1
|
Gupta S, Priyanka, Mavileti SK, Pandey SS, Kato T. Design and Synthesis of Novel Squaraine-Based Fluorescent Probe for Far-Red Detection of Chymotrypsin Enzyme. Molecules 2024; 29:1282. [PMID: 38542918 PMCID: PMC10975582 DOI: 10.3390/molecules29061282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 09/17/2024] Open
Abstract
Chymotrypsin, a crucial enzyme in human digestion, catalyzes the breakdown of milk proteins, underscoring its significance in both health diagnostics and dairy quality assurance. Addressing the critical need for rapid, cost-effective detection methods, we introduce a groundbreaking approach utilizing far-red technology and HOMO-Förster resonance energy transfer (FRET). Our novel probe, SQ-122 PC, features a unique molecular design that includes a squaraine dye (SQ), a peptide linker, and SQ moieties synthesized through solid-phase peptide synthesis. Demonstrating a remarkable quenching efficiency of 93.75% in a tailored H2O:DMSO (7:3) solvent system, our probe exhibits absorption and emission properties within the far-red spectrum, with an unprecedented detection limit of 0.130 nM. Importantly, our method offers unparalleled selectivity towards chymotrypsin, ensuring robust and accurate enzyme detection. This pioneering work underscores the immense potential of far-red-based homo-FRET systems in enabling the sensitive and specific detection of chymotrypsin enzyme activity. By bridging the gap between cutting-edge technology and biomedical diagnostics, our findings herald a new era of enzyme sensing, promising transformative advancements in disease diagnosis and dairy quality control.
Collapse
Affiliation(s)
| | | | | | - Shyam S. Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Kitakyushu 808-0196, Japan; (S.G.); (P.); (S.K.M.)
| | - Tamaki Kato
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Kitakyushu 808-0196, Japan; (S.G.); (P.); (S.K.M.)
| |
Collapse
|
2
|
Yaginuma H, Ohtake K, Akamatsu T, Noji H, Tabata KV. A microreactor sealing method using adhesive tape for digital bioassays. LAB ON A CHIP 2022; 22:2001-2010. [PMID: 35481587 DOI: 10.1039/d2lc00065b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Digital assays using microreactors fabricated on solid substrates are useful for carrying out sensitive assays of infectious diseases and other biological tests. However, sealing of the microchambers using fluid oil is difficult for non-experts, and thus hinders the widespread use of digital microreactor assays. Here, we propose the physical isolation of tiny reactors with adhesive tape (PITAT) using simple, commercially available pressure-sensitive adhesive (PSA) tape as a separator of the microreactors. We confirmed that PSA tape can effectively seal the microreactors and prevent molecules from diffusing out. By testing several types of adhesive tape, we found that rubber-based adhesives are the most suitable for this purpose. In addition, we demonstrated that single-molecule enzyme assays can be successfully performed inside microreactors sealed with PSA tape. The results obtained using PITAT are quantitatively comparable to conventional oil sealing, although it is quick and cost-effective. Finally, we demonstrated that single-particle virus counting of the influenza virus can be achieved using PITAT. Collectively, our results suggest that PITAT may be suitable for use in the design of sensitive tests for infectious diseases at the point of care, where no sophisticated equipment or machines are available.
Collapse
Affiliation(s)
- Hideyuki Yaginuma
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Kuniko Ohtake
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Takako Akamatsu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Kazuhito V Tabata
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
- Sothis Technologies, Tokyo, Japan
| |
Collapse
|
3
|
Wu C, Maley AM, Walt DR. Single-molecule measurements in microwells for clinical applications. Crit Rev Clin Lab Sci 2019:1-21. [PMID: 31865834 DOI: 10.1080/10408363.2019.1700903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to detect and analyze proteins, nucleic acids, and other biomolecules is critical for clinical diagnostics and for understanding the underlying mechanisms of disease. Current detection methods in clinical and research laboratories rely upon bulk measurement techniques such as immunoassays, polymerase chain reaction, and mass spectrometry to detect these biomarkers. However, many potentially useful protein or nucleic acid biomarkers in blood, saliva, or other biofluids exist at concentrations well below the detection limits of current methods, necessitating the development of more sensitive technologies. Single-molecule measurements are poised to address this challenge, vastly improving sensitivity for detecting low abundance biomarkers and rare events within a population. Microwell arrays have emerged as a powerful tool for single-molecule measurements, enabling ultrasensitive detection of disease-relevant biomolecules in easily accessible biofluids. This review discusses the development, fundamentals, and clinical applications of microwell-based single-molecule methods, as well as challenges and future directions for translating these methods to the clinic.
