1
|
Kumar M, Singh K, Joshi J, Sharma S, Kumar A, Irungbam K, Mahawar M, Saini M. Mechanistic insights into Alpha-Synuclein binding to P2RX7: A molecular dynamic and docking study. PLoS One 2025; 20:e0319098. [PMID: 40315262 PMCID: PMC12047839 DOI: 10.1371/journal.pone.0319098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/27/2025] [Indexed: 05/04/2025] Open
Abstract
Alpha-synucleinopathies, characterized by extracellular alpha-synuclein (αSyn or SNCA) accumulation and aggregation, have been linked to neurological disorders including Parkinson's disease and multiple system atrophy. P2RX7 is a non-selective cationic transmembrane purinergic receptor activated by elevated levels of extracellular ATP, which typically occurs during inflammatory conditions. Activation of P2RX7 by αSyn is implicated in neuronal degeneration, potentially causing pore dilation and increased inflammation. By integrating the data curation, molecular docking, and molecular dynamics (MD) simulations, along with structural analyses, we attempted to elucidate the molecular mechanisms and binding sites for P2RX7-αSyn interaction. We elucidated interactions between P2RX7 and the N-terminal domain (NTD) of αSyn. Utilizing cryo-EM structures of P2RX7 in ATP-bound and unbound states, we assessed αSyn's effect on P2RX7 structural and functional dynamics. Initially, the analyses revealed that αSyn interactomes are mainly involved in mitochondrial functions, while P2RX7 interactors are linked to receptor internalization and calcium transport. Molecular docking with six tools identified that αSyn-NTD fragments preferentially bind to the proximal region of P2RX7's transmembrane domain. Microsecond all atom MD simulations in a POPS lipid bilayer showed significant atomic fluctuations, particularly in the head region, lower body, and large loop of P2RX7's cytoplasmic domain. Secondary structure analysis indicated unfolding in regions related to pore dilation and receptor desensitization. Further by contact-based and solvent accessibility analyses, along with protein structure network (PSN) studies, we identified crucial residues involved in αSyn-P2RX7 interactions. This understanding enhances the knowledge of how αSyn and P2RX7 interactions take place, potentially contributing to neurodegenerative diseases, and could be instrumental in developing future preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Mukesh Kumar
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kanchan Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Jayant Joshi
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Shreya Sharma
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Amit Kumar
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Karuna Irungbam
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Mahawar
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mohini Saini
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
2
|
Das A, Jana G, Sing S, Basu A. Insights into the interaction and inhibitory action of palmatine on lysozyme fibrillogenesis: Spectroscopic and computational studies. Int J Biol Macromol 2024; 268:131703. [PMID: 38643915 DOI: 10.1016/j.ijbiomac.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Interaction under amyloidogenic condition between naturally occurring protoberberine alkaloid palmatine and hen egg white lysozyme was executed by adopting spectrofluorometric and theoretical molecular docking and dynamic simulation analysis. In spetrofluorometric method, different types of experiments were performed to explore the overall mode and mechanism of interaction. Intrinsic fluorescence quenching of lysozyme (Trp residues) by palmatine showed effective binding interaction and also yielded different binding parameters like binding constant, quenching constant and number of binding sites. Synchronous fluorescence quenching and 3D fluorescence map revealed that palmatine was able to change the microenvironment of the interacting site. Fluorescence life time measurements strongly suggested that this interaction was basically static in nature. Molecular docking result matched with fluorimetric experimental data. Efficient drug like interaction of palmatine with lysozyme at low pH and high salt concentration prompted us to analyze its antifibrillation potential. Different assays and microscopic techniques were employed for detailed analysis of lysozyme amyloidosis.Thioflavin T(ThT) assay, Congo Red (CR) assay, 8-anilino-1-naphthalenesulfonic acid (ANS) assay, Nile Red (NR) assay, anisotropy and intrinsic fluorescence measurements confirmed that palmatine successfully retarded and reduced lysozyme fibrillation. Dynamic light scattering (DLS) and atomic force microscopy (AFM) further reiterated the excellent antiamyloidogenic potency of palmatine.
Collapse
Affiliation(s)
- Arindam Das
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Gouranga Jana
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Shukdeb Sing
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Anirban Basu
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India.
| |
Collapse
|
3
|
Das M, Ghosh A. Molecular insights into mutation-induced conformational changes in Acetyl CoA Carboxylase for improved activity. Int J Biol Macromol 2024; 256:128417. [PMID: 38016612 DOI: 10.1016/j.ijbiomac.2023.128417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Acetyl-CoA carboxylase (ACCase) is crucial for fatty acid biosynthesis and has potential applications in lipid accumulation and advanced biofuel production. Mutations like S659A and S1157A in Saccharomyces cerevisiae ACCase remove the Snf1-regulation sites, resulting in increased enzyme activity with positive effects on the fatty acid pathway. However, the molecular-level understanding of these mutations on ACCase activity remains unexplored. Here, molecular dynamics simulation was conducted to investigate the mutations-induced conformational changes in S. cerevisiae ACCase. The wild-type ACCase was observed to have significant deviation in structure compared to mutant. Additionally, fluctuation of residues associated with biotin binding and Snf1-recognition were reduced in mutant compared to wild-type. Furthermore, the wild-type demonstrated opening motions of the domains, whereas the mutant showed closing movement. The mutation-induced conformational changes were analysed using network parameters, i.e., cliques/communities. The mutant showed an increase in sizes of several communities in AC3-AC4-AC5 domains leading to rigidification. Also, a new community was added in AC1-BT in the mutant, which suggested a substantial shift in the protein conformation. Thus, this study provides a theoretical understanding of the increased activity of ACCase due to two mutations, which can pave the path for enzyme engineering towards improved fatty acid-based fuel and chemical production.
Collapse
Affiliation(s)
- Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
4
|
Manna B, Chanda P, Datta S, Ghosh A. Elucidating the Ionic Liquid-Induced Mixed Inhibition of GH1 β-Glucosidase H0HC94. J Phys Chem B 2023; 127:8406-8416. [PMID: 37751511 DOI: 10.1021/acs.jpcb.3c02125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Deciphering the ionic liquid (IL) tolerance of glycoside hydrolases (GHs) to improve their hydrolysis efficiency for fermentable sugar synthesis in the "one-pot" process has long been a hurdle for researchers. In this work, we employed experimental and theoretical approaches to investigate the 1-ethyl-3-methylimidazolium acetate ([C2C1im][MeCO2])-induced inhibition of GH1 β-glucosidase (H0HC94) from Agrobacterium tumefaciens 5A. At 10-15% [C2C1im][MeCO2] concentration, H0HC94 experiences competitive inhibition (R2 = 0.97, alpha = 2.8). As the IL content increased to 20-25%, the inhibition pattern shifted to mixed-type inhibition (R2 = 0.98, alpha = 3.4). These findings were further confirmed through characteristic inhibition plots using Lineweaver-Burk plots. Atomistic molecular dynamics simulations conducted with 0% [C2C1im][MeCO2], 10% [C2C1im][MeCO2], and 25% [C2C1im][MeCO2] revealed the accumulation of [C2C1im]+ at the negatively charged active site of H0HC94 in 10% [C2C1im][MeCO2], supporting the occurrence of competitive inhibition at lower IL concentrations. At higher IL concentrations, the cations and anions bound to the secondary binding sites (SBSs) of H0HC94, leading to a tertiary conformational change, as captured by the principal component analysis based on the free-energy landscape and protein structure networks. The altered conformation of H0HC94 affected the interaction with [C2C1im][MeCO2], which could possibly shift the inhibition from competitive to more mixed-type (competitive + noncompetitive) inhibition, as observed in the experiments. For the first time, we report a combined experimental and theoretical insight behind the mixed inhibition of a GH1 β-glucosidase. Our findings indicated the role of SBS in IL-induced inhibition, which could aid in developing more IL-tolerant β-glucosidases for biorefinery applications.
