1
|
Sidirokastritis ND, Tsiantoulas I, Tananaki C, Vareltzis P. The effect of high hydrostatic pressure on tetracycline hydrochloride and sulfathiazole residues in various food matrices - comparison with ultrasound and heat treatment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:687-698. [PMID: 35302918 DOI: 10.1080/19440049.2022.2036820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Antibiotic residues in food pose serious direct and indirect risks for consumers. The aim of this study was to investigate the effect of High Hydrostatic Pressure (HHP) on tetracycline hydrochloride (TCH) and sulfathiazole (STZ) residues in honey, milk, and water. Three different pressures were tested for their efficiency and treatment at 580 MPa for 6 min was finally selected. Qualitative and quantitative determination of antibiotics were performed with HPLC and LC-MS. HHP treatment was compared to ultrasound and heat treatment. HHP treatment was found to be more effective than the other two methods for both antibiotics in water and milk. The reduction of STZ in honey was over 90%, while no reduction was observed for TCH. The highest TCH reduction was recorded after HHP treatment in water (76.4%) and the highest STZ reduction after ultrasound treatment in honey (94.3%). Reduction of the two antibiotics in different matrices did not follow a similar pattern. For the HHP treatment, the effect of the initial concentration of the two antibiotics was studied under two different storage conditions (refrigerated and frozen storage). The effectiveness of the method was found to be affected by the initial concentration, in both storage conditions for STZ, while for TCH significant differences were observed only for refrigerated storage.
Collapse
Affiliation(s)
| | - Ioannis Tsiantoulas
- Chemical Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysoula Tananaki
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Patroklos Vareltzis
- Chemical Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Kankanamge D, Ubeysinghe S, Tennakoon M, Pantula PD, Mitra K, Giri L, Karunarathne A. Dissociation of the G protein βγ from the Gq-PLCβ complex partially attenuates PIP2 hydrolysis. J Biol Chem 2021; 296:100702. [PMID: 33901492 PMCID: PMC8138763 DOI: 10.1016/j.jbc.2021.100702] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 01/14/2023] Open
Abstract
Phospholipase C β (PLCβ), which is activated by the Gq family of heterotrimeric G proteins, hydrolyzes the inner membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2), generating diacylglycerol and inositol 1,4,5-triphosphate (IP3). Because Gq and PLCβ regulate many crucial cellular processes and have been identified as major disease drivers, activation and termination of PLCβ signaling by the Gαq subunit have been extensively studied. Gq-coupled receptor activation induces intense and transient PIP2 hydrolysis, which subsequently recovers to a low-intensity steady-state equilibrium. However, the molecular underpinnings of this equilibrium remain unclear. Here, we explored the influence of signaling crosstalk between Gq and Gi/o pathways on PIP2 metabolism in living cells using single-cell and optogenetic approaches to spatially and temporally constrain signaling. Our data suggest that the Gβγ complex is a component of the highly efficient lipase GαqGTP-PLCβ-Gβγ. We found that over time, Gβγ dissociates from this lipase complex, leaving the less-efficient GαqGTP-PLCβ lipase complex and allowing the significant partial recovery of PIP2 levels. Our findings also indicate that the subtype of the Gγ subunit in Gβγ fine-tunes the lipase activity of Gq-PLCβ, in which cells expressing Gγ with higher plasma membrane interaction show lower PIP2 recovery. Given that Gγ shows cell- and tissue-specific subtype expression, our findings suggest the existence of tissue-specific distinct Gq-PLCβ signaling paradigms. Furthermore, these results also outline a molecular process that likely safeguards cells from excessive Gq signaling.
Collapse
Affiliation(s)
- Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
| | - Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
| | - Priyanka Devi Pantula
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Sangareddy, Telangana, India
| | - Kishalay Mitra
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Sangareddy, Telangana, India
| | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Sangareddy, Telangana, India
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
3
|
Winter R. Interrogating the Structural Dynamics and Energetics of Biomolecular Systems with Pressure Modulation. Annu Rev Biophys 2019; 48:441-463. [DOI: 10.1146/annurev-biophys-052118-115601] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High hydrostatic pressure affects the structure, dynamics, and stability of biomolecular systems and is a key parameter in the context of the exploration of the origin and the physical limits of life. This review lays out the conceptual framework for exploring the conformational fluctuations, dynamical properties, and activity of biomolecular systems using pressure perturbation. Complementary pressure-jump relaxation studies are useful tools to study the kinetics and mechanisms of biomolecular phase transitions and structural transformations, such as membrane fusion or protein and nucleic acid folding. Finally, the advantages of using pressure to explore biomolecular assemblies and modulate enzymatic reactions are discussed.