Collapse
Affiliation(s)
- Connie Wu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Adam M Maley
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
4
|
Wang Y, Zijlstra P. Plasmon-Enhanced Single-Molecule Enzymology. ACS PHOTONICS 2018; 5:3073-3081. [PMID: 30148184 PMCID: PMC6105035 DOI: 10.1021/acsphotonics.8b00327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 05/06/2023]
Abstract
We present a numerical study on plasmon-enhanced single-molecule enzymology. We combine Brownian dynamics and electromagnetic simulations to calculate the enhancement of fluorescence signals of fluorogenic substrate converted by an enzyme conjugated to a plasmonic particle. We simulate the Brownian motion of a fluorescent product away from the active site of the enzyme, and calculate the photon detection rate taking into account modifications of the excitation and emission processes by coupling to the plasmon. We show that plasmon enhancement can boost the signal-to-noise ratio (SNR) of single turnovers by up to 100 fold compared to confocal microscopy. This enhancement factor is a trade-off between the reduced residence time in the near-field of the particle, and the enhanced emission intensity due to coupling to the plasmon. The enhancement depends on the size, shape and material of the particle and the photophysical properties of the fluorescent product. Our study provides guidelines on how to enhance the SNR of single-molecule enzyme studies and may aid in further understanding and quantifying static and dynamic heterogeneity.
Collapse
|
5
|
Enzyme molecules in solitary confinement. Molecules 2014; 19:14417-45. [PMID: 25221867 PMCID: PMC6271441 DOI: 10.3390/molecules190914417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/17/2022] Open
Abstract
Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.
Collapse
|
6
|
Fox CB, Kramer RM, Barnes V L, Dowling QM, Vedvick TS. Working together: interactions between vaccine antigens and adjuvants. THERAPEUTIC ADVANCES IN VACCINES 2014; 1:7-20. [PMID: 24757512 DOI: 10.1177/2051013613480144] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of vaccines containing adjuvants has the potential to enhance antibody and cellular immune responses, broaden protective immunity against heterogeneous pathogen strains, enable antigen dose sparing, and facilitate efficacy in immunocompromised populations. Nevertheless, the structural interplay between antigen and adjuvant components is often not taken into account in the published literature. Interactions between antigen and adjuvant formulations should be well characterized to enable optimum vaccine stability and efficacy. This review focuses on the importance of characterizing antigen-adjuvant interactions by summarizing findings involving widely used adjuvant formulation platforms, such as aluminum salts, emulsions, lipid vesicles, and polymer-based particles. Emphasis is placed on the physicochemical basis of antigen-adjuvant associations and the appropriate analytical tools for their characterization, as well as discussing the effects of these interactions on vaccine potency.
Collapse
|
7
|
Shim JU, Ranasinghe RT, Smith CA, Ibrahim SM, Hollfelder F, Huck WTS, Klenerman D, Abell C. Ultrarapid generation of femtoliter microfluidic droplets for single-molecule-counting immunoassays. ACS NANO 2013; 7:5955-64. [PMID: 23805985 DOI: 10.1021/nn401661d] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report a microfluidic droplet-based approach enabling the measurement of chemical reactions of individual enzyme molecules and its application to a single-molecule-counting immunoassay. A microfluidic device is used to generate and manipulate <10 fL droplets at rates of up to 1.3 × 10(6) per second, about 2 orders of magnitude faster than has previously been reported. The femtodroplets produced with this device can be used to encapsulate single biomolecular complexes tagged with a reporter enzyme; their small volume enables the fluorescent product of a single enzyme molecule to be detected within 10 min of on-chip incubation. Our prototype system is validated by detection of a biomarker for prostate cancer in buffer, down to a concentration of 46 fM. This work demonstrates a highly flexible and sensitive diagnostic platform that exploits extremely high-speed generation of monodisperse femtoliter droplets for the counting of individual analyte molecules.
