1
|
Leighton MP, Sivak DA. Flow of Energy and Information in Molecular Machines. Annu Rev Phys Chem 2025; 76:379-403. [PMID: 39952638 DOI: 10.1146/annurev-physchem-082423-030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Molecular machines transduce free energy between different forms throughout all living organisms. Unlike their macroscopic counterparts, molecular machines are characterized by stochastic fluctuations, overdamped dynamics, and soft components, and operate far from thermodynamic equilibrium. In addition, information is a relevant free energy resource for molecular machines, leading to new modes of operation for nanoscale engines. Toward the objective of engineering synthetic nanomachines, an important goal is to understand how molecular machines transduce free energy to perform their functions in biological systems. In this review, we discuss the nonequilibrium thermodynamics of free energy transduction within molecular machines, with a focus on quantifying energy and information flows between their components. We review results from theory, modeling, and inference from experiments that shed light on the internal thermodynamics of molecular machines, and ultimately explore what we can learn from considering these interactions.
Collapse
Affiliation(s)
- Matthew P Leighton
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada;
- Current affiliation: Department of Physics and Quantitative Biology Institute, Yale University, New Haven, Connecticut, USA;
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada;
| |
Collapse
|
2
|
Suiter N, Volkán-Kacsó S. Angle-dependent rotation velocity consistent with ADP release in bacterial F 1-ATPase. Front Mol Biosci 2023; 10:1184249. [PMID: 37602322 PMCID: PMC10433373 DOI: 10.3389/fmolb.2023.1184249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
A model-based method is used to extract a short-lived state in the rotation kinetics of the F1-ATPase of a bacterial species, Paracoccus denitrificans (PdF1). Imaged as a single molecule, PdF1 takes large 120ø steps during it rotation. The apparent lack of further substeps in the trajectories not only renders the rotation of PdF1 unlike that of other F-ATPases, but also hinders the establishment of its mechano-chemical kinetic scheme. We addressed these challenges using the angular velocity extracted from the single-molecule trajectories and compare it with its theoretically calculated counterpart. The theory-experiment comparison indicate the presence of a 20μs lifetime state, 40o after ATP binding. We identify a kinetic cycle in which this state is a three-nucleotide occupancy state prior to ADP release from another site. A similar state was also reported in our earlier study of the Thermophilic bacillus F1-ATPase (lifetime ∼ 10 μ s), suggesting thereby a common mechanism for removing a nucleotide release bottleneck in the rotary mechanism.
Collapse
Affiliation(s)
- Nathan Suiter
- Department of Mathematics, Physics and Statistics, Azusa Pacific University, Azusa, CA, United States
- Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, United States
| | - Sándor Volkán-Kacsó
- Department of Mathematics, Physics and Statistics, Azusa Pacific University, Azusa, CA, United States
- Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
3
|
Exact Time-Dependent Solutions and Information Geometry of a Rocking Ratchet. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The noise-induced transport due to spatial symmetry-breaking is a key mechanism for the generation of a uni-directional motion by a Brownian motor. By utilising an asymmetric sawtooth periodic potential and three different types of periodic forcing G(t) (sinusoidal, square and sawtooth waves) with period T and amplitude A, we investigate the performance (energetics, mean current, Stokes efficiency) of a rocking ratchet in light of thermodynamic quantities (entropy production) and the path-dependent information geometric measures. For each G(t), we calculate exact time-dependent probability density functions under different conditions by varying T, A and the strength of the stochastic noise D in an unprecedentedly wide range. Overall similar behaviours are found for different cases of G(t). In particular, in all cases, the current, Stokes efficiency and the information rate normalised by A and D exhibit one or multiple local maxima and minima as A increases. However, the dependence of the current and Stokes efficiency on A can be quite different, while the behaviour of the information rate normalised by A and D tends to resemble that of the Stokes efficiency. In comparison, the irreversibility measured by a normalised entropy production is independent of A. The results indicate the utility of the information geometry as a proxy of a motor efficiency.
Collapse
|
4
|
Guironnet D, Peters B. Tandem Catalysts for Polyethylene Upcycling: A Simple Kinetic Model. J Phys Chem A 2020; 124:3935-3942. [DOI: 10.1021/acs.jpca.0c01363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Damien Guironnet
- Chemical and Biomolecular Engineering, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Chemistry and Biochemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Cruz B, Zhu Z, Calderer C, Arsuaga J, Vazquez M. Quantitative Study of the Chiral Organization of the Phage Genome Induced by the Packaging Motor. Biophys J 2020; 118:2103-2116. [PMID: 32353255 PMCID: PMC7203069 DOI: 10.1016/j.bpj.2020.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/04/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Molecular motors that translocate DNA are ubiquitous in nature. During morphogenesis of double-stranded DNA bacteriophages, a molecular motor drives the viral genome inside a protein capsid. Several models have been proposed for the three-dimensional geometry of the packaged genome, but very little is known of the signature of the molecular packaging motor. For instance, biophysical experiments show that in some systems, DNA rotates during the packaging reaction, but most current biophysical models fail to incorporate this property. Furthermore, studies including rotation mechanisms have reached contradictory conclusions. In this study, we compare the geometrical signatures imposed by different possible mechanisms for the packaging motors: rotation, revolution, and rotation with revolution. We used a previously proposed kinetic Monte Carlo model of the motor, combined with Brownian dynamics simulations of DNA to simulate deterministic and stochastic motor models. We find that rotation is necessary for the accumulation of DNA writhe and for the chiral organization of the genome. We observe that although in the initial steps of the packaging reaction, the torsional strain of the genome is released by rotation of the molecule, in the later stages, it is released by the accumulation of writhe. We suggest that the molecular motor plays a key role in determining the final structure of the encapsidated genome in bacteriophages.