Collapse
Affiliation(s)
- Roland Winter
- Faculty of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44227 Dortmund, Germany
| |
Collapse
|
4
|
Abstract
We review the combined effect of temperature and pressure on the structure, dynamics and phase behavior of lipid bilayers, differing in chain length, headgroup structure and composition as revealed by thermodynamic, spectroscopic and scattering experiments. The effect of additives, such as ions, cholesterol, and anaesthetics is discussed as well. Our data include also reports on the effect of pressure on the lateral organization of heterogeneous lipid membranes and lipid extracts from cellular membranes, as well as the influence of peptide and protein incorporation on the pressure-dependent structure and phase behavior of lipid membranes. Moreover, the effects of pressure on membrane protein function are summarized. Finally, we introduce pressure as a kinetic variable for studying the kinetics of various lipid phase transformations.
Collapse
Affiliation(s)
- Roland Winter
- Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn Str. 6, D-44227, Dortmund, Germany,
| |
Collapse
|
5
|
Periasamy N, Teichert H, Weise K, Vogel RF, Winter R. Effects of temperature and pressure on the lateral organization of model membranes with functionally reconstituted multidrug transporter LmrA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:390-401. [PMID: 18983816 DOI: 10.1016/j.bbamem.2008.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/19/2008] [Accepted: 09/24/2008] [Indexed: 11/29/2022]
Abstract
To contribute to the understanding of membrane protein function upon application of pressure, we investigated the influence of hydrostatic pressure on the conformational order and phase behavior of the multidrug transporter LmrA in biomembrane systems. To this end, the membrane protein was reconstituted into various lipid bilayer systems of different chain length, conformation, phase state and heterogeneity, including raft model mixtures as well as some natural lipid extracts. In the first step, we determined the temperature stability of the protein itself and verified its reconstitution into the lipid bilayer systems using CD spectroscopic and AFM measurements, respectively. Then, to yield information on the temperature and pressure dependent conformation and phase state of the lipid bilayer systems, generalized polarization values by the Laurdan fluorescence technique were determined, which report on the conformation and phase state of the lipid bilayer system. The temperature-dependent measurements were carried out in the temperature range 5-70 degrees C, and the pressure dependent measurements were performed in the range 1-200 MPa. The data show that the effect of the LmrA reconstitution on the conformation and phase state of the lipid matrix depends on the fluidity and hydrophobic matching conditions of the lipid system. The effect is most pronounced for fluid DMPC and DMPC with low cholesterol levels, but minor for longer-chain fluid phospholipids such as DOPC and model raft mixtures such as DOPC/DPPC/cholesterol. The latter have the additional advantage of using lipid sorting to avoid substantial hydrophobic mismatch. Notably, the most drastic effect was observed for the neutral/glycolipid natural lipid mixture. In this case, the impact of LmrA incorporation on the increase of the conformational order of the lipid membrane was most pronounced. As a consequence, the membrane reaches a mechanical stability which makes it very insensitive to application of pressures as high as 200 MPa. The results are correlated with the functional properties of LmrA in these various lipid environments and upon application of high hydrostatic pressure and are discussed in the context of other work on pressure effects on membrane protein systems.
Collapse
Affiliation(s)
- Nagarajan Periasamy
- Dortmund University of Technology, Physical Chemistry I - Biophysical Chemistry, D-44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
6
|
The temperature–pressure phase diagram of a DPPC–ergosterol fungal model membrane—a SAXS and FT-IR spectroscopy study. Chem Phys Lipids 2008; 152:57-63. [DOI: 10.1016/j.chemphyslip.2008.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Revised: 12/29/2007] [Accepted: 01/04/2008] [Indexed: 11/18/2022]
|
7
|
Drin G, Scarlata S. Stimulation of phospholipase Cbeta by membrane interactions, interdomain movement, and G protein binding--how many ways can you activate an enzyme? Cell Signal 2007; 19:1383-92. [PMID: 17524618 PMCID: PMC1963342 DOI: 10.1016/j.cellsig.2007.04.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 04/08/2007] [Indexed: 11/19/2022]
Abstract
Signaling proteins are usually composed of one or more conserved structural domains. These domains are usually regulatory in nature by binding to specific activators or effectors, or species that regulate cellular location, etc. Inositol-specific mammalian phospholipase C (PLC) enzymes are multidomain proteins whose activities are controlled by regulators, such as G proteins, as well as membrane interactions. One of these domains has been found to bind membranes, regulators, and activate the catalytic region. The recently solved structure of a major region of PLC-beta2 together with the structure of PLC-delta1 and a wealth of biochemical studies poises the system towards an understanding of the mechanism through which their regulations occurs.