Collapse
Affiliation(s)
- Jung-uk Shim
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK, CB2 1EW.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Tu R, Martinez R, Prodanovic R, Klein M, Schwaneberg U. A Flow Cytometry–Based Screening System for Directed Evolution of Proteases. ACTA ACUST UNITED AC 2011; 16:285-94. [DOI: 10.1177/1087057110396361] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Proteases are industrially important enzymes but often have to be improved for their catalytic efficiency and stabilities to suit applications. Flow cytometry screening technology based on in vitro compartmentalization in double emulsion had been developed and applied on directed evolution of paraoxonase and β-galactosidase. Further advancements of flow cytometry–based screening technologies will enable an ultra-high throughput of variants offering novel opportunities in directed enzyme evolution under high mutational loads. For the industrially important enzyme class of proteases, a first flow cytometry–based screening system for directed protease evolution has been developed based on an extracellular protease-deficient Bacillus subtilis strain (WB800N), a model protease (subtilisin Carlsberg), and a water-in-oil-in-water double-emulsion technology. B. subtilis WB800N cells are encapsulated in double emulsion with a fluorogenic substrate (rhodamine 110–containing peptide), allowing the screening of protease variants in femtoliter compartments at high throughput. The protease screening technology was validated by employing an epPCR mutant library with a high mutational load and screened for increased resistance toward the inhibitor antipain dihydrochloride. A variant (K127R, T237P, M239I, I269V, Y310F, I372V) with an improved relative resistance was isolated from a small population of active variants, validating the reported protease flow cytometry screening technology for increased inhibitor resistance.
Collapse
Affiliation(s)
- Ran Tu
- School of Engineering and Science, Jacobs University Bremen (JUB), Bremen, Germany
| | - Ronny Martinez
- School of Engineering and Science, Jacobs University Bremen (JUB), Bremen, Germany
| | | | - Mathias Klein
- School of Engineering and Science, Jacobs University Bremen (JUB), Bremen, Germany
| | - Ulrich Schwaneberg
- School of Engineering and Science, Jacobs University Bremen (JUB), Bremen, Germany
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Abstract
Two 25 base-pair cDNA strands are encapsulated within an optically trapped nanodroplet, and we observe the kinetics of their hybridization in dynamic equilibrium via single-molecule fluorescence resonance energy transfer (FRET) as a function of temperature and of the solution's NaCl concentration. We have observed the duplex unfolding and refolding, and we have observed quasistable partially unfolded states under low salinity conditions. Furthermore, our measurements reveal that, even in conditions under which the duplex is stable, it undergoes conformational fluctuations in solution.
Collapse
Affiliation(s)
- S Hicks
- Department of Physics and Optical Science, University of North Carolina Charlotte, Charlotte, North Carolina, USA
| | | | | |
Collapse
|
10
|
Yengo CM, Berger CL. Fluorescence anisotropy and resonance energy transfer: powerful tools for measuring real time protein dynamics in a physiological environment. Curr Opin Pharmacol 2010; 10:731-7. [PMID: 20971683 DOI: 10.1016/j.coph.2010.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 01/14/2023]
Abstract
Fluorescence spectroscopy/microscopy is a versatile method for examining protein dynamics in vitro and in vivo that can be combined with other techniques to simultaneously examine complementary pharmacological parameters. The following review will highlight the advantages and challenges of using fluorescence spectroscopic methods for examining protein dynamics with a special emphasis on fluorescence resonance energy transfer and fluorescence anisotropy. Both of these methods are amenable to measurements on an ensemble of molecules as well as at the single molecule level, in live cells and in high throughput screening assays, providing a powerful set of tools to aid in the design and testing of new drugs under a variety of experimental conditions.
Collapse
Affiliation(s)
- Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| | | |
Collapse
|
11
|
Affiliation(s)
- Hans H Gorris
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany.
| | | |
Collapse
|
12
|
|
13
|
|
14
|
Claessen VI, Engelkamp H, Christianen PCM, Maan JC, Nolte RJM, Blank K, Rowan AE. Single-biomolecule kinetics: the art of studying a single enzyme. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:319-340. [PMID: 20636045 DOI: 10.1146/annurev.anchem.111808.073638] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The potential of single-enzyme studies to unravel the complex energy landscape of these polymeric catalysts is the next critical step in enzymology. From its inception in Rotman's emulsion experiments in the 1960s, the field of single-molecule enzymology has now advanced into the time-resolved age. Technological advances have enabled individual enzymatic turnover reactions to be observed with a millisecond time resolution. A number of initial studies have revealed the underlying static and dynamic disorder in the catalytic rates originating from conformational fluctuations. Although these experiments are still in their infancy, they may be able to relate the topography of the energy landscape to the biological function and regulation of enzymes. This review summarizes some of the experimental techniques and data-analysis methods that have been used to study individual enzyme molecules in search of a deeper understanding of their kinetics.