Collapse
Affiliation(s)
- Bharat Manna
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal741246, India
| | - Pinaki Chanda
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal741246, India
| | - Supratim Datta
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal741246, India
- Center for the Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
- Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
5
|
Chaudhuri S, Srivastava A. Network approach to understand biological systems: From single to multilayer networks. J Biosci 2022. [PMID: 36222127 DOI: 10.1007/s12038-022-00285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Rial R, González-Durruthy M, Liu Z, Ruso JM. Conformational binding mechanism of lysozyme induced by interactions with penicillin antibiotic drugs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
The effect of putrescine on the lysozyme activity and structure: Spectroscopic approaches and molecular dynamic simulation. Colloids Surf B Biointerfaces 2022; 213:112402. [PMID: 35151046 DOI: 10.1016/j.colsurfb.2022.112402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 10/19/2022]
Abstract
The present research addressed the influence of polyamine (putrescine) on the compound as well as function of lysozyme; accordingly, UV- Visible, fluorescence spectroscopy and simulation method were applied to fulfill this goal. Lysozyme's structural variability was examined at various putrescine concentrations; also, the putrescine binding to lysozyme was addressed using spectrofluorescence, circular dichroism (CD) and UV-Vis measurements. The obtained results indicated that with raising the putrescine concentration, the intrinsic quenching fluorescence of lysozyme was decreased based on the static mechanism. Analysis of thermodynamic parameters also indicated that van der Waals as well as hydrogen bond forces served a fundamental role in determining the resulting stability; this was in agreement with modeling studies. Measurement of UV absorption spectroscopy, fluorescence spectroscopy, and circular dichroism spectroscopy also demonstrated that lysozyme's second and tertiary structures were altered in a putrescine concentration-dependent manner. Putrescine inhibited lysozyme's enzymatic activity, displaying its affinity with the lysozyme's active site. Further, molecular simulation conducted revealed that putrescine could have spontaneous binding to lysozyme, changing its structure, thus further emphasizing the experimental results.
Collapse
|
8
|
Ashrafi N, Shareghi B, Farhadian S, Hosseini-Koupaei M. A comparative study of the interaction of naringenin with lysozyme by multi-spectroscopic methods, activity comparisons, and molecular modeling procedures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120931. [PMID: 35085994 DOI: 10.1016/j.saa.2022.120931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/31/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The present study applied steady-state fluorescence, UV-Vis spectrophotometry, molecular docking studies, and circular dichroism (CD) to investigate the interaction of naringenin with lysozyme in an aqueous medium. The UV-Vis measurement indicated the changes in lysozyme secondary and tertiary structure change as a function of the concentration of naringenin. Naringenin could be used to turn the static quenching mechanism into the intrinsic fluorescence of lysozyme. The negative amount of Gibbs free energy (ΔG°) suggested that the binding operation was spontaneous. Fluorescence studies also demonstrated the changes occurring in the Trp microenvironment upon the concatenation into lysozyme. Analysis of thermodynamic parameters also revealed that hydrophobic forces played a fundamental role in determining the complex stability; this was consistent with the previous modeling studies. Circular dichroism also suggested that the alpha-helicity of lysozyme was enhanced as ligand was bound. Naringenin inhibited lysozyme enzymatic activity, displaying its affinity with the lysozyme active site. Further, molecular docking studies demonstrated that naringenin could bind to both residues essential for catalytic activity in the proximity of Trp 62 and Trp 63.
Collapse
Affiliation(s)
- Narges Ashrafi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | | |
Collapse
|
9
|
Radhakrishnan R, Manna B, Ghosh A. Solvent induced conformational changes for the altered activity of laccase: A molecular dynamics study. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127123. [PMID: 34530268 DOI: 10.1016/j.jhazmat.2021.127123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The growing demands of solvent-based industries like paint, pharmaceutical, petrochemical, paper and pulp, etc., have directly increased the release of effluents that are rich in hazardous aromatic compounds in the environment. A sustainable biotechnological approach utilizing laccases as biocatalyst enable in biodegradation of these aromatic toxin-rich effluents. However, this enzymatic process is ineffective as laccases lose their stability and catalytic activity at high organic solvent concentrations. In this study, molecular dynamic simulations of a novel solvent tolerant laccase, DLac from Cerrena sp. RSD1 was performed to explore the molecular-level understanding of DLac in 30%(v/v) acetone and acetonitrile. Solvent-induced conformational changes were analyzed via protein structure network, which was illustrated with respect to cliques and communities. In the presence of acetonitrile, the cliques around the active site and substrate-binding site were disjoined, thus the communities lost their network integrity. Whereas with acetone, the community near the substrate-binding site gained new residues and formed a rigidified network that corresponded to enhanced DLac's activity. Moreover, prominent solvent binding sites were speculated, which can be probable mutation targets to further improve solvent tolerance and catalytic activity. The molecular basis behind solvent induced catalytic activity will further aid in engineering laccase for its industrial application.
Collapse
Affiliation(s)
- Rokesh Radhakrishnan
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Bharat Manna
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
10
|
Basu A, Mahammad A, Das A. Inhibition of the formation of lysozyme fibrillar assemblies by the isoquinoline alkaloid coralyne. NEW J CHEM 2022. [DOI: 10.1039/d1nj06007d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The isoquinoline alkaloid coralyne can efficiently attenuate fibrillogenesis in lysozyme.
Collapse
Affiliation(s)
- Anirban Basu
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Adil Mahammad
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Arindam Das
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| |
Collapse
|
11
|
Zhang F, Richter G, Bourgeois B, Spreitzer E, Moser A, Keilbach A, Kotnik P, Madl T. A General Small-Angle X-ray Scattering-Based Screening Protocol for Studying Physical Stability of Protein Formulations. Pharmaceutics 2021; 14:69. [PMID: 35056965 PMCID: PMC8778066 DOI: 10.3390/pharmaceutics14010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
A fundamental step in developing a protein drug is the selection of a stable storage formulation that ensures efficacy of the drug and inhibits physiochemical degradation or aggregation. Here, we designed and evaluated a general workflow for screening of protein formulations based on small-angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling, temperature control, and fast data analysis and provides protein particle interaction information. SAXS, together with different methods including turbidity analysis, dynamic light scattering (DLS), and SDS-PAGE measurements, were used to obtain different parameters to provide high throughput screenings. Using a set of model proteins and biopharmaceuticals, we show that SAXS is complementary to dynamic light scattering (DLS), which is widely used in biopharmaceutical research and industry. We found that, compared to DLS, SAXS can provide a more sensitive measure for protein particle interactions, such as protein aggregation and repulsion. Moreover, we show that SAXS is compatible with a broader range of buffers, excipients, and protein concentrations and that in situ SAXS provides a sensitive measure for long-term protein stability. This workflow can enable future high-throughput analysis of proteins and biopharmaceuticals and can be integrated with well-established complementary physicochemical analysis pipelines in (biopharmaceutical) research and industry.