Collapse
Affiliation(s)
- Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS et Université de Nice-Sophia Antipolis, 06560 Valbonne, France
| | | |
Collapse
|
8
|
Dowal L, Provitera P, Scarlata S. Stable Association between Gαq and Phospholipase Cβ1 in Living Cells. J Biol Chem 2006; 281:23999-4014. [PMID: 16754659 DOI: 10.1074/jbc.m512330200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transduction through G alpha(q) involves stimulation of phospholipase C beta (PLC beta) that results in increased intracellular Ca2+ and activation of protein kinase C. We have measured complex formation between G alpha(q) and PLC beta1 in vitro and in living PC12 and HEK293 cells by fluorescence resonance energy transfer. In vitro measurements show that PLC beta1 will bind to G alpha(q)(guanosine 5'-3-O-(thio)triphosphate) and also to G alpha(q)(GDP), and the latter association has a different protein-protein orientation. In cells, image analysis of fluorescent-tagged proteins shows that G alpha(q) is localized almost entirely to the plasma membrane, whereas PLC beta1 has a significant cytosolic population. By using fluorescence resonance energy transfer, we found that these proteins are pre-associated in the unstimulated state in PC12 and HEK293 cells. By determining the cellular levels of the two proteins in transfected versus nontransfected cells, we found that under our conditions overexpression should not significantly promote complex formation. G alpha(q)-PLC beta1 complexes are observed in both single cell measurements and measurements of a large (i.e. 10(6)) cell suspension. The high level (approximately 40% maximum) of FRET is surprising considering that G alpha(q) is more highly expressed than PLC beta1 and that not all PLC beta1 is plasma membrane-localized. Our measurements suggest a model in which G proteins and effectors can exist in stable complexes prior to activation and that activation is achieved through changes in intermolecular interactions rather than diffusion and association. These pre-formed complexes in turn give rise to rapid, localized signals.
Collapse
Affiliation(s)
- Louisa Dowal
- Department of Physiology and Biophysics, State University of New York, Stony Brook, New York 11794-8661, USA
| | | | | |
Collapse
|
9
|
Nicolini C, Kraineva J, Khurana M, Periasamy N, Funari SS, Winter R. Temperature and pressure effects on structural and conformational properties of POPC/SM/cholesterol model raft mixtures--a FT-IR, SAXS, DSC, PPC and Laurdan fluorescence spectroscopy study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:248-58. [PMID: 16529710 DOI: 10.1016/j.bbamem.2006.01.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/24/2006] [Accepted: 01/26/2006] [Indexed: 11/17/2022]
Abstract
We report on the effects of temperature and pressure on the structure, conformation and phase behavior of aqueous dispersions of the model lipid "raft" mixture palmitoyloleoylphosphatidylcholine (POPC)/bovine brain sphingomyelin (SM)/cholesterol (Chol) (1:1:1). We investigated interchain interactions, hydrogen bonding, conformational and structural properties as well as phase transformations of this system using Fourier transform-infrared (FT-IR) spectroscopy, small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC) coupled with pressure perturbation calorimetry (PPC), and Laurdan fluorescence spectroscopy. The IR spectral parameters in combination with the scattering patterns from the SAXS measurements were used to detect structural and conformational transformations upon changes of pressure up to 7-9 kbar and temperature in the range from 1 to about 80 degrees C. The generalized polarization function (GP) values, obtained from the Laurdan fluorescence spectroscopy studies also reveal temperature and pressure dependent phase changes. DSC and PPC were used to detect thermodynamic properties accompanying the temperature-dependent phase changes. In combination with literature fluorescence spectroscopy and microscopy data, a tentative p,T stability diagram of the mixture has been established. The data reveal a broad liquid-order/solid-ordered (lo+so) two-phase coexistence region below 8+/-2 degrees C at ambient pressure. With increasing temperature, a lo+ld+so three-phase region is formed, which extends up to approximately 27 degrees C, where a liquid-ordered/liquid-disordered (lo+ld) immiscibility region is formed. Finally, above 48+/-2 degrees C, the POPC/SM/Chol (1:1:1) mixture becomes completely fluid-like (liquid-disordered, ld). With increasing pressure, all phase transition lines shift to higher temperatures. Notably, the lo+ld (+so) phase coexistence region, mimicking raft-like lateral phase separation in natural membranes, extends over a rather wide temperature range of about 40 degrees C, and a pressure range, which extends up to about 2 kbar for T=37 degrees C. Interestingly, in this pressure range, ceasing of membrane protein function in natural membrane environments has been observed for a variety of systems.