Collapse
Affiliation(s)
- Brian Cruz
- Department of Mathematics, University of California, Berkeley, California
| | - Zihao Zhu
- Department of Microbiology and Molecular Genetics, University of California at Davis, Davis, California
| | - Carme Calderer
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Javier Arsuaga
- Department of Mathematics, University of California at Davis, Davis, California; Department of Molecular and Cellular Biology, University of California at Davis, Davis, California.
| | - Mariel Vazquez
- Department of Microbiology and Molecular Genetics, University of California at Davis, Davis, California; Department of Mathematics, University of California at Davis, Davis, California.
| |
Collapse
|
6
|
Lorenzo AM, De La Cruz EM, Koslover EF. Thermal fracture kinetics of heterogeneous semiflexible polymers. SOFT MATTER 2020; 16:2017-2024. [PMID: 31996875 PMCID: PMC7047574 DOI: 10.1039/c9sm01637f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The fracture and severing of polymer chains plays a critical role in the failure of fibrous materials and the regulated turnover of intracellular filaments. Using continuum wormlike chain models, we investigate the fracture of semiflexible polymers via thermal bending fluctuations, focusing on the role of filament flexibility and dynamics. Our results highlight a previously unappreciated consequence of mechanical heterogeneity in the filament, which enhances the rate of thermal fragmentation particularly in cases where constraints hinder the movement of the chain ends. Although generally applicable to semiflexible chains with regions of different bending stiffness, the model is motivated by a specific biophysical system: the enhanced severing of actin filaments at the boundary between stiff bare regions and mechanically softened regions that are coated with cofilin regulatory proteins. The results presented here point to a potential mechanism for disassembly of polymeric materials in general and cytoskeletal actin networks in particular by the introduction of locally softened chain regions, as occurs with cofilin binding.
Collapse
Affiliation(s)
- Alexander M Lorenzo
- Department of Physics, University of California San Diego, San Diego, California 92093, USA.
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Elena F Koslover
- Department of Physics, University of California San Diego, San Diego, California 92093, USA.
| |
Collapse
|
7
|
Challis KJ. Tight-binding derivation of a discrete-continuous description of mechanochemical coupling in a molecular motor. Phys Rev E 2018; 97:062158. [PMID: 30011495 DOI: 10.1103/physreve.97.062158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 06/08/2023]
Abstract
We present a tight-binding derivation of a discrete-continuous description of mechanochemical coupling in a molecular motor. Our derivation is based on the continuous diffusion equation for overdamped Brownian motion on a time-independent tilted periodic potential in two dimensions. The free-energy potential is nonseparable to allow coupling between the chemical and mechanical degrees of freedom. We formally discretize the chemical coordinate by expanding in Wannier states that are localized along the chemical coordinate and parametrized along the mechanical coordinate. A discrete-continuous equation is derived that is valid for anisotropic systems with weak mechanochemical coupling and deep potential wells along the chemical coordinate. The discrete-continuous description is consistent with established theoretical models of molecular motors with discrete chemical states but is constrained by the underlying continuous two-dimensional potential. In particular, we derive analytic expressions for the effective potential along the mechanical coordinate and for the rate of thermal hopping between chemical states. We determine the thermodynamic efficiency of energy conversion and find that, for a molecular motor with one chemical state per cycle, the derived discrete-continuous equation can accurately describe mechanochemical coupling but cannot describe energy conversion.
Collapse
Affiliation(s)
- K J Challis
- Scion, 49 Sala Street, Rotorua 3010, New Zealand
| |
Collapse
|
8
|
Brown AI, Sivak DA. Allocating and Splitting Free Energy to Maximize Molecular Machine Flux. J Phys Chem B 2018; 122:1387-1393. [PMID: 29290114 DOI: 10.1021/acs.jpcb.7b10621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomolecular machines transduce between different forms of energy. These machines make directed progress and increase their speed by consuming free energy, typically in the form of nonequilibrium chemical concentrations. Machine dynamics are often modeled by transitions between a set of discrete metastable conformational states. In general, the free-energy change associated with each transition can increase the forward rate constant, decrease the reverse rate constant, or both. In contrast to previous optimizations, we find that in general flux is maximized neither by devoting all free-energy changes to increasing forward rate constants nor by solely decreasing reverse rate constants. Instead, the optimal free-energy splitting depends on the detailed dynamics. Extending our analysis to machines with vulnerable states (from which they can break down), in the strong driving corresponding to in vivo cellular conditions, processivity is maximized by reducing the occupation of the vulnerable state.
Collapse
Affiliation(s)
- Aidan I Brown
- Department of Physics, Simon Fraser University , Burnaby, British Columbia V5A1S6, Canada
| | - David A Sivak
- Department of Physics, Simon Fraser University , Burnaby, British Columbia V5A1S6, Canada
| |
Collapse
|
9
|
Theory of long binding events in single-molecule-controlled rotation experiments on F 1-ATPase. Proc Natl Acad Sci U S A 2017; 114:7272-7277. [PMID: 28652332 DOI: 10.1073/pnas.1705960114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The theory of elastic group transfer for the binding and release rate constants for nucleotides in F1-ATPase as a function of the rotor angle is further extended in several respects. (i) A method is described for predicting the experimentally observed lifetime distribution of long binding events in the controlled rotation experiments by taking into account the hydrolysis and synthesis reactions occurring during these events. (ii) A method is also given for treating the long binding events in the experiments and obtaining the rate constants for the hydrolysis and synthesis reactions occurring during these events. (iii) The theory in the previous paper is given in a symmetric form, an extension that simplifies the application of the theory to experiments. It also includes a theory-based correction of the reported "on" and "off" rates by calculating the missed events. A near symmetry of the data about the angle of -40° and a "turnover" in the binding rate data vs. rotor angle for angles greater than [Formula: see text]40° is also discussed.
Collapse
|
10
|
Nguyen PTT, Challis KJ, Jack MW. Local discretization method for overdamped Brownian motion on a potential with multiple deep wells. Phys Rev E 2016; 94:052127. [PMID: 27967196 DOI: 10.1103/physreve.94.052127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Indexed: 12/24/2022]
Abstract
We present a general method for transforming the continuous diffusion equation describing overdamped Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The method is based on an expansion in localized basis states of local metastable potentials that match the full potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells that are deep compared to five times the thermal energy can be associated with a discrete localized state while shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.