Collapse
Affiliation(s)
- Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Gesa Richter
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Armin Moser
- Anton Paar GmbH, 8054 Graz, Austria; (A.M.); (A.K.); (P.K.)
| | | | - Petra Kotnik
- Anton Paar GmbH, 8054 Graz, Austria; (A.M.); (A.K.); (P.K.)
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
12
|
Ou X, Lao Y, Xu J, Wutthinitikornkit Y, Shi R, Chen X, Li J. ATP Can Efficiently Stabilize Protein through a Unique Mechanism. JACS AU 2021; 1:1766-1777. [PMID: 34723279 PMCID: PMC8549052 DOI: 10.1021/jacsau.1c00316] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Recent experiments suggested that ATP can effectively stabilize protein structure and inhibit protein aggregation when its concentration is less than 10 mM, which is significantly lower than cosolvent concentrations required in conventional mechanisms. The ultrahigh efficiency of ATP suggests a unique mechanism that is fundamentally different from previous models of cosolvents. In this work, we used molecular dynamics simulation and experiments to study the interactions of ATPs with three proteins: lysozyme, ubiquitin, and malate dehydrogenase. ATP tends to bind to the surface regions with high flexibility and high degree of hydration. These regions are also vulnerable to thermal perturbations. The bound ATPs further assemble into ATP clusters mediated by Mg2+ and Na+ ions. More interestingly, in Mg2+-free ATP solution, Na+ at higher concentration (150 mM under physiological conditions) can similarly mediate the formation of the ATP cluster on protein. The ATP cluster can effectively reduce the fluctuations of the vulnerable region and thus stabilize the protein against thermal perturbations. Both ATP binding and the considerable improvement of thermal stability of ATP-bound protein were verified by experiments.
Collapse
Affiliation(s)
- Xinwen Ou
- Zhejiang
Province Key Laboratory of Quantum Technology and Device, Department
of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Yichong Lao
- Zhejiang
Province Key Laboratory of Quantum Technology and Device, Department
of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Jingjie Xu
- Eye
Center of the Second Affiliated Hospital, Institute of Translational
Medicine, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yanee Wutthinitikornkit
- Zhejiang
Province Key Laboratory of Quantum Technology and Device, Department
of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Rui Shi
- Zhejiang
Province Key Laboratory of Quantum Technology and Device, Department
of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Xiangjun Chen
- Eye
Center of the Second Affiliated Hospital, Institute of Translational
Medicine, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jingyuan Li
- Zhejiang
Province Key Laboratory of Quantum Technology and Device, Department
of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| |
Collapse
|
13
|
Goswami S, Manna B, Chattopadhyay K, Ghosh A, Datta S. Role of Conformational Change and Glucose Binding Sites in the Enhanced Glucose Tolerance of Agrobacterium tumefaciens 5A GH1 β-Glucosidase Mutants. J Phys Chem B 2021; 125:9402-9416. [PMID: 34384214 DOI: 10.1021/acs.jpcb.1c02150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Glucosidases are often inhibited by their reaction product glucose and a barrier to the efficient lignocellulosic biomass hydrolysis to glucose. We had previously reported the mutants, C174V, and H229S, with a nearly 2-fold increased glucose tolerance over the wild type (WT), H0HC94, encoded in Agrobacterium tumefaciens 5A (apparent Ki,Glc = 686 mM). We report our steady-state and time-resolved intrinsic fluorescence spectroscopy, circular dichroism, and isothermal titration calorimetry (ITC) studies to further understand increased glucose tolerance. Changes in the mutants' emission intensity and the differential change in quenching rate in the absence and presence of glucose reflect changes in protein conformation by glucose. Time-resolved lifetime and anisotropy measurements further indicated the microenvironment differences across solvent-exposed tryptophan residues and a higher hydrodynamic radius due to glucose binding, respectively. ITC measurements confirmed the increase of glucose binding sites in the mutants. The experiment results were supported by molecular dynamics simulations, which revealed significant variations in the glucose-protein hydrogen-bonding profiles. Protein structure network analysis of the simulated structures further indicates the mutants' conformation change than the WT. Computational studies also indicated additional glucose binding sites in mutants. Our results indicate the role of glucose binding in modulating the enzyme response to glucose.
Collapse
Affiliation(s)
- Shubhasish Goswami
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Bharat Manna
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.,P. K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Supratim Datta
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.,Center for the Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.,Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
14
|
Understanding the conformational change and inhibition of hyperthermophilic GH10 xylanase in ionic liquid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Monhemi H, Tabaee SS. The effects of mutation and modification on the structure and stability of human lysozyme: A molecular link between carbamylation and atherosclerosis. J Mol Graph Model 2020; 100:107703. [PMID: 32799051 DOI: 10.1016/j.jmgm.2020.107703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/01/2020] [Accepted: 07/18/2020] [Indexed: 01/09/2023]
Abstract
Amino acid mutations in some proteins such as lysozyme lead to genetically disorder variants and adverse pathogenic consequences. Recently, amino acid modifications were known as a risk factor in many related diseases such as uremia and atherosclerosis, showing the importance of these surface-structure changes. Although the structural consequences of the hereditary proteins have been examined extensively, such effects for the protein modifications are known to a lesser extent. One drawback in the examination of protein modifications is hardness in experimental detection of modifications by techniques such as NMR and crystallography. Molecular modeling and simulation can help to understand such phenomena at the molecular levels. It is more rational that the effects of both mutation and modification can be compared in a single protein model. Here, molecular dynamics simulation is used to compare the effects of a disease-related carbamylation modification and an amyloidogenic mutation (D67H) in human lysozyme as a model protein. The results show that the carbamylation adversely effects on the tertiary structure, leading to the similar unfolding pathway to the hereditary amyloidogenic form. The carbamylation leads to the instability of the overall protein conformation, especially on the β-domain, which is a characteristic of hereditary amyloidosis in human lysozymes. The aggregation behaviors of both modified and mutant lysozyme were examined by molecular docking calculations. The results showed that the partially unfolded lysozyme might form tight protein aggregates upon carbamylation similar to the amyloidogenic variant. Both single and all-residues carbamylations impose serious conformational changes to the tertiary structure of lysozyme. It was obtained that carbamylation of lysozyme strongly effects on the stability of N-terminal β-sheet, which can produce a highly unstable conformation. The results of this study not only show the adverse structural consequences of a disease-associated post-translational modification, but it also may be very helpful to understand the molecular basis for many carbamylation-related diseases such as atherosclerosis in ESRD patients. The results show that non-native post-translational modifications may be as structurally important as hereditary mutations.