Collapse
Affiliation(s)
- Victor I Claessen
- Department of Molecular Materials, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Tang J, Jofre AM, Kishore RB, Reiner JE, Greene ME, Lowman GM, Denker JS, Willis CCC, Helmerson K, Goldner LS. Generation and mixing of subfemtoliter aqueous droplets on demand. Anal Chem 2009; 81:8041-7. [PMID: 19711965 DOI: 10.1021/ac9014319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a novel method of generating monodisperse subfemtoliter aqueous droplets on demand by means of piezoelectric injection. Droplets with volumes down to 200 aL are generated by this technique. The droplets are injected into a low refractive index perfluorocarbon so that they can be optically trapped. We demonstrate the use of optical tweezers to manipulate and mix droplets. For example, using optical tweezers we bring two droplets, one containing a calcium sensitive dye and the other calcium chloride, into contact. The droplets coalesce with a resulting reaction time of about 1 ms. The monodispersity, manipulability, repeatability, small size, and fast mixing afforded by this system offer many opportunities for nanochemistry and observation of chemical reactions on a molecule-by-molecule basis.
Collapse
Affiliation(s)
- Jianyong Tang
- Physics Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gorris HH, Walt DR. Mechanistic aspects of horseradish peroxidase elucidated through single-molecule studies. J Am Chem Soc 2009; 131:6277-82. [PMID: 19338338 DOI: 10.1021/ja9008858] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many individual horseradish peroxidase (HRP) molecules were isolated and observed simultaneously by fluorescence microscopy in an array of 50 000 femtoliter chambers chemically etched into the surface of a glass optical fiber bundle. The substrate turnovers of hundreds of individual HRP molecules were readily analyzed, and the large number of molecules observed provided excellent statistics. In contrast to other enzymes used for single-molecule studies, the rates of product formation in the femtoliter array were, on average, 10 times lower than in bulk solution. We attribute this phenomenon to the particular redox-reaction mechanism of HRP that involves two separate steps of product formation. HRP first oxidizes fluorogenic substrate molecules like Amplex Red to radical intermediates. Two radical molecules subsequently undergo an enzyme-independent dismutation reaction, the rate of which is decreased when confined to a femtoliter chamber resulting in less product. This two-step reaction mechanism of the widely used Amplex Red, as well as other fluorogenic substrates, is often overlooked. The mechanism not only affects single-molecule studies with HRP but also bulk reactions at low substrate turnover rates.
Collapse
Affiliation(s)
- Hans H Gorris
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
17
|
Chen AY, Jani AS, Zheng L, Burke PJ, Brody JP. Microfabricated arrays of cylindrical wells facilitate single-molecule enzymology of α-chymotrypsin. Biotechnol Prog 2009; 25:929-37. [DOI: 10.1002/btpr.283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Blank K, De Cremer G, Hofkens J. Fluorescence-based analysis of enzymes at the single-molecule level. Biotechnol J 2009; 4:465-79. [DOI: 10.1002/biot.200800262] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Exploration of the activation pathway of Δα-Chymotrypsin with molecular dynamics simulations and correlation with kinetic experiments. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:13-23. [DOI: 10.1007/s00249-008-0348-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/25/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
|
20
|
Bayley H, Luchian T, Shin SH, Steffensen MB. Single-Molecule Covalent Chemistry in a Protein Nanoreactor. SINGLE MOLECULES AND NANOTECHNOLOGY 2008. [DOI: 10.1007/978-3-540-73924-1_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Abstract
By far the largest proportion of the Earth's biosphere is comprised of organisms that thrive in cold environments (psychrophiles). Their ability to proliferate in the cold is predicated on a capacity to synthesize cold-adapted enzymes. These enzymes have evolved a range of structural features that confer a high level of flexibility compared to thermostable homologs. High flexibility, particularly around the active site, is translated into low-activation enthalpy, low-substrate affinity, and high specific activity at low temperatures. High flexibility is also accompanied by a trade-off in stability, resulting in heat lability and, in the few cases studied, cold lability. This review addresses the structure, function, and stability of cold-adapted enzymes, highlighting the challenges for immediate and future consideration. Because of the unique properties of cold-adapted enzymes, they are not only an important focus in extremophile biology, but also represent a valuable model for fundamental research into protein folding and catalysis.
