1
|
Lhor M, Bernier SC, Horchani H, Bussières S, Cantin L, Desbat B, Salesse C. Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Adv Colloid Interface Sci 2014; 207:223-39. [PMID: 24560216 PMCID: PMC4028306 DOI: 10.1016/j.cis.2014.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Membrane binding of proteins such as short chain dehydrogenase reductases or tail-anchored proteins relies on their N- and/or C-terminal hydrophobic transmembrane segment. In this review, we propose guidelines to characterize such hydrophobic peptide segments using spectroscopic and biophysical measurements. The secondary structure content of the C-terminal peptides of retinol dehydrogenase 8, RGS9-1 anchor protein, lecithin retinol acyl transferase, and of the N-terminal peptide of retinol dehydrogenase 11 has been deduced by prediction tools from their primary sequence as well as by using infrared or circular dichroism analyses. Depending on the solvent and the solubilization method, significant structural differences were observed, often involving α-helices. The helical structure of these peptides was found to be consistent with their presumed membrane binding. Langmuir monolayers have been used as membrane models to study lipid-peptide interactions. The values of maximum insertion pressure obtained for all peptides using a monolayer of 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE) are larger than the estimated lateral pressure of membranes, thus suggesting that they bind membranes. Polarization modulation infrared reflection absorption spectroscopy has been used to determine the structure and orientation of these peptides in the absence and in the presence of a DOPE monolayer. This lipid induced an increase or a decrease in the organization of the peptide secondary structure. Further measurements are necessary using other lipids to better understand the membrane interactions of these peptides.
Collapse
Affiliation(s)
- Mustapha Lhor
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sarah C Bernier
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Habib Horchani
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sylvain Bussières
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Line Cantin
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Bernard Desbat
- CBMN-UMR 5248 CNRS, Université de Bordeaux, IPB, Allée Geoffroy Saint Hilaire, 33600 Pessac, France
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
2
|
Krishnan V, Tronin A, Strzalka J, Fry HC, Therien MJ, Blasie JK. Control of the orientational order and nonlinear optical response of the "push-pull" chromophore RuPZn via specific incorporation into densely packed monolayer ensembles of an amphiphilic four-helix bundle peptide: characterization of the peptide-chromophore complexes. J Am Chem Soc 2010; 132:11083-92. [PMID: 20698674 DOI: 10.1021/ja1010702] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
"Push-pull" chromophores based on extended pi-electron systems have been designed to exhibit exceptionally large molecular hyperpolarizabilities. We have engineered an amphiphilic four-helix bundle peptide to vectorially incorporate such hyperpolarizable chromophores having a metalloporphyrin moiety, with high specificity into the interior core of the bundle. The amphiphilic exterior of the bundle facilitates the formation of densely packed monolayer ensembles of the vectorially oriented peptide-chromophore complexes at the liquid-gas interface. Chemical specificity designed into the ends of the bundle facilitates the subsequent covalent attachment of these monolayer ensembles onto the surface of an inorganic substrate. In this article, we describe the structural characterization of these monolayer ensembles at each stage of their fabrication for one such peptide-chromophore complex designated as AP0-RuPZn. In the accompanying article, we describe the characterization of their macroscopic nonlinear optical properties.
Collapse
Affiliation(s)
- Venkata Krishnan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
3
|
Brewer J, de la Serna JB, Wagner K, Bagatolli LA. Multiphoton excitation fluorescence microscopy in planar membrane systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1301-8. [DOI: 10.1016/j.bbamem.2010.02.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/18/2010] [Accepted: 02/18/2010] [Indexed: 12/20/2022]
|
4
|
Castiglioni E, Biscarini P, Abbate S. Experimental aspects of solid state circular dichroism. Chirality 2010; 21 Suppl 1:E28-36. [PMID: 19722271 DOI: 10.1002/chir.20770] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The interest of circular dichroism in the solid state is stimulated by several needs, such as the desire to get solvent free spectra, the insolubility of the sample or the intrinsic process in which the sample itself is prepared or manipulated. We approach the argument on the basis of the sampling technique, since each different case calls for specific care in getting proper results.