Collapse
Affiliation(s)
- Chiara Nicolini
- University of Dortmund, Department of Chemistry, Physical Chemistry I-Biophysical Chemistry, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Eisenblätter J, Winter R. Pressure effects on the structure and phase behavior of DMPC-gramicidin lipid bilayers: a synchrotron SAXS and 2H-NMR spectroscopy study. Biophys J 2005; 90:956-66. [PMID: 16299078 PMCID: PMC1367120 DOI: 10.1529/biophysj.105.069799] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The influence of Gramicidin D (GD) incorporation on the structure and phase behavior of aqueous dispersions of DMPC lipid bilayers has been studied using small-angle x-ray scattering (SAXS) and (2)H-NMR spectroscopy. The experiments covered a temperature range from -10 degrees C to 60 degrees C and a pressure range of 0.001-4 kbar. Pressure was used to be able to tune the lipid bilayer conformational order and phase state and because high pressure is an important feature of certain natural biotopes. The data show that, depending on the GD concentration, the structure of the temperature- and pressure-dependent lipid phases is significantly altered by the insertion of the polypeptide, and a p,T-phase diagram could be obtained for intermediate GD concentrations. Upon gramicidin insertion, a rather narrow fluid-gel coexistence regions is formed. Two gel phases are induced which are different from those of the pure lipid bilayer system and which separate at low temperatures/high pressures. For both the temperature- and pressure-induced fluid-to-gel transition, a similar pseudocritical transitional behavior is observed, which is even more pronounced upon incorporation of the peptide.
Collapse
Affiliation(s)
- J Eisenblätter
- Department of Chemistry, Physical Chemistry I-Biophysical Chemistry, University of Dortmund, D-44227 Dortmund, Germany
| | | |
Collapse
|
11
|
Periasamy N, Winter R. The effects of temperature, pressure and peptide incorporation on ternary model raft mixtures--a Laurdan fluorescence spectroscopy study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1764:398-404. [PMID: 16330267 DOI: 10.1016/j.bbapap.2005.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/14/2005] [Accepted: 10/17/2005] [Indexed: 11/21/2022]
Abstract
Recently, an increasing evidence accumulated for the existence of lipid microdomains, called lipid rafts, in cell membranes, which may play an important role in many important membrane-associated biological processes. Suitable model systems for studying biophysical properties of lipid rafts are lipid vesicles composed of three-component lipid mixtures, such as POPC/SM/cholesterol, which exhibit a rich phase diagram, including raft-like liquid-ordered/liquid-disordered phase coexistence regions. We explored the temperature, pressure and concentration-dependent phase behavior of such canonical model raft mixtures using the Laurdan fluorescence spectroscopic technique. Hydrostatic pressure has not only been used as a physical parameter for studying the stability and energetics of these systems, but also because high pressure is an important feature of certain natural membrane environments. We show that the liquid-disordered/liquid-ordered phase coexistence regions of POPC/SM/cholesterol model raft mixtures extends over a very wide temperature range of about 50 degrees C. Upon pressurization, an overall ordered membrane state is reached at pressures of approximately 1,000 bar at 20 degrees C, and of approximately 2,000 bar at 40 degrees C. Incorporation of 5 mol% gramicidin as a model ion channel slightly increases the overall order parameter profile in the l(o)+l(d) two-phase coexistence region, probably by selectively partitioning into l(d) domains, does not change the overall phase behavior, however. This behavior is in contrast to the effect of the peptide incorporation into simple, one-component phospholipid bilayer systems.
Collapse
Affiliation(s)
- Nagarajan Periasamy
- University of Dortmund, Physical Chemistry I-Biophysical Chemistry, D-44227 Dortmund, Germany
| | | |
Collapse
|
12
|
Abstract
Many cellular proteins are bound to the surfaces of membranes and participate in various cell signaling responses. Interactions between this group of proteins are in part controlled by the membrane surface to which the proteins are bound. This review focuses on the effects of pressure on membrane-associated proteins. Initially, the effect of pressure on membrane surfaces and how pressure may perturb the membrane binding of proteins is discussed. Next, the effect of pressure on the activity and lateral association of proteins is considered. We then discuss how pressure can be used to gain insight into these types of proteins.
Collapse
Affiliation(s)
- S Scarlata
- Department of Physiology and Biophysics, SUNY Stony Brook, Stony Brook, NY 11794, USA
| |
Collapse
|