1
|
Fujiwara S. Dynamical Behavior of Disordered Regions in Disease-Related Proteins Revealed by Quasielastic Neutron Scattering. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:795. [PMID: 35744058 PMCID: PMC9230977 DOI: 10.3390/medicina58060795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Background and Objectives: Intrinsically disordered proteins (IDPs) and proteins containing intrinsically disordered regions (IDRs) are known to be involved in various human diseases. Since the IDPs/IDRs are fluctuating between many structural substrates, the dynamical behavior of the disease-related IDPs/IDRs needs to be characterized to elucidate the mechanisms of the pathogenesis of the diseases. As protein motions have a hierarchy ranging from local side-chain motions, through segmental motions of loops or disordered regions, to diffusive motions of entire molecules, segmental motions, as well as local motions, need to be characterized. Materials and Methods: Combined analysis of quasielastic neutron scattering (QENS) spectra with the structural data provides information on both the segmental motions and the local motions of the IDPs/IDRs. Here, this method is applied to re-analyze the QENS spectra of the troponin core domain (Tn-CD), various mutants of which cause the pathogenesis of familial cardiomyopathy (FCM), and α-synuclein (αSyn), amyloid fibril formation of which is closely related to the pathogenesis of Parkinson's disease, collected in the previous studies. The dynamical behavior of wild-type Tn-CD, FCM-related mutant Tn-CD, and αSyn in the different propensity states for fibril formation is characterized. Results: In the Tn-CD, the behavior of the segmental motions is shown to be different between the wild type and the mutant. This difference is likely to arise from changes in the intramolecular interactions, which are suggested to be related to the functional aberration of the mutant Tn-CD. In αSyn, concerted enhancement of the segmental motions and the local motions is observed with an increased propensity for fibril formation, suggesting the importance of these motions in fibril formation. Conclusions: Characterization of the segmental motions as well as the local motions is thus useful for discussing how the changes in dynamical behavior caused by the disease-related mutations and/or environmental changes could be related to the functional and/or behavioral aberrations of these proteins.
Collapse
Affiliation(s)
- Satoru Fujiwara
- Institute for Quantum Biology, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
2
|
Gatin A, Duchambon P, van der Rest G, Billault I, Sicard-Roselli C. Protein Dimerization via Tyr Residues: Highlight of a Slow Process with Co-Existence of Numerous Intermediates and Final Products. Int J Mol Sci 2022; 23:ijms23031174. [PMID: 35163094 PMCID: PMC8835203 DOI: 10.3390/ijms23031174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Protein dimerization via tyrosine residues is a crucial process in response to an oxidative attack, which has been identified in many ageing-related pathologies. Recently, it has been found that for isolated tyrosine amino acid, dimerization occurs through three types of tyrosine–tyrosine crosslinks and leads to at least four final products. Herein, considering two protected tyrosine residues, tyrosine-containing peptides and finally proteins, we investigate the dimerization behavior of tyrosine when embedded in a peptidic sequence. After azide radical oxidation and by combining UPLC-MS and H/D exchange analyzes, we were able to evidence: (i) the slow kinetics of Michael Addition Dimers (MAD) formation, i.e., more than 48 h; (ii) the co-existence of intermediates and final cyclized dimer products; and (iii) the probable involvement of amide functions to achieve Michael additions even in proteins. This raises the question of the possible in vivo existence of both intermediates and final entities as well as their toxicity and the potential consequences on protein structure and/or function.
Collapse
Affiliation(s)
- Anouchka Gatin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, CEDEX, 91405 Orsay, France; (A.G.); (G.v.d.R.); (I.B.)
| | - Patricia Duchambon
- Université Paris-Saclay, CNRS, Institut Curie UMR 9187, INSERM U1196, CEDEX, 91405 Orsay, France;
| | - Guillaume van der Rest
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, CEDEX, 91405 Orsay, France; (A.G.); (G.v.d.R.); (I.B.)
| | - Isabelle Billault
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, CEDEX, 91405 Orsay, France; (A.G.); (G.v.d.R.); (I.B.)
| | - Cécile Sicard-Roselli
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, CEDEX, 91405 Orsay, France; (A.G.); (G.v.d.R.); (I.B.)