Collapse
Affiliation(s)
- P T T Nguyen
- Scion, Private Bag 3020, Rotorua 3046, New Zealand and Department of Physics, University of Otago, P. O. Box 56, Dunedin 9054, New Zealand
| | - K J Challis
- Scion, Private Bag 3020, Rotorua 3046, New Zealand
| | - M W Jack
- Department of Physics, University of Otago, P. O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
11
|
Bhaban S, Materassi D, Li M, Hays T, Salapaka M. Interrogating Emergent Transport Properties for Molecular Motor Ensembles: A Semi-analytical Approach. PLoS Comput Biol 2016; 12:e1005152. [PMID: 27812098 PMCID: PMC5094777 DOI: 10.1371/journal.pcbi.1005152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/17/2016] [Indexed: 11/18/2022] Open
Abstract
Intracellular transport is an essential function in eucaryotic cells, facilitated by motor proteins—proteins converting chemical energy into kinetic energy. It is understood that motor proteins work in teams enabling unidirectional and bidirectional transport of intracellular cargo over long distances. Disruptions of the underlying transport mechanisms, often caused by mutations that alter single motor characteristics, are known to cause neurodegenerative diseases. For example, phosphorylation of kinesin motor domain at the serine residue is implicated in Huntington’s disease, with a recent study of phosphorylated and phosphomimetic serine residues indicating lowered single motor stalling forces. In this article we report the effects of mutations of this nature on transport properties of cargo carried by multiple wild-type and mutant motors. Results indicate that mutants with altered stall forces might determine the average velocity and run-length even when they are outnumbered by wild type motors in the ensemble. It is shown that mutants gain a competitive advantage and lead to an increase in the expected run-length when the load on the cargo is in the vicinity of the mutant’s stalling force or a multiple of its stalling force. A separate contribution of this article is the development of a semi-analytic method to analyze transport of cargo by multiple motors of multiple types. The technique determines transition rates between various relative configurations of motors carrying the cargo using the transition rates between various absolute configurations. This enables a computation of biologically relevant quantities like average velocity and run-length without resorting to Monte Carlo simulations. It can also be used to introduce alterations of various single motor parameters to model a mutation and to deduce effects of such alterations on the transport of a common cargo by multiple motors. Our method is easily implementable and we provide a software package for general use. Molecular motors such as kinesin and dynein facilitate directed transport of intracellular cargo over tracks called microtubules. Inside cells, multiple motor proteins are known to bind and move cargoes. These teams of motors enable the transport of cargoes over longer distances, extending beyond the processive runlengths of a single motor. Impaired transport, possibly due to mutations that affect single motor parameters, is known to cause neurodegenerative diseases. A recent study reported that phosphorylation of a kinesin motor implicated in Huntington’s disease, leads to a reduction in the single motor stalling force. In this work, we investigate how heterogeneity in motor stall forces can affect the coordinated transport properties of multi-motor ensembles. Our model predicts that motors with reduced stall force, even when in the minority, can determine emergent transport properties of average velocity and run-length. Under appropriate external loads, our analysis predicts that motor ensembles containing mutant motors travel longer distances, potentially contributing to the dysregulation of coordinated cargo transport, impairment of neuronal function and the onset of neurodegeneration. These results are enabled by development of a novel semi-analytic methodology to study cargo transport by multiple motors with distinct transport properties. This method is computationally less extensive than existing Monte-Carlo based approaches, easy to implement, and holds potential for understanding how individual motor proteins and properties contribute to the coordination of transport by motor ensembles.
Collapse
Affiliation(s)
- Shreyas Bhaban
- Department of Electrical Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| | - Donatello Materassi
- Department of Electrical Engineering and Computer Science, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
| | - Mingang Li
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| | - Thomas Hays
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| | - Murti Salapaka
- Department of Electrical Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| |
Collapse
|
12
|
Abstract
In this paper we introduce the concepts of instantaneous reversibility and instantaneous entropy production rate for inhomogeneous Markov chains with denumerable state spaces. The following statements are proved to be equivalent: the inhomogeneous Markov chain is instantaneously reversible; it is in detailed balance; its entropy production rate vanishes. In particular, for a time-periodic birth-death chain, which can be regarded as a simple version of a physical model (Brownian motors), we prove that its rotation number is 0 when it is instantaneously reversible or periodically reversible. Hence, in our model of Markov chains, the directed transport phenomenon of Brownian motors can occur only in nonequilibrium and irreversible systems.
Collapse
|
13
|
Abstract
In this paper we introduce the concepts of instantaneous reversibility and instantaneous entropy production rate for inhomogeneous Markov chains with denumerable state spaces. The following statements are proved to be equivalent: the inhomogeneous Markov chain is instantaneously reversible; it is in detailed balance; its entropy production rate vanishes. In particular, for a time-periodic birth-death chain, which can be regarded as a simple version of a physical model (Brownian motors), we prove that its rotation number is 0 when it is instantaneously reversible or periodically reversible. Hence, in our model of Markov chains, the directed transport phenomenon of Brownian motors can occur only in nonequilibrium and irreversible systems.
Collapse
|
14
|
Nguyen PTT, Challis KJ, Jack MW. Tight-binding approach to overdamped Brownian motion on a bichromatic periodic potential. Phys Rev E 2016; 93:022124. [PMID: 26986305 DOI: 10.1103/physreve.93.022124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 11/07/2022]
Abstract
We present a theoretical treatment of overdamped Brownian motion on a time-independent bichromatic periodic potential with spatially fast- and slow-changing components. In our approach, we generalize the Wannier basis commonly used in the analysis of periodic systems to define a basis of S states that are localized at local minima of the potential. We demonstrate that the S states are orthonormal and complete on the length scale of the periodicity of the fast-changing potential, and we use the S-state basis to transform the continuous Smoluchowski equation for the system to a discrete master equation describing hopping between local minima. We identify the parameter regime where the master equation description is valid and show that the interwell hopping rates are well approximated by Kramers' escape rate in the limit of deep potential minima. Finally, we use the master equation to explore the system dynamics and determine the drift and diffusion for the system.