Collapse
Affiliation(s)
- Hassan Monhemi
- Department of Chemistry, University of Neyshabur, Neyshabur, Iran.
| | - Seyedeh Samaneh Tabaee
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran; Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
16
|
Chakrabarty B, Das D, Bung N, Roy A, Bulusu G. Network analysis of hydroxymethylbilane synthase dynamics. J Mol Graph Model 2020; 99:107641. [PMID: 32619952 DOI: 10.1016/j.jmgm.2020.107641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Hydroxymethylbilane synthase (HMBS) is one of the key enzymes of the heme biosynthetic pathway that catalyzes porphobilinogen to form the linear tetrapyrrole 1-hydroxymethylbilane through four intermediate steps. Mutations in the human HMBS (hHMBS) can lead to acute intermittent porphyria (AIP), a lethal metabolic disorder. The molecular basis of importance of the amino acid residues at the catalytic site of hHMBS has been well studied. However, the role of non-active site residues toward the activity of the enzyme and hence the association of their mutations with AIP is not known. Network-based analyses of protein structures provide a systems approach to understand the correlations of the residues through a series of inter-residue interactions. We analyzed the dynamic network representation of HMBS protein derived from five molecular dynamics trajectories corresponding to the five steps of pyrrole polymerization. We analyzed the network clusters for each stage and identified the amino acid residues and interactions responsible for the structural stability and catalytic function of the protein. The analysis of high betweenness nodes and interaction paths from the active site help in understanding the molecular basis of the effect of non-active site AIP-causing mutations on the catalytic activity.
Collapse
Affiliation(s)
- Broto Chakrabarty
- TCS Innovation Labs - Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India
| | - Dibyajyoti Das
- TCS Innovation Labs - Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India
| | - Navneet Bung
- TCS Innovation Labs - Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India
| | - Arijit Roy
- TCS Innovation Labs - Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India
| | - Gopalakrishnan Bulusu
- TCS Innovation Labs - Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India.
| |
Collapse
|
17
|
Kabir A, Jash C, Payghan PV, Ghoshal N, Kumar GS. Polyamines and its analogue modulates amyloid fibrillation in lysozyme: A comparative investigation. Biochim Biophys Acta Gen Subj 2020; 1864:129557. [PMID: 32045632 DOI: 10.1016/j.bbagen.2020.129557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/03/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Polyamines can induce protein aggregation that can be related to the physiology of the cellular function. Polyamines have been implicated in protein aggregation which may lead to neuropathic and non neuropathic amyloidosis. SCOPE OF REVIEW Change in the level of polyamine concentration has been associated with ageing and neurodegeneration such as Parkinson's disease, Alzheimer's disease. Lysozyme aggregation in the presence of polyamines leads to non neuropathic amyloidosis. Polyamine analogues can suppress or inhibit protein aggregation suggesting their efficacy against amyloidogenic protein aggregates. MAJOR CONCLUSIONS In this study we report the comparative interactions of lysozyme with the polyamine analogue, 1-naphthyl acetyl spermine in comparison with the biogenic polyamines through spectroscopy, calorimetry, imaging and docking techniques. The findings revealed that the affinity of binding varied as spermidine > 1-naphthyl acetyl spermine > spermine. The biogenic polyamines accelerated the rate of fibrillation significantly, whereas the analogue inhibited the rate of fibrillation to a considerable extent. The polyamines bind near the catalytic diad residues viz. Glu35 and Asp52, and in close proximity of Trp62 residue. However, the analogue showed dual nature of interaction where its alkyl amine region bind in same way as the biogenic polyamines bind to the catalytic site, while the naphthyl group makes hydrophobic contacts with Trp62 and Trp63, thereby suggesting its direct influence on fibrillation. GENERAL SIGNIFICANCE This study, thus, potentiates, the development of a polyamine analogue that can perform as an effective inhibitor targeted towards aggregation of amyloidogenic proteins.
Collapse
Affiliation(s)
- Ayesha Kabir
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Chandrima Jash
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Pavan V Payghan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Nanda Ghoshal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
18
|
Manna B, Ghosh A. Structure and dynamics of ionic liquid tolerant hyperthermophilic endoglucanase Cel12A from Rhodothermus marinus. RSC Adv 2020; 10:7933-7947. [PMID: 35492170 PMCID: PMC9049953 DOI: 10.1039/c9ra09612d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
Economic deconstruction of lignocellulose remains a challenge due to the complex architecture of cellulose, hemicellulose, and lignin. Advancements in pretreatment processes have introduced ionic liquids (ILs) as promising non-derivatizing solvents for reducing biomass recalcitrance and for promoting enzymatic hydrolysis. However, available commercial cellulases are destabilized or inactivated even in low concentration of residual ILs. Thus, a molecular understanding of IL-enzyme interactions is crucial for developing IL-tolerant enzymes with high catalytic activity. In this study, molecular insight behind the IL tolerance of hyperthermophilic endoglucanase Cel12A from Rhodothermus marinus (RmCel12A) has been investigated in 20%, 40%, and 60% 1-ethyl-3-methylimidazolium acetate (EmimAc) through molecular dynamic simulations at 368 K. Though the enzyme retained its stability in all EmimAc concentrations, the activity was affected due to the loss of essential dynamic motions. A protein structure network was constructed using the snapshots of protein structures from the simulation trajectories and the hub properties of residues R20, Y59, W68, W197, E203, and F220 were found to be lost in 60% EmimAc. Emim cations were observed to intrude the active site tunnel and interact with more number of catalytic residues with higher cumulative fractional occupancy in 60% EmimAc than in 20% or 40% EmimAc. Some non-catalytic residues have also been identified at the active site, which can be probable mutation targets for improving the IL tolerance. Our findings reveal the molecular understanding behind the origin of activity loss of RmCel12A and proposed insights for the further improvement of IL sensitivity. Understanding the behavior of ionic liquid tolerant hyperthermophilic endoglucanase Cel12A from Rhodothermus marinus in different concentrations of EmimAc.![]()
Collapse
Affiliation(s)
- Bharat Manna
- School of Energy Science and Engineering
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Amit Ghosh
- School of Energy Science and Engineering
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
- P.K. Sinha Centre for Bioenergy and Renewables
| |
Collapse
|
19
|
Ansari SS, Yousuf I, Arjmand F, Siddiqi MK, Naqvi S. Exploring the intermolecular interactions and contrasting binding of flufenamic acid with hemoglobin and lysozyme: A biophysical and docking insight. Int J Biol Macromol 2018; 116:1105-1118. [DOI: 10.1016/j.ijbiomac.2018.05.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/22/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
|
20
|
Bhat IA, Roy B, Kabir-ud-Din. Synthesis and biophysical analysis of a novel gemini surfactant with lysozyme: Industrial perspective. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Lukasiewicz J, Lugowski C. Editorial: O-specific polysaccharide confers lysozyme resistance to extraintestinal pathogenic Escherichia coli. Virulence 2018; 9:919-922. [PMID: 29638195 PMCID: PMC5955433 DOI: 10.1080/21505594.2018.1460188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jolanta Lukasiewicz
- a Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Czeslaw Lugowski
- a Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| |
Collapse
|
22
|
Li N, Han Z, Li L, Zhang B, Liu Z, Li J. The anti-cataract molecular mechanism study in selenium cataract rats for baicalin ophthalmic nanoparticles. Drug Des Devel Ther 2018; 12:1399-1411. [PMID: 29872263 PMCID: PMC5973426 DOI: 10.2147/dddt.s160524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The objective of this study was to investigate the effects of the solid lipid nanoparticles of baicalin (BA-SLNs) on an experimental cataract model and explore the molecular mechanism combined with bioinformatics analysis. MATERIALS AND METHODS The transparency of lens was observed daily by slit-lamp and photography. Lenticular opacity was graded. Two-dimensional gel electrophoresis (2-DE) was employed to analyze the differential protein expression modes in each group. Proteins of interest were subjected to protein identification by nano-liquid chromatography tandem mass spectrometry (LC-MS/MS). Bioinformatics analysis was performed using the Ingenuity Pathway Analysis (IPA) online software to comprehend the biological implications of the proteins identified by proteomics. RESULTS At the end of the sodium selenite-induced cataract progression, almost all lenses from the model group developed partial nuclear opacity; however, all lenses were clear and normal in the blank group. There was no significant difference between the BA-SLNs group and the blank group. Many protein spots were differently expressed in 2-DE patterns of total proteins of lenses from each group, and 65 highly different protein spots were selected to be identified between the BA-SLNs group and the model group. A total of 23 proteins were identified, and 12 of which were crystalline proteins. CONCLUSION We considered crystalline proteins to play important roles in preserving the normal expression levels of proteins and the transparency of lenses. The general trend in the BA-SLN-treated lenses' data showed that BA-SLNs regulated the protein expression mode of cataract lenses to normal lenses. Our findings suggest that BA-SLNs may be a potential therapeutic agent in treating cataract by regulating protein expression and may also be a strong candidate for future clinical research.