- Correspondence: ; Tel.: +33-1-69-15-77-32
| |
Collapse
|
3
|
Matsuo T, De Francesco A, Peters J. Molecular Dynamics of Lysozyme Amyloid Polymorphs Studied by Incoherent Neutron Scattering. Front Mol Biosci 2022; 8:812096. [PMID: 35111814 PMCID: PMC8801425 DOI: 10.3389/fmolb.2021.812096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Lysozyme amyloidosis is a hereditary disease, which is characterized by the deposition of lysozyme amyloid fibrils in various internal organs. It is known that lysozyme fibrils show polymorphism and that polymorphs formed at near-neutral pH have the ability to promote more monomer binding than those formed at acidic pH, indicating that only specific polymorphs become dominant species in a given environment. This is likely due to the polymorph-specific configurational diffusion. Understanding the possible differences in dynamical behavior between the polymorphs is thus crucial to deepen our knowledge of amyloid polymorphism and eventually elucidate the molecular mechanism of lysozyme amyloidosis. In this study, molecular dynamics at sub-nanosecond timescale of two kinds of polymorphic fibrils of hen egg white lysozyme, which has long been used as a model of human lysozyme, formed at pH 2.7 (LP27) and pH 6.0 (LP60) was investigated using elastic incoherent neutron scattering (EINS) and quasi-elastic neutron scattering (QENS). Analysis of the EINS data showed that whereas the mean square displacement of atomic motions is similar for both LP27 and LP60, LP60 contains a larger fraction of atoms moving with larger amplitudes than LP27, indicating that the dynamical difference between the two polymorphs lies not in the averaged amplitude, but in the distribution of the amplitudes. Furthermore, analysis of the QENS data showed that the jump diffusion coefficient of atoms is larger for LP60, suggesting that the atoms of LP60 undergo faster diffusive motions than those of LP27. This study thus characterizes the dynamics of the two lysozyme polymorphs and reveals that the molecular dynamics of LP60 is enhanced compared with that of LP27. The higher molecular flexibility of the polymorph would permit to adjust its conformation more quickly than its counterpart, facilitating monomer binding.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Univ. Grenoble Alpes, CNRS, LiPhy, Grenoble, France
- Institut Laue-Langevin, Grenoble, France
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Tokai, Japan
- *Correspondence: Tatsuhito Matsuo, ; Judith Peters,
| | - Alessio De Francesco
- Institut Laue-Langevin, Grenoble, France
- CNR-IOM and INSIDE@ILL C/O Operative Group in Grenoble (OGG), Grenoble, France
| | - Judith Peters
- Univ. Grenoble Alpes, CNRS, LiPhy, Grenoble, France
- Institut Laue-Langevin, Grenoble, France
- Institut Universitaire de France, Paris, France
- *Correspondence: Tatsuhito Matsuo, ; Judith Peters,
| |
Collapse
|
4
|
Dong S, Luo S, Huang K, Zhao X, Duan L, Li H. Insights into four helical proteins folding via self-guided Langevin dynamics simulation. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1874558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Shuheng Dong
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
| | - Kaifang Huang
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
| | - Hao Li
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
- Department of Science and Technology, Shandong Normal University, Jinan, People’s Republic of China
| |
Collapse
|
5
|
Sharma VK, Srinivasan H, García Sakai V, Mitra S. Dioctadecyldimethylammonium bromide, a surfactant model for the cell membrane: Importance of microscopic dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:051301. [PMID: 32984433 PMCID: PMC7511241 DOI: 10.1063/4.0000030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 05/11/2023]
Abstract
Cationic lipid membranes have recently attracted huge attention both from a fundamental point of view and due to their practical applications in drug delivery and gene therapy. The dynamical behavior of the lipids in the membrane is a key parameter controlling various physiological processes and drug release kinetics. Here, we review the dynamical and thermotropic phase behavior of an archetypal cationic lipid membrane, dioctadecyldimethylammonium bromide (DODAB), as studied using neutron scattering and molecular dynamics simulation techniques. DODAB membranes exhibit interesting phase behavior, specifically showing coagel, gel, and fluid phases in addition to a large hysteresis when comparing heating and cooling cycles. The dynamics of the lipid membrane is strongly dependent on the physical state of the bilayer. Lateral diffusion of the lipids is faster, by an order of magnitude, in the fluid phase than in the ordered phase. It is not only the characteristic times but also the nature of the segmental motions that differ between the ordered and fluid phases. The effect of different membrane active molecules including drugs, stimulants, gemini surfactants, and unsaturated lipids, on the dynamical and thermotropic phase behavior of the DODAB membrane, is also discussed here. Various interesting features such as induced synchronous ordering between polar head groups and tails, sub diffusive behavior, etc., are observed. The results shed light on the interaction between these additives and the membrane, which is found to be a complex interplay between the physical state of the membrane, charge, concentration, molecular architecture of the additives, and their location within the membrane.