Collapse
|
5
|
Vemparala S, Domene C, Klein ML. Computational studies on the interactions of inhalational anesthetics with proteins. Acc Chem Res 2010; 43:103-10. [PMID: 19788306 DOI: 10.1021/ar900149j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the widespread clinical use of anesthetics since the 19th century, a clear understanding of the mechanism of anesthetic action has yet to emerge. On the basis of early experiments by Meyer, Overton, and subsequent researchers, the cell's lipid membrane was generally concluded to be the primary site of action of anesthetics. However, later experiments with lipid-free globular proteins, such as luciferase and apoferritin, shifted the focus of anesthetic action to proteins. Recent experimental studies, such as photoaffinity labeling and mutagenesis on membrane proteins, have suggested specific binding sites for anesthetic molecules, further strengthening the proteocentric view of anesthetic mechanism. With the increased availability of high-resolution crystal structures of ion channels and other integral membrane proteins, as well as the availability of powerful computers, the structure-function relationship of anesthetic-protein interactions can now be investigated in atomic detail. In this Account, we review recent experiments and related computer simulation studies involving interactions of inhalational anesthetics and proteins, with a particular focus on membrane proteins. Globular proteins have long been used as models for understanding the role of protein-anesthetic interactions and are accordingly examined in this Account. Using selected examples of membrane proteins, such as nicotinic acetyl choline receptor (nAChR) and potassium channels, we address the issues of anesthetic binding pockets in proteins, the role of conformation in anesthetic effects, and the modulation of local as well as global dynamics of proteins by inhaled anesthetics. In the case of nicotinic receptors, inhalational anesthetic halothane binds to the hydrophobic cavity close to the M2-M3 loop. This binding modulates the dynamics of the M2-M3 loop, which is implicated in allosterically transmitting the effects to the channel gate, thus altering the function of the protein. In potassium channels, anesthetic molecules preferentially potentiate the open conformation by quenching the motion of the aromatic residues implicated in the gating of the channel. These simulations suggest that low-affinity drugs (such as inhalational anesthetics) modulate the protein function by influencing local as well as global dynamics of proteins. Because of intrinsic experimental limitations, computational approaches represent an important avenue for exploring the mode of action of anesthetics. Molecular dynamics simulations-a computational technique frequently used in the general study of proteins-offer particular insight in the study of the interaction of inhalational anesthetics with membrane proteins.
Collapse
Affiliation(s)
- Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai 600 113, India
| | - Carmen Domene
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ U.K
| | - Michael L. Klein
- Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323
| |
Collapse
|
6
|
Algorithm for the Analysis of Tryptophan Fluorescence Spectra and Their Correlation with Protein Structural Parameters. ALGORITHMS 2009. [DOI: 10.3390/a2031155] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Zou H, Liu J, Blasie JK. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, III: Molecular dynamics simulation incorporating a cyanophenylalanine spectroscopic probe. Biophys J 2009; 96:4188-99. [PMID: 19450489 DOI: 10.1016/j.bpj.2009.01.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/02/2008] [Accepted: 01/28/2009] [Indexed: 11/17/2022] Open
Abstract
A nitrile-derived amino acid, Phe(CN), has been used as an internal spectroscopic probe to study the binding of an inhalational anesthetic to a model membrane protein. The infrared spectra from experiment showed a blue-shift of the nitrile vibrational frequency in the presence of the anesthetic halothane. To interpret the infrared results and explore the nature of the interaction between halothane and the model protein, all-atom molecular dynamics (MD) simulations have been used to probe the structural and dynamic properties of the protein in the presence and absence of one halothane molecule. The frequency shift analyzed from MD simulations agrees well with the experimental infrared results. Decomposition of the forces acting on the nitrile probes demonstrates an indirect impact on the probes from halothane, namely a change of the protein's electrostatic local environment around the probes induced by halothane. Although the halothane remains localized within the designed hydrophobic binding cavity, it undergoes a significant amount of translational and rotational motion, modulated by the interaction of the trifluorine end of halothane with backbone hydrogens of the residues forming the cavity. This dominant interaction between halothane and backbone hydrogens outweighs the direct interaction between halothane and the nitrile groups, making it a good "spectator" probe of the halothane-protein interaction. These MD simulations provide insight into action of anesthetic molecules on the model membrane protein, and also support the further development of nitrile-labeled amino acids as spectroscopic probes within the designed binding cavity.
Collapse
Affiliation(s)
- Hongling Zou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
8
|
Strzalka J, Liu J, Tronin A, Churbanova IY, Johansson JS, Blasie JK. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, I: Structural investigations via X-ray reflectivity from Langmuir monolayers. Biophys J 2009; 96:4164-75. [PMID: 19450487 DOI: 10.1016/j.bpj.2009.01.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 01/15/2009] [Accepted: 01/21/2009] [Indexed: 11/16/2022] Open
Abstract
We previously reported the synthesis and structural characterization of a model membrane protein comprised of an amphiphilic 4-helix bundle peptide with a hydrophobic domain based on a synthetic ion channel and a hydrophilic domain with designed cavities for binding the general anesthetic halothane. In this work, we synthesized an improved version of this halothane-binding amphiphilic peptide with only a single cavity and an otherwise identical control peptide with no such cavity, and applied x-ray reflectivity to monolayers of these peptides to probe the distribution of halothane along the length of the core of the 4-helix bundle as a function of the concentration of halothane. At the moderate concentrations achieved in this study, approximately three molecules of halothane were found to be localized within a broad symmetric unimodal distribution centered about the designed cavity. At the lowest concentration achieved, of approximately one molecule per bundle, the halothane distribution became narrower and more peaked due to a component of approximately 19A width centered about the designed cavity. At higher concentrations, approximately six to seven molecules were found to be uniformly distributed along the length of the bundle, corresponding to approximately one molecule per heptad. Monolayers of the control peptide showed only the latter behavior, namely a uniform distribution along the length of the bundle irrespective of the halothane concentration over this range. The results provide insight into the nature of such weak binding when the dissociation constant is in the mM regime, relevant for clinical applications of anesthesia. They also demonstrate the suitability of both the model system and the experimental technique for additional work on the mechanism of general anesthesia, some of it presented in the companion parts II and III under this title.