Collapse
Affiliation(s)
- P T T Nguyen
- Scion, Private Bag 3020, Rotorua 3046, New Zealand and Department of Physics, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - K J Challis
- Scion, Private Bag 3020, Rotorua 3046, New Zealand
| | - M W Jack
- Department of Physics, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
15
|
Abstract
The F1F0-ATP synthase (EC 3.6.1.34) is a remarkable enzyme that functions as a rotary motor. It is found in the inner membranes of Escherichia coli and is responsible for the synthesis of ATP in response to an electrochemical proton gradient. Under some conditions, the enzyme functions reversibly and uses the energy of ATP hydrolysis to generate the gradient. The ATP synthase is composed of eight different polypeptide subunits in a stoichiometry of α3β3γδεab2c10. Traditionally they were divided into two physically separable units: an F1 that catalyzes ATP hydrolysis (α3β3γδε) and a membrane-bound F0 sector that transports protons (ab2c10). In terms of rotary function, the subunits can be divided into rotor subunits (γεc10) and stator subunits (α3β3δab2). The stator subunits include six nucleotide binding sites, three catalytic and three noncatalytic, formed primarily by the β and α subunits, respectively. The stator also includes a peripheral stalk composed of δ and b subunits, and part of the proton channel in subunit a. Among the rotor subunits, the c subunits form a ring in the membrane, and interact with subunit a to form the proton channel. Subunits γ and ε bind to the c-ring subunits, and also communicate with the catalytic sites through interactions with α and β subunits. The eight subunits are expressed from a single operon, and posttranscriptional processing and translational regulation ensure that the polypeptides are made at the proper stoichiometry. Recent studies, including those of other species, have elucidated many structural and rotary properties of this enzyme.
Collapse
|
16
|
Multiscale Modeling of Skeletal Muscle Active Contraction in Relation to Mechanochemical Coupling of Molecular Motors. MICROMACHINES 2015. [DOI: 10.3390/mi6070902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Gernert R, Emary C, Klapp SHL. Waiting time distribution for continuous stochastic systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062115. [PMID: 25615052 DOI: 10.1103/physreve.90.062115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Indexed: 06/04/2023]
Abstract
The waiting time distribution (WTD) is a common tool for analyzing discrete stochastic processes in classical and quantum systems. However, there are many physical examples where the dynamics is continuous and only approximately discrete, or where it is favourable to discuss the dynamics on a discretized and a continuous level in parallel. An example is the hindered motion of particles through potential landscapes with barriers. In the present paper we propose a consistent generalization of the WTD from the discrete case to situations where the particles perform continuous barrier crossing characterized by a finite duration. To this end, we introduce a recipe to calculate the WTD from the Fokker-Planck (Smoluchowski) equation. In contrast to the closely related first passage time distribution (FPTD), which is frequently used to describe continuous processes, the WTD contains information about the direction of motion. As an application, we consider the paradigmatic example of an overdamped particle diffusing through a washboard potential. To verify the approach and to elucidate its numerical implications, we compare the WTD defined via the Smoluchowski equation with data from direct simulation of the underlying Langevin equation and find full consistency provided that the jumps in the Langevin approach are defined properly. Moreover, for sufficiently large energy barriers, the WTD defined via the Smoluchowski equation becomes consistent with that resulting from the analytical solution of a (two-state) master equation model for the short-time dynamics developed previously by us [Phys. Rev. E 86, 061135 (2012)]. Thus, our approach "interpolates" between these two types of stochastic motion. We illustrate our approach for both symmetric systems and systems under constant force.
Collapse
Affiliation(s)
- Robert Gernert
- Institut für Theoretische Physik, Sekr. EW 7-1, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
| | - Clive Emary
- Department of Physics and Mathematics, University of Hull, Kingston-upon-Hull, HU6 7RX, United Kingdom
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Sekr. EW 7-1, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
| |
Collapse
|
18
|
Zulkowski PR, DeWeese MR. Optimal finite-time erasure of a classical bit. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052140. [PMID: 25353772 DOI: 10.1103/physreve.89.052140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Indexed: 05/25/2023]
Abstract
Information erasure inevitably leads to the generation of heat. Minimizing this dissipation will be crucial for developing small-scale information processing systems, but little is known about the optimal procedures required. We have obtained closed-form expressions for maximally efficient erasure cycles for deletion of a classical bit of information stored by the position of a particle diffusing in a double-well potential. We find that the extra heat generated beyond the Landauer bound is proportional to the square of the Hellinger distance between the initial and final states divided by the cycle duration, which quantifies how far out of equilibrium the system is driven. Finally, we demonstrate close agreement between the exact optimal cycle and the protocol found using a linear response framework.
Collapse
Affiliation(s)
- Patrick R Zulkowski
- Department of Physics, University of California, Berkeley, California 94720, USA and Redwood Center for Theoretical Neuroscience, University of California, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, California 94720, USA; Redwood Center for Theoretical Neuroscience, University of California, Berkeley, California 94720, USA; and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
19
|
Haas KR, Yang H, Chu JW. Fisher information metric for the Langevin equation and least informative models of continuous stochastic dynamics. J Chem Phys 2014; 139:121931. [PMID: 24089743 DOI: 10.1063/1.4820491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The evaluation of the Fisher information matrix for the probability density of trajectories generated by the over-damped Langevin dynamics at equilibrium is presented. The framework we developed is general and applicable to any arbitrary potential of mean force where the parameter set is now the full space dependent function. Leveraging an innovative Hermitian form of the corresponding Fokker-Planck equation allows for an eigenbasis decomposition of the time propagation probability density. This formulation motivates the use of the square root of the equilibrium probability density as the basis for evaluating the Fisher information of trajectories with the essential advantage that the Fisher information matrix in the specified parameter space is constant. This outcome greatly eases the calculation of information content in the parameter space via a line integral. In the continuum limit, a simple analytical form can be derived to explicitly reveal the physical origin of the information content in equilibrium trajectories. This methodology also allows deduction of least informative dynamics models from known or available observables that are either dynamical or static in nature. The minimum information optimization of dynamics is performed for a set of different constraints to illustrate the generality of the proposed methodology.
Collapse
Affiliation(s)
- Kevin R Haas
- Department of Chemical and Biomolecular Engineering, University of California-Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
20
|
Challis KJ, Jack MW. Energy transfer in a molecular motor in the Kramers regime. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042114. [PMID: 24229123 DOI: 10.1103/physreve.88.042114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/19/2013] [Indexed: 06/02/2023]
Abstract
We present a theoretical treatment of energy transfer in a molecular motor described in terms of overdamped Brownian motion on a multidimensional tilted periodic potential. The tilt represents a thermodynamic force driving the system out of equilibrium and, for nonseparable potentials, energy transfer occurs between degrees of freedom. For deep potential wells, the continuous theory transforms to a discrete master equation that is tractable analytically. We use this master equation to derive formal expressions for the hopping rates, drift and diffusion, and the efficiency and rate of energy transfer in terms of the thermodynamic force. These results span both strong and weak coupling between degrees of freedom, describe the near and far from equilibrium regimes, and are consistent with generalized detailed balance and the Onsager relations. We thereby derive a number of diverse results for molecular motors within a single theoretical framework.