Collapse
Affiliation(s)
- V. K. Sharma
- Author to whom correspondence should be addressed: and . Phone: +91-22-25594604
| | | | - V. García Sakai
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | | |
Collapse
|
6
|
Sharma VK, Mitra S, Mukhopadhyay R. Dynamic Landscape in Self-Assembled Surfactant Aggregates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14151-14172. [PMID: 30730752 DOI: 10.1021/acs.langmuir.8b03596] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A process in which a disordered system of pre-existing molecules generates an organized structure through specific, local interactions among the molecules themselves is termed molecular self-assembly. Micelles, microemulsions, and vesicles are examples of such self-assembled systems where amphiphilic molecules are involved. As the functional properties of these systems (such as wetting and emulsification, release of solubilized drugs, etc.) are dictated by the dynamic behavior of the surfactants at the molecular level, it is of immense interest to investigate these systems for the same. The dynamics in soft matter systems is quite complex, involving different time and length scales. We used a combination of neutron scattering and molecular dynamics simulation studies in probing the dynamic landscape in various self-assembled surfactant aggregates. Neutron scattering experiments were carried out using several spectrometers covering a wide dynamic range to probe motions on different time scales. The interaction between the surfactants can be varied by changing the molecular architecture, counterion concentration, temperature, and so forth. It is important to study the effect of these parameters on the dynamics of surfactants in these aggregates. We have carried out experiments on various ionic (anionic as well as cationic) micelles with varied counterion concentrations, vesicles, and lipid bilayers to unravel the complex dynamic features present in these systems. In this feature article, we will discuss some important results of our recent work on dynamics in these self-assembled surfactant aggregates.
Collapse
Affiliation(s)
| | - Subhankur Mitra
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
- Homi Bhabha National Institute , Anushaktinagar, Mumbai 400094 , India
| | - Ramaprosad Mukhopadhyay
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
- Homi Bhabha National Institute , Anushaktinagar, Mumbai 400094 , India
| |
Collapse
|
7
|
Tian B, Garcia Sakai V, Pappas C, van der Goot AJ, Bouwman WG. Fibre formation in calcium caseinate influenced by solvent isotope effect and drying method – A neutron spectroscopy study. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
9
|
Fujiwara S, Chatake T, Matsuo T, Kono F, Tominaga T, Shibata K, Sato-Tomita A, Shibayama N. Ligation-Dependent Picosecond Dynamics in Human Hemoglobin As Revealed by Quasielastic Neutron Scattering. J Phys Chem B 2017; 121:8069-8077. [DOI: 10.1021/acs.jpcb.7b05182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Satoru Fujiwara
- Quantum
Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Toshiyuki Chatake
- Research
Reactor Institute, Kyoto University, 2 Asashiro-Nishi, Kumatori, Osaka 590-0494, Japan
| | - Tatsuhito Matsuo
- Quantum
Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Fumiaki Kono
- Quantum
Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Taiki Tominaga
- Neutron
Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Kaoru Shibata
- Neutron
Science Section, J-PARC Center, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Ayana Sato-Tomita
- Division
of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Naoya Shibayama
- Division
of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
10
|
Mitra S, Sharma VK, Garcia-Sakai V, Orecchini A, Seydel T, Johnson M, Mukhopadhyay R. Enhancement of Lateral Diffusion in Catanionic Vesicles during Multilamellar-to-Unilamellar Transition. J Phys Chem B 2016; 120:3777-84. [PMID: 27029782 DOI: 10.1021/acs.jpcb.6b02997] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catanionic vesicles are formed spontaneously by mixing cationic and anionic dispersions in aqueous solution in suitable conditions. Because of spontaneity in formation, long-term stability, and easy modulation of size and charge, they have numerous advantages over conventional lipid-based vesicles. The dynamics of such vesicles is of interest in the field of biomedicine, as they can be used to deliver drug molecules into the cell membrane. Dynamics of catanionic vesicles based on sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) have been studied using incoherent elastic and quasielastic neutron scattering (QENS) techniques. Neutron scattering experiments have been carried out on two backscattering spectrometers, IRIS and IN16B, which have different energy resolutions and energy transfer windows. An elastic fixed-window scan carried out using IN16B shows a phase transition at ∼307 K during the heating cycle, whereas on cooling the transition occurred at ∼294 K. DSC results are found to be in close agreement with the elastic scan data. This transition is ascribed to a structural rearrangement from a multilamellar to a unilamellar phase [ Andreozzi J. Phys. Chem. B 2010 , 114 , 8056 - 8060 ]. It is found that a model in which the surfactant molecules undergo both lateral and internal motions can describe the QENS data quite well. While the data from IRIS have contributions from both dynamical processes, the data from IN16B probe only lateral motions, as the internal motions are too fast for the energy window of the spectrometer. It is found that, through the transition, the fraction of surfactant molecules undergoing lateral motion increases of a factor of 2 from the multilamellar to the unilamellar phase, indicating an enhanced fluidity of the latter. The lateral motion is found to be Fickian in nature, while the internal motion has been described by a localized translational diffusion model. The results reported here could have direct interest for a number of applications, such as molecular transport, and the effect of specific drug molecules or hormones through the membrane.