Collapse
Affiliation(s)
- Nan Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Zhenzhen Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Baokang Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Lin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Jiawei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| |
Collapse
|
23
|
Yadav KK, Arakha M, Das B, Mallick B, Jha S. Preferential binding to zinc oxide nanoparticle interface inhibits lysozyme fibrillation and cytotoxicity. Int J Biol Macromol 2018; 116:955-965. [PMID: 29778879 DOI: 10.1016/j.ijbiomac.2018.05.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023]
Abstract
The aim of present investigation is to explore the effect of zinc oxide nanoparticles (ZnONP, 30 nm) interface on conformational dynamics and stability of lysozyme, at pH 7.4 and pH 9.0. Lysozyme adopts partially disordered conformation at pH 9.0, which adopts fibril morphology in presence of sodium dodecyl sulfate (SDS), compared to the conformation adopted at pH 7.4. However, the presence of ZnONP interface renders partially disordered lysozyme relatively regular and non-amyloidogenic conformation, and enhances the functional efficacy of lysozyme at pH 9.0. Additionally, the thermograms reveal a non-cooperative unfolding of the pH 9.0 lysozyme conformation, which accompanied with intermediate conformations that increased with increase in the interface concentration. The binding thermodynamics indicate that at pH 9.0, lysozyme conformation preferentially binds to ZnONP interface than SDS interface. The preferential binding is attributed for the resulting anti-fibrillation propensity of ZnONP interface. The data, altogether, suggest that the presence of ZnONP interface resulted in conformational rearrangements in the partially disordered lysozyme at pH 9.0 causing accumulation of non-amyloidogenic and functionally active intermediates, thus shielding the lysozyme from SDS induced fibrillation and cytotoxicity.
Collapse
Affiliation(s)
- Kanti K Yadav
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Manoranjan Arakha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Basudeb Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Bibekanand Mallick
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Suman Jha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
24
|
Ming D, Chen R, Huang H. Amino-Acid Network Clique Analysis of Protein Mutation Non-Additive Effects: A Case Study of Lysozme. Int J Mol Sci 2018; 19:ijms19051427. [PMID: 29747478 PMCID: PMC5983764 DOI: 10.3390/ijms19051427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/28/2018] [Accepted: 05/07/2018] [Indexed: 01/23/2023] Open
Abstract
Optimizing amino-acid mutations in enzyme design has been a very challenging task in modern bio-industrial applications. It is well known that many successful designs often hinge on extensive correlations among mutations at different sites within the enzyme, however, the underpinning mechanism for these correlations is far from clear. Here, we present a topology-based model to quantitively characterize non-additive effects between mutations. The method is based on the molecular dynamic simulations and the amino-acid network clique analysis. It examines if the two mutation sites of a double-site mutation fall into to a 3-clique structure, and associates such topological property of mutational site spatial distribution with mutation additivity features. We analyzed 13 dual mutations of T4 phage lysozyme and found that the clique-based model successfully distinguishes highly correlated or non-additive double-site mutations from those additive ones whose component mutations have less correlation. We also applied the model to protein Eglin c whose structural topology is significantly different from that of T4 phage lysozyme, and found that the model can, to some extension, still identify non-additive mutations from additive ones. Our calculations showed that mutation non-additive effects may heavily depend on a structural topology relationship between mutation sites, which can be quantitatively determined using amino-acid network k-cliques. We also showed that double-site mutation correlations can be significantly altered by exerting a third mutation, indicating that more detailed physicochemical interactions should be considered along with the network clique-based model for better understanding of this elusive mutation-correlation principle.
Collapse
Affiliation(s)
- Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Biotech Building Room B1-404, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China.
| | - Rui Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Biotech Building Room B1-404, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China.
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Biotech Building Room B1-404, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China.
- College of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, Jiangsu, China.
| |
Collapse
|
25
|
Choudhury CK, Tu S, Luzinov I, Minko S, Kuksenok O. Designing Highly Thermostable Lysozyme–Copolymer Conjugates: Focus on Effect of Polymer Concentration. Biomacromolecules 2018. [DOI: 10.1021/acs.biomac.8b00027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chandan Kumar Choudhury
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sidong Tu
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Igor Luzinov
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sergiy Minko
- Nanostructured Materials Laboratory, The University of Georgia, Athens, Georgia 30602, United States
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
26
|
Basu A, Bhattacharya SC, Kumar GS. Influence of the ionic liquid 1-butyl-3-methylimidazolium bromide on amyloid fibrillogenesis in lysozyme: Evidence from photophysical and imaging studies. Int J Biol Macromol 2018; 107:2643-2649. [DOI: 10.1016/j.ijbiomac.2017.10.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/23/2023]
|
27
|
Rudra S, Jana A, Sepay N, Patel BK, Mahapatra A. Characterization of the binding of strychnine with bovine β-lactoglobulin and human lysozyme using spectroscopic, kinetic and molecular docking analysis. NEW J CHEM 2018. [DOI: 10.1039/c8nj00810h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The binding interaction of a well known alkaloid strychnine (STN) with the mammalian milk protein β-lactoglobulin and human lysozyme has been explored by using several spectroscopic techniques along with computational studies.