Collapse
Affiliation(s)
- K J Challis
- Scion, 49 Sala Street, Rotorua 3010, New Zealand
| | | |
Collapse
|
21
|
Challis KJ, Jack MW. Tight-binding approach to overdamped Brownian motion on a multidimensional tilted periodic potential. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052102. [PMID: 23767482 DOI: 10.1103/physreve.87.052102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Indexed: 06/02/2023]
Abstract
We present a theoretical treatment of overdamped Brownian motion on a multidimensional tilted periodic potential that is analogous to the tight-binding model of quantum mechanics. In our approach, we expand the continuous Smoluchowski equation in the localized Wannier states of the periodic potential to derive a discrete master equation. This master equation can be interpreted in terms of hopping within and between Bloch bands, and for weak tilting and long times we show that a single-band description is valid. In the limit of deep potential wells, we derive a simple functional dependence of the hopping rates and the lowest band eigenvalues on the tilt. We also derive formal expressions for the drift and diffusion in terms of the lowest band eigenvalues.
Collapse
Affiliation(s)
- K J Challis
- Scion, 49 Sala Street, Rotorua 3046, New Zealand
| | | |
Collapse
|
22
|
|
23
|
GERRITSMA E, GASPARD P. CHEMOMECHANICAL COUPLING AND STOCHASTIC THERMODYNAMICS OF THE F1-ATPase MOLECULAR MOTOR WITH AN APPLIED EXTERNAL TORQUE. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048010001214] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of external torque on the F 1-ATPase rotary molecular motor are studied from the viewpoint of recent advances in stochastic thermodynamics. This motor is modeled in terms of discrete-state and continuous-state stochastic processes. The dependence of the discrete-state description on external torque and friction is obtained by fitting its transition rates to a continuous-angle model based on Newtonian mechanics with Langevin fluctuating forces and reproducing experimental data on this motor. In this approach, the continuous-angle model is coarse-grained into discrete states separated by both mechanical and chemical transitions. The resulting discrete-state model allows us to identify the regime of tight chemomechanical coupling of the F 1 motor and to infer that its chemical and mechanical efficiencies may reach values close to the thermodynamically allowed maxima near the stalling torque. We also show that, under physiological conditions, the F 1 motor is functioning in a highly-nonlinear-response regime, providing a rotation rate a million times faster than would be possible in the linear-response regime of nonequilibrium thermodynamics. Furthermore, the counting statistics of fluctuations can be obtained in the tight-coupling regime thanks to the discrete-state stochastic process and we demonstrate that the so-called fluctuation theorem provides a useful method for measuring the thermodynamic forces driving the motor out of equilibrium.
Collapse
Affiliation(s)
- E. GERRITSMA
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium
| | - P. GASPARD
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium
| |
Collapse
|
24
|
Kinesins with extended neck linkers: a chemomechanical model for variable-length stepping. Bull Math Biol 2011; 74:1066-97. [PMID: 21997362 DOI: 10.1007/s11538-011-9697-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 09/09/2011] [Indexed: 10/16/2022]
Abstract
We develop a stochastic model for variable-length stepping of kinesins engineered with extended neck linkers. This requires that we consider the separation in microtubule binding sites between the heads of the motor at the beginning of a step. We show that this separation is stationary and can be included in the calculation of standard experimental quantities. We also develop a corresponding matrix computational framework for conducting computer experiments. Our matrix approach is more efficient computationally than large-scale Monte Carlo simulation. This efficiency greatly eases sensitivity analysis, an important feature when there is considerable uncertainty in the physical parameters of the system. We demonstrate the application and effectiveness of our approach by showing that the worm-like chain model for the neck linker can explain recently published experimental data. While we have focused on a particular scenario for kinesins, these methods could also be applied to myosin and other processive motors.
Collapse
|
25
|
A matrix computational approach to kinesin neck linker extension. J Theor Biol 2010; 269:181-94. [PMID: 20951143 DOI: 10.1016/j.jtbi.2010.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 11/24/2022]
Abstract
Kinesin stepping requires both tethered diffusion of the free head and conformational changes driven by the chemical state of the motor. We present a numerical method using matrix representations of approximating Markov chains and renewal theory to compute important experimental quantities for models that include both tethered diffusion and chemical transitions. Explicitly modeling the tethered diffusion allows for exploration of the model under perturbation of the neck linker; comparisons are made between the computed models and in vitro assays.
Collapse
|
26
|
Yu J, Moffitt J, Hetherington CL, Bustamante C, Oster G. Mechanochemistry of a Viral DNA Packaging Motor. J Mol Biol 2010; 400:186-203. [PMID: 20452360 DOI: 10.1016/j.jmb.2010.05.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/30/2010] [Accepted: 05/02/2010] [Indexed: 01/29/2023]
|
27
|
Marcucci L, Truskinovsky L. Mechanics of the power stroke in myosin II. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:051915. [PMID: 20866269 DOI: 10.1103/physreve.81.051915] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Indexed: 05/29/2023]
Abstract
Power stroke in skeletal muscles is a result of a conformational change in the globular portion of the molecular motor myosin II. In this paper we show that the fast tension recovery data reflecting the inner working of the power stroke mechanism can be quantitatively reproduced by a Langevin dynamics of a simple mechanical system with only two structural states. The proposed model is a generalization of the two state model of Huxley and Simmons. The main idea is to replace the rigid bistable device of Huxley and Simmons with an elastic bistable snap spring. In this setting the attached configuration of a cross bridge is represented not only by the discrete energy minima but also by a continuum of intermediate states where the fluctuation induced dynamics of the system takes place. We show that such soft-spin approach explains the load dependence of the power stroke amplitude and removes the well-known contradiction inside the conventional two state model regarding the time scale of the power stroke.