Collapse
Affiliation(s)
- Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | |
Collapse
|
22
|
Földes-Papp Z. What it means to measure a single molecule in a solution by fluorescence fluctuation spectroscopy. Exp Mol Pathol 2006; 80:209-18. [PMID: 16515783 DOI: 10.1016/j.yexmp.2006.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 01/05/2006] [Indexed: 11/28/2022]
Abstract
Traditional methodologies in micro- and nanofluidics measure biological mechanisms as an average of a population of molecules as only their combined effect can be detected. Fluorescence fluctuation spectroscopy methods such as fluorescence correlation spectroscopy (FCS) and two-color fluorescence cross-correlation spectroscopy (FCCS) are used as alternative experimental approaches in ultrasensitive analytics at the single-molecule level. However, what is the measurement time in which one is able to study just one single molecule in solution without immobilizing it? Existing theories are inadequate since they do not predict the meaningful time as a function of the concentration of other molecules of the same kind in bulk solution. This situation produces considerable concern, and experimental hypotheses differ according to which single-molecule detection methods are thought to have greater validity. This subject is clearly at the forefront of research and should be of great interest to experimental medical scientists. As will be seen in this article, it is worthwhile to obtain a correct form of the meaningful-time relationship through theoretical means. The new ideas are comprehensively presented, and this relationship is a new concept at this time. The meaningful time for studying just one molecule without immobilization specifies the time parameter in the selfsame molecule likelihood estimator. Possible users for this concept are those working in biotechnological applications dealing with gene technology. Furthermore, the concept is of interest for a great number of medical, pharmaceutical and chemical laboratories. It may serve as a foundation for further work in single-cell biology. It is suspected that heterogeneities play a much larger role inside the cell than in free solution--a perfect opportunity for single-molecule studies and, thus, a novel hypothesis regarding structure and dynamics of cellular networks is first presented for the minimal neurotrophin network model.
Collapse
Affiliation(s)
- Zeno Földes-Papp
- Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria.
| |
Collapse
|
23
|
Tan YC, Lee AP. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system. LAB ON A CHIP 2005; 5:1178-83. [PMID: 16175277 DOI: 10.1039/b504497a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Emulsions are widely used to produce sol-gel, drugs, synthetic materials, and food products. Recent advancements in microfluidic droplet emulsion technology has enabled the precise sampling and processing of small volumes of fluids (picoliter to femtoliter) by the controlled viscous shearing in microchannels. However the generation of monodispersed droplets smaller than 1 microm without surfactants has been difficult to achieve. Normally, the generation of satellite droplets along with parent droplets is undesirable and makes it difficult to control volume and purity of samples in droplets. In this paper, however, several methods are presented to passively filter out satellite droplets from the generation of parent droplets and use these satellite droplets as the source for monodispersed production of submicron emulsions. A passive satellite droplet filtration system and a dynamic satellite droplet separation system are demonstrated. Satellite droplets are filtered from parent droplets with a two-layer channel geometry. This design allows the creation and collection of droplets that are less than 100 nm in diameter. In the dynamic separation system, satellite droplets of defined sizes can be selectively separated into different collecting zones. The separation of the satellite droplets into different collecting zones correlates with the cross channel position of the satellite droplets during the breakup of the liquid thread. The delay time for droplets to switch between the different alternating collecting zones is nominally 1 min and is proportional to the ratio of the oil shear flows. With our droplet generation system, monodispersed satellite droplets with an average radius of 2.23 +/- 0.11 microm, and bidispersed secondary and tertiary satellite droplets with radii of 1.55 +/- 0.07 microm and 372 +/- 46 nm respectively, have been dynamically separated and collected.
Collapse
Affiliation(s)
- Yung-Chieh Tan
- Department of Biomedical Engineering, 204 Rockwell Engineering Center, Irvine, CA 92697, USA
| | | |
Collapse
|