Collapse
Affiliation(s)
- Suparna Rudra
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Abhisek Jana
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | | | | |
Collapse
|
28
|
Xia Z, Williams ER. Protein-Glass Surface Interactions and Ion Desalting in Electrospray Ionization with Submicron Emitters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:194-202. [PMID: 29027129 DOI: 10.1007/s13361-017-1825-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 05/27/2023]
Abstract
Theta glass electrospray emitters can rapidly mix solutions to investigate fast reactions that occur as quickly as 1 μs, but emitters with submicron tips have the unusual properties of desalting protein ions and affecting the observed abundances of some proteins as a result of protein-surface interactions. The role of protein physical properties on ion signal was investigated using 1.7 ± 0.1 μm and 269 ± 7 nm emitters and 100 mM aqueous ammonium acetate or ammonium bicarbonate solutions. Protein ion desalting occurs for both positive and negative ions. The signal of a mixture of proteins with the 269 nm tips is time-dependent and the order in which ions of each protein is observed is related to the expected strengths of the protein-surface interactions. These results indicate that it is not just the high surface-to-volume ratio that plays a role in protein adsorption and reduction or absence of initial ion signal, but the small diffusion distance and extremely low flow rates of the smaller emitters can lead to complete adsorption of some proteins and loss of signal until the adsorption sites are filled and the zeta potential is significantly reduced. After about 30 min, signals for a protein mixture from the two different size capillaries are similar. These results show the advantages of submicron emitters but also indicate that surface effects must be taken into account in experiments using such small tips or that coating the emitter surface to prevent adsorption should be considered. Graphical Abstract.
Collapse
Affiliation(s)
- Zije Xia
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.
| |
Collapse
|
29
|
Fanelli F, Felline A. Uncovering GPCR and G Protein Function by Protein Structure Network Analysis. COMPUTATIONAL TOOLS FOR CHEMICAL BIOLOGY 2017. [DOI: 10.1039/9781788010139-00198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein structure network (PSN) analysis is one of the graph theory-based approaches currently used for investigating structural communication in biomolecular systems. Information on the system's dynamics can be provided by atomistic molecular dynamics (MD) simulations or coarse grained elastic network models paired with normal mode analysis (ENM-NMA). This chapter reports on selected applications of PSN analysis to uncover the structural communication in G protein coupled receptors (GPCRs) and G proteins. Strategies to highlight changes in structural communication caused by mutations, ligand and protein binding are described. Conserved amino acids, sites of misfolding mutations, or ligands acting as functional switches tend to behave as hubs in the native structure networks. Densely linked regions in the protein structure graphs could be identified as playing central roles in protein stability and function. Changes in the communication pathway fingerprints depending on the bound ligand or following amino acid mutation could be highlighted as well. A bridge between misfolding and misrouting could be established in rhodopsin mutants linked to inherited blindness. The analysis of native network perturbations by misfolding mutations served to infer key structural elements of protein responsiveness to small chaperones with implications for drug discovery.
Collapse
Affiliation(s)
- Francesca Fanelli
- Department of Life Sciences University of Modena and Reggio Emilia Italy
- Center for Neuroscience and Neurotechnology University of Modena and Reggio Emilia Italy
| | - Angelo Felline
- Department of Life Sciences University of Modena and Reggio Emilia Italy
| |
Collapse
|
30
|
Das I, Halder M. Counterpointing Scenarios on the Fate of Different Prototropic Forms of Norfloxacin Housed in the Pocket of Lysozyme: The Nonelectrostatic Interactions in the Protein Interior Are in the Controlling Role on the Prototropic Equilibria of the Guest. ACS OMEGA 2017; 2:5504-5517. [PMID: 30023748 PMCID: PMC6044686 DOI: 10.1021/acsomega.7b00703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/16/2017] [Indexed: 05/21/2023]
Abstract
Herein, we report a comprehensive study on the interaction of three protomeric forms of the antibacterial drug norfloxacin (nfx) with the enzymatic protein human lysozyme (lyz). Norfloxacin, having the option for two-stage acid-base equilibria, converts from cationic (nfx+) to zwitterionic (nfx±) form, followed by an anionic (nfx-) species, with increasing pH. Among these protomeric forms, lysozyme binds nfx± most robustly, whereas nfx- has a weak association and nfx+ does not show any interaction. In lysozyme, the location of the drug was ascertained by competitive binding assay with 8-anilino-1-naphthalenesulfonate, and this was further examined with molecular docking simulation. The binding process was found to be primarily governed by hydrogen bonding and van der Waals interactions. The study has further revealed that preferential binding of nfx± by the protein over nfx- led to a switchover of nfx- to nfx±; and the resulting increased population of nfx± over the other is beneficial for the pharmacological activity of the drug in terms of its accumulation in the target bacterial cells. The present study accomplishes two important objectives. It holds significance regarding the differential interaction of multiprotomeric drugs with biomolecules, such as proteins, enzymes, lipid membranes, etc., and also on such biomolecule-assisted alteration of the acid-base equilibrium and consequent bioavailability of the drug. The findings are useful from the viewpoints of dispensation, distribution, and metabolism of any prototropic drug in living systems as they encounter several biomolecules in vivo. Another importance of this work stems from the study of comparative binding responses of lysozyme toward a drug existing in multiple forms depending on its protonation states or some other chemical processes.
Collapse
Affiliation(s)
| | - Mintu Halder
- E-mail: . Tel: +91-3222-283314. Fax: +91-3222-282252
| |
Collapse
|
31
|
Dissecting intrinsic and ligand-induced structural communication in the β3 headpiece of integrins. Biochim Biophys Acta Gen Subj 2017; 1861:2367-2381. [DOI: 10.1016/j.bbagen.2017.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
|
32
|
Roy N, Nath S, Paul PC, Singh TS. Fluorescence Behavior of Schiff Base-N, N'-bis(salicylidene) Trans 1, 2-Diaminocyclohexane in Proteinous and Micellar Environments. J Fluoresc 2017; 27:2295-2311. [PMID: 28831629 DOI: 10.1007/s10895-017-2171-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/10/2017] [Indexed: 11/28/2022]
Abstract
Fluorescence properties of N, N'-bis(salicylidene) trans 1, 2-diaminocyclohexane (H 2 L) is used to probe the anionic (SDS), cationic (CTAB) and nonionic (TX-100) micelles as well as in serum albumins (BSA and HSA) and chicken egg white lysozyme (LYZ) by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found to increase with concomitant blue-shift with gradual addition of different surfactants. All the experimental results suggest that the probe molecule resides in the micelle-water interface rather than going into the micellar core. However, the penetration is more towards the micellar hydrocarbon core in nonionic surfactant (TX-100) while comparing with ionic surfactants (SDS and CTAB). Several mean microscopic properties such as critical micelle concentration, polarity parameters and binding constant were calculated in presence of different surfactants. The decrease in nonradiative decay rate constants in micellar environments indicates restricted motion of the probe inside the micellar nanocages with increasing fluorescence emission intensity and quantum yields. Further in this work, we also investigated the interaction behavior of the probe with different proteins at low concentrations under physiological conditions (pH = 7.4). Stern-Volmer analysis of the tryptophan (Trp) fluorescence quenching data in presence of probe reveals Stern-Volmer constant (Ksv) as well as bimolecular quenching rate constant (Kq). The binding constant as well as the number of binding sites of the probe with proteins were also monitored and found to be 1:1 stoichiometry ratio.