Collapse
Affiliation(s)
- L Marcucci
- LMS, CNRS-UMR 7649, Ecole Polytechnique, 91128 Palaiseau, France
| | | |
Collapse
|
28
|
Alexander FJ, Rosenau P. Quasicontinuum Fokker-Planck equation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:041902. [PMID: 20481748 DOI: 10.1103/physreve.81.041902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 09/10/2009] [Indexed: 05/29/2023]
Abstract
Building on the work [C. R. Doering, P. S. Hagan, and P. Rosenau, Phys. Rev. A 36, 985 (1987)] we present a regularized Fokker-Planck equation for discrete-state systems with more accurate short-time behavior than its standard, Kramers-Moyal counterpart. This regularization leads to a quasicontinuum Fokker-Planck equation with several key features: it preserves crucial aspects of state-space discreteness ordinarily lost in the standard Kramers-Moyal expansion; it is well posed, and it is more amenable to analytical and numerical tools currently available for continuum systems. In order to expose the basic idea underlying the regularization, it suffices for us to focus on two simple problems--the chemical reaction kinetics of a one-component system and a two-dimensional symmetric random walk on a square lattice. We then describe the path to applying this approach to more complex, discrete-state stochastic systems.
Collapse
|
29
|
Romanovsky Y, Tikhonov AN. Molecular energy transducers of the living cell. Proton ATP synthase: a rotating molecular motor. ACTA ACUST UNITED AC 2010. [DOI: 10.3367/ufnr.0180.201009b.0931] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
30
|
|
31
|
Bai F, Lo CJ, Berry RM, Xing J. Model studies of the dynamics of bacterial flagellar motors. Biophys J 2009; 96:3154-67. [PMID: 19383460 DOI: 10.1016/j.bpj.2009.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 01/14/2009] [Accepted: 01/21/2009] [Indexed: 10/20/2022] Open
Abstract
The bacterial flagellar motor is a rotary molecular machine that rotates the helical filaments that propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation, and switching mechanism of the motor. In a previous article, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here, we further analyze that model, showing that 1), the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with latest experiments; 2), with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, as recently observed; and 3), the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwell-time distribution. The predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental procedures for verification.
Collapse
Affiliation(s)
- Fan Bai
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
32
|
Sun SX, Farrell B, Chana MS, Oster G, Brownell WE, Spector AA. Voltage and frequency dependence of prestin-associated charge transfer. J Theor Biol 2009; 260:137-44. [PMID: 19490917 DOI: 10.1016/j.jtbi.2009.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 05/07/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
Membrane protein prestin is a critical component of the motor complex that generates forces and dimensional changes in cells in response to changes in the cell membrane potential. In its native cochlear outer hair cell, prestin is crucial to the amplification and frequency selectivity of the mammalian ear up to frequencies of tens of kHz. Other cells transfected with prestin acquire voltage-dependent properties similar to those of the native cell. The protein performance is critically dependent on chloride ions, and intrinsic protein charges also play a role. We propose an electro-diffusion model to reveal the frequency and voltage dependence of electric charge transfer by prestin. The movement of the combined charge (i.e., anion and protein charges) across the membrane is described with a Fokker-Planck equation coupled to a kinetic equation that describes the binding of chloride ions to prestin. We found a voltage- and frequency-dependent phase shift between the transferred charge and the applied electric field that determines capacitive and resistive components of the transferred charge. The phase shift monotonically decreases from zero to -90 degrees as a function of frequency. The capacitive component as a function of voltage is bell-shaped, and decreases with frequency. The resistive component is bell-shaped for both voltage and frequency. The capacitive and resistive components are similar to experimental measurements of charge transfer at high frequencies. The revealed nature of the transferred charge can help reconcile the high-frequency electrical and mechanical observations associated with prestin, and it is important for further analysis of the structure and function of this protein.
Collapse
Affiliation(s)
- Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
33
|
Min W, Xie XS, Bagchi B. Role of conformational dynamics in kinetics of an enzymatic cycle in a nonequilibrium steady state. J Chem Phys 2009; 131:065104. [PMID: 19691414 DOI: 10.1063/1.3207274] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wei Min
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
34
|
Fulga F, Nicolau DV, Nicolau DV. Models of protein linear molecular motors for dynamic nanodevices. Integr Biol (Camb) 2008; 1:150-69. [PMID: 20023800 DOI: 10.1039/b814985b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein molecular motors are natural nano-machines that convert the chemical energy from the hydrolysis of adenosine triphosphate into mechanical work. These efficient machines are central to many biological processes, including cellular motion, muscle contraction and cell division. The remarkable energetic efficiency of the protein molecular motors coupled with their nano-scale has prompted an increasing number of studies focusing on their integration in hybrid micro- and nanodevices, in particular using linear molecular motors. The translation of these tentative devices into technologically and economically feasible ones requires an engineering, design-orientated approach based on a structured formalism, preferably mathematical. This contribution reviews the present state of the art in the modelling of protein linear molecular motors, as relevant to the future design-orientated development of hybrid dynamic nanodevices.
Collapse
Affiliation(s)
- Florin Fulga
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
35
|
The Goldbeter-Koshland switch in the first-order region and its response to dynamic disorder. PLoS One 2008; 3:e2140. [PMID: 18478088 PMCID: PMC2374878 DOI: 10.1371/journal.pone.0002140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 03/27/2008] [Indexed: 11/19/2022] Open
Abstract
In their classical work (Proc. Natl. Acad. Sci. USA, 1981, 78:6840-6844), Goldbeter and Koshland mathematically analyzed a reversible covalent modification system which is highly sensitive to the concentration of effectors. Its signal-response curve appears sigmoidal, constituting a biochemical switch. However, the switch behavior only emerges in the 'zero-order region', i.e. when the signal molecule concentration is much lower than that of the substrate it modifies. In this work we showed that the switching behavior can also occur under comparable concentrations of signals and substrates, provided that the signal molecules catalyze the modification reaction in cooperation. We also studied the effect of dynamic disorders on the proposed biochemical switch, in which the enzymatic reaction rates, instead of constant, appear as stochastic functions of time. We showed that the system is robust to dynamic disorder at bulk concentration. But if the dynamic disorder is quasi-static, large fluctuations of the switch response behavior may be observed at low concentrations. Such fluctuation is relevant to many biological functions. It can be reduced by either increasing the conformation interconversion rate of the protein, or correlating the enzymatic reaction rates in the network.