Collapse
Affiliation(s)
- Joseph Strzalka
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
9
|
Liu J, Strzalka J, Tronin A, Johansson JS, Blasie JK. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, II: Fluorescence and vibrational spectroscopy using a cyanophenylalanine probe. Biophys J 2009; 96:4176-87. [PMID: 19450488 DOI: 10.1016/j.bpj.2009.01.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/02/2008] [Accepted: 01/07/2009] [Indexed: 11/15/2022] Open
Abstract
We demonstrate that cyano-phenylalanine (Phe(CN)) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-Phe(CN). The Trp to Phe(CN) mutation alters neither the alpha-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this Phe(CN) mutant hbAP-Phe(CN), based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescence is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-Phe(CN), enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four Phe(CN) probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-Phe(CN) therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the anesthetic binding cavity.
Collapse
Affiliation(s)
- Jing Liu
- Departments of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
We present a new design of peptide-polymer conjugates where a polymer chain is covalently linked to the side chain of a helix bundle-forming peptide. The effect of conjugated polymer chains on the peptide structure was examined using a de novo designed three-helix bundle and a photoactive four-helix bundle. Upon attachment of poly(ethylene glycol) to the exterior of the coiled-coil helix bundle, the peptide secondary structure was stabilized and the tertiary structure, that is, the coiled-coil helix bundle, was retained. When a heme-binding peptide as an example is used, the new peptide-polymer conjugate architecture also preserves the built-in functionalities within the interior of the helix bundle. It is expected that the conjugated polymer chains act to mediate the interactions between the helix bundle and its external environment. Thus, this new peptide-polymer conjugate design strategy may open new avenues to macroscopically assemble the helix bundles and may enable them to function in nonbiological environments.
Collapse
Affiliation(s)
- Jessica Y. Shu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720
| | - Cen Tan
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720
| | - William F. DeGrado
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720
- Department of Chemistry, University of California, Berkeley, California 94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
11
|
Ludden MJW, Huskens J. Attachment of proteins to molecular printboards through orthogonal multivalent linkers. Biochem Soc Trans 2007; 35:492-4. [PMID: 17511636 DOI: 10.1042/bst0350492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The attachment of proteins to a surface in such a way that the protein remains functional, is a key issue in many biotechnological processes. Here, we describe the controlled attachment with respect to kinetics, thermodynamics and orientation of SAv (streptavidin) through an orthogonal linker to beta-cyclodextrin selfassembled monolayers. Both a univalent and a bivalent linker are used for this process. The immobilization strategy with the bivalent linker allows the stepwise adsorption of SAv on to the surface, allowing heterofunctionalization of SAv and thus the build-up of more complex bionanostructures at the surface.
Collapse
Affiliation(s)
- M J W Ludden
- Laboratory of Molecular Nanofabrication, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | | |
Collapse
|
12
|
Zou H, Strzalka J, Xu T, Tronin A, Blasie JK. Three-dimensional structure and dynamics of a de novo designed, amphiphilic, metallo-porphyrin-binding protein maquette at soft interfaces by molecular dynamics simulations. J Phys Chem B 2007; 111:1823-33. [PMID: 17256981 DOI: 10.1021/jp0666378] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The three-dimensional structure and dynamics of de novo designed, amphiphilic four-helix bundle peptides (or "maquettes"), capable of binding metallo-porphyrin cofactors at selected locations along the length of the core of the bundle, are investigated via molecular dynamics simulations. The rapid evolution of the initial design to stable three-dimensional structures in the absence (apo-form) and presence (holo-form) of bound cofactors is described for the maquettes at two different soft interfaces between polar and nonpolar media. This comparison of the apo- versus holo-forms allows the investigation of the effects of cofactor incorporation on the structure of the four-helix bundle. The simulation results are in qualitative agreement with available experimental data describing the structures at lower resolution and limited dimension.
Collapse
Affiliation(s)
- Hongling Zou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
13
|
Strzalka J, Xu T, Tronin A, Wu SP, Miloradovic I, Kuzmenko I, Gog T, Therien MJ, Blasie JK. Structural studies of amphiphilic 4-helix bundle peptides incorporating designed extended chromophores for nonlinear optical biomolecular materials. NANO LETTERS 2006; 6:2395-405. [PMID: 17090064 DOI: 10.1021/nl062092h] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Extended conjugated chromophores containing (porphinato)zinc components that exhibit large optical polarizabilities and hyperpolarizabiliites are incorporated into amphiphilic 4-helix bundle peptides via specific axial histidyl ligation of the metal. The bundle's designed amphiphilicity enables vectorial orientation of the chromophore/peptide complex in macroscopic monolayer ensembles. The 4-helix bundle structure is maintained upon incorporation of two different chromophores at stoichiometries of 1-2 per bundle. The axial ligation site appears to effectively control the position of the chromophore along the length of the bundle.
Collapse
Affiliation(s)
- Joseph Strzalka
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|