Collapse
Affiliation(s)
- Nayan Roy
- Department of Chemistry, Assam University, Silchar, Assam, 788 011, India
| | - Surjatapa Nath
- Department of Chemistry, Assam University, Silchar, Assam, 788 011, India
| | - Pradip C Paul
- Department of Chemistry, Assam University, Silchar, Assam, 788 011, India
| | - T Sanjoy Singh
- Department of Chemistry, Assam University, Silchar, Assam, 788 011, India.
| |
Collapse
|
33
|
Basu A, Suresh Kumar G. Binding and Inhibitory Effect of the Dyes Amaranth and Tartrazine on Amyloid Fibrillation in Lysozyme. J Phys Chem B 2017; 121:1222-1239. [DOI: 10.1021/acs.jpcb.6b10465] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
34
|
Basu A, Suresh Kumar G. Interaction and inhibitory influence of the azo dye carmoisine on lysozyme amyloid fibrillogenesis. MOLECULAR BIOSYSTEMS 2017. [DOI: 10.1039/c7mb00207f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The azo dye carmoisine has a significant inhibitory effect on fibrillogenesis in lysozyme.
Collapse
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory
- Organic & Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Organic & Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| |
Collapse
|
35
|
Das I, Panja S, Halder M. Modulation and Salt-Induced Reverse Modulation of the Excited-State Proton-Transfer Process of Lysozymized Pyranine: The Contrasting Scenario of the Ground-State Acid–Base Equilibrium of the Photoacid. J Phys Chem B 2016; 120:7076-87. [DOI: 10.1021/acs.jpcb.6b04111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ishita Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sudipta Panja
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mintu Halder
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
36
|
Millan S, Satish L, Kesh S, Chaudhary YS, Sahoo H. Interaction of Lysozyme with Rhodamine B: A combined analysis of spectroscopic & molecular docking. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:248-257. [PMID: 27390893 DOI: 10.1016/j.jphotobiol.2016.06.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 06/15/2016] [Accepted: 06/27/2016] [Indexed: 01/24/2023]
Abstract
The interaction of Rhodamine B (RB) with Lysozyme (Lys) was investigated by different optical spectroscopic techniques such as absorption, fluorescence, and circular-dichroism (CD), along with molecular docking studies. The fluorescence results (including steady-state and time-resolved mode) revealed that the addition of RB effectively causes strong quenching of intrinsic fluorescence in Lysozyme and mostly, by the static quenching mechanism. Different binding and thermodynamic parameters were calculated at different temperatures and the binding constant value was found to be 2963.54Lmol(-1) at 25°C. The average distance (r0) was found to be 3.31nm according to Förster's theory of non-radiative energy transfer between Lysozyme and RB. The conformational change in Lysozyme during interaction with RB was confirmed from absorbance, synchronous fluorescence, and circular dichroism measurements. Finally, molecular docking studies were done to confirm that the dye binds with Lysozyme.
Collapse
Affiliation(s)
- Sabera Millan
- Department of Chemistry, National Institute of Technology (NIT), Rourkela, Odisha, India
| | - Lakkoji Satish
- Department of Chemistry, National Institute of Technology (NIT), Rourkela, Odisha, India
| | - Sandeep Kesh
- Department of Chemistry, National Institute of Technology (NIT), Rourkela, Odisha, India
| | - Yatendra S Chaudhary
- Colloids and Materials Chemistry Department, Institute of Minerals and Materials Technology, Bhubaneswar, India
| | - Harekrushna Sahoo
- Department of Chemistry, National Institute of Technology (NIT), Rourkela, Odisha, India.
| |
Collapse
|
37
|
Molecular Dynamics Simulations and Structural Analysis to Decipher Functional Impact of a Twenty Residue Insert in the Ternary Complex of Mus musculus TdT Isoform. PLoS One 2016; 11:e0157286. [PMID: 27311013 PMCID: PMC4911049 DOI: 10.1371/journal.pone.0157286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 05/26/2016] [Indexed: 01/08/2023] Open
Abstract
Insertions/deletions are common evolutionary tools employed to alter the structural and functional repertoire of protein domains. An insert situated proximal to the active site or ligand binding site frequently impacts protein function; however, the effect of distal indels on protein activity and/or stability are often not studied. In this paper, we have investigated a distal insert, which influences the function and stability of a unique DNA polymerase, called terminal deoxynucleotidyl transferase (TdT). TdT (EC:2.7.7.31) is a monomeric 58 kDa protein belonging to family X of eukaryotic DNA polymerases and known for its role in V(D)J recombination as well as in non-homologous end-joining (NHEJ) pathways. Two murine isoforms of TdT, with a length difference of twenty residues and having different biochemical properties, have been studied. All-atom molecular dynamics simulations at different temperatures and interaction network analyses were performed on the short and long-length isoforms. We observed conformational changes in the regions distal to the insert position (thumb subdomain) in the longer isoform, which indirectly affects the activity and stability of the enzyme through a mediating loop (Loop1). A structural rationale could be provided to explain the reduced polymerization rate as well as increased thermosensitivity of the longer isoform caused by peripherally located length variations within a DNA polymerase. These observations increase our understanding of the roles of length variants in introducing functional diversity in protein families in general.
Collapse
|
38
|
Halder S, Surolia A, Mukhopadhyay C. Dynamics simulation of soybean agglutinin (SBA) dimer reveals the impact of glycosylation on its enhanced structural stability. Carbohydr Res 2016; 428:8-17. [DOI: 10.1016/j.carres.2016.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/10/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
|
39
|
Roy S, Basu S, Dasgupta D, Bhattacharyya D, Banerjee R. The Unfolding MD Simulations of Cyclophilin: Analyzed by Surface Contact Networks and Their Associated Metrics. PLoS One 2015; 10:e0142173. [PMID: 26545107 PMCID: PMC4636149 DOI: 10.1371/journal.pone.0142173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 10/18/2015] [Indexed: 11/19/2022] Open
Abstract
Currently, considerable interest exists with regard to the dissociation of close packed aminoacids within proteins, in the course of unfolding, which could result in either wet or dry moltenglobules. The progressive disjuncture of residues constituting the hydrophobic core ofcyclophilin from L. donovani (LdCyp) has been studied during the thermal unfolding of the molecule, by molecular dynamics simulations. LdCyp has been represented as a surface contactnetwork (SCN) based on the surface complementarity (Sm) of interacting residues within themolecular interior. The application of Sm to side chain packing within proteins make it a very sensitive indicator of subtle perturbations in packing, in the thermal unfolding of the protein. Network based metrics have been defined to track the sequential changes in the disintegration ofthe SCN spanning the hydrophobic core of LdCyp and these metrics prove to be highly sensitive compared to traditional metrics in indicating the increased conformational (and dynamical) flexibility in the network. These metrics have been applied to suggest criteria distinguishing DMG, WMG and transition state ensembles and to identify key residues involved in crucial conformational/topological events during the unfolding process.