Collapse
|
36
|
Tsygankov D, Fisher ME. Kinetic models for mechanoenzymes: Structural aspects under large loads. J Chem Phys 2008; 128:015102. [DOI: 10.1063/1.2803213] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Tsygankov D, Fisher ME. Mechanoenzymes under superstall and large assisting loads reveal structural features. Proc Natl Acad Sci U S A 2007; 104:19321-6. [PMID: 18048321 PMCID: PMC2148288 DOI: 10.1073/pnas.0709911104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Indexed: 11/18/2022] Open
Abstract
Single-molecule experiments on the motor protein kinesin have observed runs of backsteps and thus a negative, that is, reverse mean velocity, V, under superstall loads, F; but, counterintuitively, beyond stall, V(F) displays a shallow minimum and then decreases in magnitude. Conversely, under assisting loads V(F) rises to a maximum before decreasing monotonically. By contrast, while the velocity of myosin V also saturates under assisting loads, the motor moves backward increasingly rapidly under superstall loads. For both kinesin and myosin V this behavior is implied remarkably well by simple two-state kinetic models when extrapolated to large loads. To understand the origins of such results in general mechanoenzymes, biochemical kinetic descriptions are discussed on the basis of a free-energy landscape picture. It transpires that the large-load performance is determined by the geometrical placement of the intermediate mechanochemical states of the enzymatic cycles relative to the associated transition states. Explicit criteria are presented for N-state sequential kinetics, including side-reaction chains, etc., and for parallel-pathway models. Physical colocalization of biochemically distinct states generally implies large-load velocity saturation.
Collapse
Affiliation(s)
- Denis Tsygankov
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Michael E. Fisher
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| |
Collapse
|
38
|
Abstract
Individual molecular motors, or motor proteins, are enzymatic molecules that convert chemical energy, typically obtained from the hydrolysis of ATP (adenosine triphosphate), into mechanical work and motion. Processive motor proteins, such as kinesin, dynein, and certain myosins, step unidirectionally along linear tracks, specifically microtubules and actin filaments, and play a crucial role in cellular transport processes, organization, and function. In this review some theoretical aspects of motor-protein dynamics are presented in the light of current experimental methods that enable the measurement of the biochemical and biomechanical properties on a single-molecule basis. After a brief discussion of continuum ratchet concepts, we focus on discrete kinetic and stochastic models that yield predictions for the mean velocity, V(F, [ATP], ...), and other observables as a function of an imposed load force F, the ATP concentration, and other variables. The combination of appropriate theory with single-molecule observations should help uncover the mechanisms underlying motor-protein function.
Collapse
Affiliation(s)
- Anatoly B Kolomeisky
- Department of Chemistry and Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| | | |
Collapse
|
39
|
Schumaker MF. Single-occupancy binding in simple bounded and unbounded systems. Bull Math Biol 2007; 69:1979-2003. [PMID: 17443389 DOI: 10.1007/s11538-007-9201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 02/09/2007] [Indexed: 11/24/2022]
Abstract
The number of substrate molecules that can bind to the active site of an enzyme at one time is constrained. This paper develops boundary conditions that correspond to the constraint of single-occupancy binding. Two simple models of substrate molecules diffusing to a single-occupancy site are considered. In the interval model, a fixed number of substrate molecules diffuse in a bounded domain. In the spherical model, a varying number of molecules diffuse in a domain with boundary conditions that model contact with a reservoir containing a large number of substrate molecules. When the diffusive time scale is much shorter than the time scale for entering the single-occupancy site, the dynamics of binding are accurately described by simple approximations.
Collapse
Affiliation(s)
- Mark F Schumaker
- Department of Mathematics, Washington State University, Pullman, WA 99164-3113, USA.
| |
Collapse
|
40
|
Tanskanen AJ, Greenstein JL, Chen A, Sun SX, Winslow RL. Protein geometry and placement in the cardiac dyad influence macroscopic properties of calcium-induced calcium release. Biophys J 2007; 92:3379-96. [PMID: 17325016 PMCID: PMC1853149 DOI: 10.1529/biophysj.106.089425] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cardiac ventricular myocytes, events crucial to excitation-contraction coupling take place in spatially restricted microdomains known as dyads. The movement and dynamics of calcium (Ca2+) ions in the dyad have often been described by assigning continuously valued Ca2+ concentrations to one or more dyadic compartments. However, even at its peak, the estimated number of free Ca2+ ions present in a single dyad is small (approximately 10-100 ions). This in turn suggests that modeling dyadic calcium dynamics using laws of mass action may be inappropriate. In this study, we develop a model of stochastic molecular signaling between L-type Ca2+ channels (LCCs) and ryanodine receptors (RyR2s) that describes: a), known features of dyad geometry, including the space-filling properties of key dyadic proteins; and b), movement of individual Ca2+ ions within the dyad, as driven by electrodiffusion. The model enables investigation of how local Ca2+ signaling is influenced by dyad structure, including the configuration of key proteins within the dyad, the location of Ca2+ binding sites, and membrane surface charges. Using this model, we demonstrate that LCC-RyR2 signaling is influenced by both the stochastic dynamics of Ca2+ ions in the dyad as well as the shape and relative positioning of dyad proteins. Results suggest the hypothesis that the relative placement and shape of the RyR2 proteins helps to "funnel" Ca2+ ions to RyR2 binding sites, thus increasing excitation-contraction coupling gain.
Collapse
Affiliation(s)
- Antti J Tanskanen
- The Institute for Computational Medicine, Center for Cardiovascular Bioinformatics and Modeling, The Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
41
|
Shemesh T, Kozlov MM. Actin polymerization upon processive capping by formin: a model for slowing and acceleration. Biophys J 2006; 92:1512-21. [PMID: 17158576 PMCID: PMC1796842 DOI: 10.1529/biophysj.106.098459] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Formin family proteins act as processive cappers of actin filaments, and determine the dynamics of a number of intracellular processes that are based on actin polymerization. The rate of filament growth upon processive capping varies within a broad range depending on the formin type and presence of profilin. While FH2 domains of various formins slow down polymerization by different extents, the FH1-FH2 domains in conjunction with profilin accelerate the reaction. Study of the physical mechanism of processive capping is vital for understanding the intracellular actin dynamics. We propose a model predicting that variation of a single physical parameter-the effective elastic energy of the formin-capped barbed end-results in the observed diversity of the polymerization rates. The model accounts for the whole range of the experimental results including the drastic slowing down of polymerization by FH2 of Cdc12 formin and the 4.5-fold acceleration of the reaction by FH1-FH2 of mDai1 formin in the presence of profilin. Fitting the theoretical predictions to the experimental curves provides the values of the effective elastic energies of different formin-barbed end complexes.
