affects ethanol binding compared to longer-chain alcohols. The additional requirement for a potential hydrogen-bond acceptor at position 52 suggests that both the presence of multiple hydrogen-bonding groups and the identity of the hydrogen-bonding residues are critical for defining an ethanol binding site. These results provide new insights into the detailed chemistry of alcohol's interactions with proteins.
Collapse
Affiliation(s)
- Anna B. Thode
- Program in Biomolecular Structure, University of Colorado, Denver School of Medicine, 12801 East 17 Avenue, MS 8303, PO Box 6511, Aurora, CO 80045
| | - Schoen W Kruse
- Department of Pharmacology, University of Colorado Denver School of Medicine, 12801 East 17 Avenue, MS 8303, PO Box 6511, Aurora, CO 80045
| | - Jay C. Nix
- Molecular Biology Consortium, Advanced Light Source Beamline 4.2.2, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - David N. M. Jones
- Department of Pharmacology, University of Colorado Denver School of Medicine, 12801 East 17 Avenue, MS 8303, PO Box 6511, Aurora, CO 80045
- Program in Biomolecular Structure, University of Colorado, Denver School of Medicine, 12801 East 17 Avenue, MS 8303, PO Box 6511, Aurora, CO 80045
| |
Collapse
|
10
|
Churbanova IY, Tronin A, Strzalka J, Gog T, Kuzmenko I, Johansson JS, Blasie JK. Monolayers of a model anesthetic-binding membrane protein: formation, characterization, and halothane-binding affinity. Biophys J 2006; 90:3255-66. [PMID: 16473900 PMCID: PMC1432115 DOI: 10.1529/biophysj.105.072348] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
hbAP0 is a model membrane protein designed to possess an anesthetic-binding cavity in its hydrophilic domain and a cation channel in its hydrophobic domain. Grazing incidence x-ray diffraction shows that hbAP0 forms four-helix bundles that are vectorially oriented within Langmuir monolayers at the air-water interface. Single monolayers of hbAP0 on alkylated solid substrates would provide an optimal system for detailed structural and dynamical studies of anesthetic-peptide interaction via x-ray and neutron scattering and polarized spectroscopic techniques. Langmuir-Blodgett and Langmuir-Schaeffer deposition and self-assembly techniques were used to form single monolayer films of the vectorially oriented peptide hbAP0 via both chemisorption and physisorption onto suitably alkylated solid substrates. The films were characterized by ultraviolet absorption, ellipsometry, circular dichroism, and polarized Fourier transform infrared spectroscopy. The alpha-helical secondary structure of the peptide was retained in the films. Under certain conditions, the average orientation of the helical axis was inclined relative to the plane of the substrate, approaching perpendicular in some cases. The halothane-binding affinity of the vectorially oriented hbAP0 peptide in the single monolayers, with the volatile anesthetic introduced into the moist vapor environment of the monolayer, was found to be similar to that for the detergent-solubilized peptide.
Collapse
Affiliation(s)
- Inna Y Churbanova
- Departments of Chemistry and Anesthesiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | | | | | | | |
Collapse
|