Collapse
Affiliation(s)
- Sourav Roy
- Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata, 700064 India
| | - Sankar Basu
- Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata, 700064 India
| | - Dipak Dasgupta
- Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata, 700064 India
| | - Dhananjay Bhattacharyya
- Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata, 700064 India
- * E-mail: (DB); (RB)
| | - Rahul Banerjee
- Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata, 700064 India
- * E-mail: (DB); (RB)
| |
Collapse
|
40
|
Ali MS, Al-Lohedan HA. Interaction of biocompatible sugar based surfactant n-dodecyl β-d-maltoside with lysozyme. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.05.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Yang Y, Li D, Xu C. Influences of urea, pH and metal ions on the interaction between cepharanthine and lysozyme by steady state fluorescence spectroscopy. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.12.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Jash C, Basu P, Payghan PV, Ghoshal N, Kumar GS. Chelerythrine–lysozyme interaction: spectroscopic studies, thermodynamics and molecular modeling exploration. Phys Chem Chem Phys 2015; 17:16630-45. [DOI: 10.1039/c5cp00424a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding of the iminium and alkanolamine forms of chelerythrine to lysozyme (Lyz) was investigated by spectroscopy and molecular modeling studies.
Collapse
Affiliation(s)
- Chandrima Jash
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Pritha Basu
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Pavan V. Payghan
- Structural Biology and Bioinformatics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Nanda Ghoshal
- Structural Biology and Bioinformatics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| |
Collapse
|
43
|
Miao Y. Application of BSA-bioconjugated phosphorescence nanohybrids in protein detection in biofluids. RSC Adv 2015. [DOI: 10.1039/c5ra11691k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a cross-linking agent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) was used to link QDs and bovine serum albumin (BSA) to form a nanohybrid BSA–Mn-ZnS Room-Temperature Phosphorescence (RTP) biosensor.
Collapse
|
44
|
Akram M, Bhat IA, Kabir-ud-Din KUD. New insights into binding interaction of novel ester-functionalized m-E2-m gemini surfactants with lysozyme: a detailed multidimensional study. RSC Adv 2015. [DOI: 10.1039/c5ra20576j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different binding patterns of m-E2-m (12-E2-12 and 14-E2-14) surfactants to HEWL.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | | | | |
Collapse
|
45
|
Jash C, Payghan PV, Ghoshal N, Suresh Kumar G. Binding of the Iminium and Alkanolamine Forms of Sanguinarine to Lysozyme: Spectroscopic Analysis, Thermodynamics, and Molecular Modeling Studies. J Phys Chem B 2014; 118:13077-91. [DOI: 10.1021/jp5068704] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chandrima Jash
- Biophysical Chemistry Laboratory, Chemistry Division and ‡Structural Biology
and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Pavan V. Payghan
- Biophysical Chemistry Laboratory, Chemistry Division and ‡Structural Biology
and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Nanda Ghoshal
- Biophysical Chemistry Laboratory, Chemistry Division and ‡Structural Biology
and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division and ‡Structural Biology
and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
46
|
Li D, Zhang T, Ji B. Influences of pH, urea and metal ions on the interaction of sinomenine with Lysozyme by steady state fluorescence spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:440-6. [PMID: 24813272 DOI: 10.1016/j.saa.2014.04.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 05/10/2023]
Abstract
The interaction between sinomenine and Lysozyme (Lys) in aqueous solution has been systemically investigated by fluorescence spectroscopic techniques at pH 7.4. The quenching rate constants and binding constants calculated indicated the static quenching mechanism and medium binding force. The effect of sinomenine on the conformation of Lys was analyzed using synchronous fluorescence and three-dimensional (3D) fluorescence. In addition, influence of pH on the binding of sinomenine to Lys was investigated and the binding ability of the drug to Lys deceased under other pH conditions (pH 9.0, 3.5, and 1.9) as compared with that at pH 7.4. As compared with the binding ability of sinomenine to native Lys, that of sinomenine to denatured Lys deceases dramatically. Furthermore, the effect of many metal ions on the binding constant of sinomenine with Lys was investigated.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China.
| | - Tian Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Baoming Ji
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| |
Collapse
|
47
|
Tiberti M, Invernizzi G, Lambrughi M, Inbar Y, Schreiber G, Papaleo E. PyInteraph: a framework for the analysis of interaction networks in structural ensembles of proteins. J Chem Inf Model 2014; 54:1537-51. [PMID: 24702124 DOI: 10.1021/ci400639r] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the last years, a growing interest has been gathering around the ability of Molecular Dynamics (MD) to provide insight into the paths of long-range structural communication in biomolecules. The knowledge of the mechanisms related to structural communication helps in the rationalization in atomistic details of the effects induced by mutations, ligand binding, and the intrinsic dynamics of proteins. We here present PyInteraph, a tool for the analysis of structural ensembles inspired by graph theory. PyInteraph is a software suite designed to analyze MD and structural ensembles with attention to binary interactions between residues, such as hydrogen bonds, salt bridges, and hydrophobic interactions. PyInteraph also allows the different classes of intra- and intermolecular interactions to be represented, combined or alone, in the form of interaction graphs, along with performing network analysis on the resulting interaction graphs. The program also integrates the network description with a knowledge-based force field to estimate the interaction energies between side chains in the protein. It can be used alone or together with the recently developed xPyder PyMOL plugin through an xPyder-compatible format. The software capabilities and associated protocols are here illustrated by biologically relevant cases of study. The program is available free of charge as Open Source software via the GPL v3 license at http://linux.btbs.unimib.it/pyinteraph/.
Collapse
Affiliation(s)
- Matteo Tiberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Yan W, Zhou J, Sun M, Chen J, Hu G, Shen B. The construction of an amino acid network for understanding protein structure and function. Amino Acids 2014; 46:1419-39. [PMID: 24623120 DOI: 10.1007/s00726-014-1710-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 02/21/2014] [Indexed: 01/08/2023]
Abstract
Amino acid networks (AANs) are undirected networks consisting of amino acid residues and their interactions in three-dimensional protein structures. The analysis of AANs provides novel insight into protein science, and several common amino acid network properties have revealed diverse classes of proteins. In this review, we first summarize methods for the construction and characterization of AANs. We then compare software tools for the construction and analysis of AANs. Finally, we review the application of AANs for understanding protein structure and function, including the identification of functional residues, the prediction of protein folding, analyzing protein stability and protein-protein interactions, and for understanding communication within and between proteins.
Collapse
Affiliation(s)
- Wenying Yan
- Center for Systems Biology, Soochow University, Suzhou, 215006, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
49
|
Mandal M, Mukhopadhyay C. Microsecond molecular dynamics simulation of guanidinium chloride induced unfolding of ubiquitin. Phys Chem Chem Phys 2014; 16:21706-16. [DOI: 10.1039/c4cp01657b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
All atom molecular dynamics simulations have been used to explore the atomic detail mechanism of guanidinium induced unfolding of the protein ubiquitin.
Collapse
Affiliation(s)
- Manoj Mandal
- Department of Chemistry
- University of Calcutta
- Kolkata – 700 009, India
| | | |
Collapse
|
50
|
Chauhan S, Chauhan M, Sharma P, Rana D. Thermodynamics and micellization of cetyltrimethyl ammonium bromide in the presence of lysozyme. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|