Collapse
Affiliation(s)
- Tom Shemesh
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
42
|
Xing J, Kim KS. Protein fluctuations and breakdown of time-scale separation in rate theories. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:061911. [PMID: 17280100 DOI: 10.1103/physreve.74.061911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 10/03/2006] [Indexed: 05/13/2023]
Abstract
A long-time fluctuation correlation function with a power-law form has been observed in recent single-molecule experiments by the Xie group. By analyzing the dynamics of an elastic network model (ENM) under white noise, we show that the observed long-time memory kernel can be explained by the discrepancy between the experimentally measured coordinate (or the coordinate directly coupled to protein function) and the minimum energy path of the system. Consequently, the dynamics of the measured collective coordinate has contributions from degrees of freedoms with a broad distribution of time scales. Our study also implies that the widely used ENM Hamiltonian should be viewed as a coarse-grained model of a protein over a rugged energy landscape. Large effective drag coefficients are needed to describe protein dynamics with the ENM's.
Collapse
Affiliation(s)
- Jianhua Xing
- Chemistry and Material Science Directorate, University of California and Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | | |
Collapse
|
43
|
Lan G, Sun SX. Flexible light-chain and helical structure of F-actin explain the movement and step size of myosin-VI. Biophys J 2006; 91:4002-13. [PMID: 16963511 PMCID: PMC1635660 DOI: 10.1529/biophysj.106.089888] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin-VI is a dimeric isoform of unconventional myosins. Single molecule experiments indicate that myosin-VI and myosin-V are processive molecular motors, but travel toward opposite ends of filamentous actin. Structural studies show several differences between myosin-V and VI, including a significant difference in the light-chain domain connecting the motor domains. Combining the measured kinetics of myosin-VI with the elasticity of the light chains, and the helical structure of F-actin, we compare and contrast the motility of myosin-VI with myosin-V. We show that the elastic properties of the light-chain domain control the stepping behavior of these motors. Simple models incorporating the motor elastic energy can quantitatively capture most of the observed data. Implications of our result for other processive motors are discussed.
Collapse
Affiliation(s)
- Ganhui Lan
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
44
|
Woo HJ. Analytical theory of the nonequilibrium spatial distribution of RNA polymerase translocations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:011907. [PMID: 16907127 DOI: 10.1103/physreve.74.011907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Indexed: 05/11/2023]
Abstract
A continuum Fokker-Planck model is considered for the RNA polymerase in the elongation phase, where the topology of a single free energy profile as a function of the translocation variable distinguishes the Brownian ratchet and power stroke mechanisms. The model yields a simple analytical stationary solution for arbitrary functional forms of the free energy. With the translocation potential of mean force estimated by the time-series data of the recent high-resolution single-molecule experiment [Abbondanzieri et al., Nature (London) 438, 460 (2005)], predictions of the model for the mechanical properties agree with experiments quantitatively with reasonable values of parameters. The evolution of the spatial distribution of translocation variable away from equilibrium with increasing nucleoside triphosphate concentration shows qualitatively different behavior in the two alternative scenarios, which could serve as an additional measurable signature of the underlying mechanism.
Collapse
Affiliation(s)
- Hyung-June Woo
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
45
|
Xing J, Bai F, Berry R, Oster G. Torque-speed relationship of the bacterial flagellar motor. Proc Natl Acad Sci U S A 2006; 103:1260-5. [PMID: 16432218 PMCID: PMC1360542 DOI: 10.1073/pnas.0507959103] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Indexed: 11/18/2022] Open
Abstract
Many swimming bacteria are propelled by flagellar filaments driven by a rotary motor. Each of these tiny motors can generate an impressive torque. The motor torque vs. speed relationship is considered one of the most important measurable characteristics of the motor and therefore is a major criterion for judging models proposed for the working mechanism. Here we give an explicit explanation for this torque-speed curve. The same physics also can explain certain puzzling properties of other motors.
Collapse
Affiliation(s)
- Jianhua Xing
- Departments of Molecular and Cell Biology and Environmental Science, Policy and Management, University of California-Berkeley, Berkeley, CA 94720-3112, USA
| | | | | | | |
Collapse
|
46
|
Abstract
We present a mesoscopic model for ATP synthesis by F(1)F(o) ATPase. The model combines the existing experimental knowledge of the F(1) enzyme into a consistent mathematical model that illuminates how the stages in synthesis are related to the protein structure. For example, the model illuminates how specific interactions between the gamma, epsilon, and alpha(3)beta(3) subunits couple the F(o) motor to events at the catalytic sites. The model also elucidates the origin of ADP inhibition of F(1) in its hydrolysis mode. The methodology we develop for constructing the structure-based model should prove useful in modeling other protein motors.
Collapse
Affiliation(s)
- Jianhua Xing
- Departments of Molecular Cell Biology, University of California, Berkeley, CA 94720-1132, USA
| | | | | |
Collapse
|
47
|
Fricks J, Wang H, Elston TC. A numerical algorithm for investigating the role of the motor-cargo linkage in molecular motor-driven transport. J Theor Biol 2005; 239:33-48. [PMID: 16125729 DOI: 10.1016/j.jtbi.2005.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/10/2005] [Accepted: 07/18/2005] [Indexed: 10/25/2022]
Abstract
We extend the numerical algorithm developed by Wang et al. (2003. J. Theor. Biol. 221, 491-511) for studying biomolecular transport processes to include the linkage that connects molecular motors to their cargo. The new algorithm is used to investigate how the stiffness of the linkage affects the average velocity, effective diffusion coefficient, and randomness parameter. Three different models for molecular motors are considered: (1) a discrete stepping motor (2) a motor moving in a tilted-periodic potential and (3) a motor driven by a flashing potential. We demonstrate that a flexible motor-cargo linkage can make inferences on motor behavior based on measurements of the cargo's position difficult. We also show that even for the case of a tilted-periodic potential there exists an optimal stiffness of the linkage at which transport is maximized. The MATLAB code used in this paper is available at: http://www.unc.edu/approximatelytelston/code/.
Collapse
Affiliation(s)
- John Fricks
- Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA.
| | | | | |
Collapse
|