Collapse
Affiliation(s)
- S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre , Mumbai, 40085, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre , Mumbai, 40085, India
| | - V Garcia-Sakai
- Rutherford Appleton Laboratory, Science and Technology Facilities Council , Didcot OX11 0QX, U.K
| | - A Orecchini
- Dipartimento di Fisica e Geologia, Università di Perugia , Via Pascoli, I-06123 Perugia, Italy
| | - T Seydel
- Institut Laue-Langevin , BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9, France
| | - M Johnson
- Institut Laue-Langevin , BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9, France
| | - R Mukhopadhyay
- Solid State Physics Division, Bhabha Atomic Research Centre , Mumbai, 40085, India
| |
Collapse
|
11
|
Grimaldo M, Roosen-Runge F, Hennig M, Zanini F, Zhang F, Jalarvo N, Zamponi M, Schreiber F, Seydel T. Hierarchical molecular dynamics of bovine serum albumin in concentrated aqueous solution below and above thermal denaturation. Phys Chem Chem Phys 2016; 17:4645-55. [PMID: 25587698 DOI: 10.1039/c4cp04944f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of proteins in solution is a complex and hierarchical process, affected by the aqueous environment as well as temperature. We present a comprehensive study on nanosecond time and nanometer length scales below, at, and above the denaturation temperature Td. Our experimental data evidence dynamical processes in protein solutions on three distinct time scales. We suggest a consistent physical picture of hierarchical protein dynamics: (i) self-diffusion of the entire protein molecule is confirmed to agree with colloid theory for all temperatures where the protein is in its native conformational state. At higher temperatures T > Td, the self-diffusion is strongly obstructed by cross-linking or entanglement. (ii) The amplitude of backbone fluctuations grows with increasing T, and a transition in its dynamics is observed above Td. (iii) The number of mobile side-chains increases sharply at Td while their average dynamics exhibits only little variations. The combination of quasi-elastic neutron scattering and the presented analytical framework provides a detailed microscopic picture of the protein molecular dynamics in solution, thereby reflecting the changes of macroscopic properties such as cluster formation and gelation.
Collapse
Affiliation(s)
- Marco Grimaldo
- Institut Max von Laue - Paul Langevin (ILL), CS 20156, F-38042 Grenoble, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fujiwara S, Araki K, Matsuo T, Yagi H, Yamada T, Shibata K, Mochizuki H. Dynamical Behavior of Human α-Synuclein Studied by Quasielastic Neutron Scattering. PLoS One 2016; 11:e0151447. [PMID: 27097022 PMCID: PMC4838215 DOI: 10.1371/journal.pone.0151447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/29/2016] [Indexed: 12/02/2022] Open
Abstract
α-synuclein (αSyn) is a protein consisting of 140 amino acid residues and is abundant in the presynaptic nerve terminals in the brain. Although its precise function is unknown, the filamentous aggregates (amyloid fibrils) of αSyn have been shown to be involved in the pathogenesis of Parkinson's disease, which is a progressive neurodegenerative disorder. To understand the pathogenesis mechanism of this disease, the mechanism of the amyloid fibril formation of αSyn must be elucidated. Purified αSyn from bacterial expression is monomeric but intrinsically disordered in solution and forms amyloid fibrils under various conditions. As a first step toward elucidating the mechanism of the fibril formation of αSyn, we investigated dynamical behavior of the purified αSyn in the monomeric state and the fibril state using quasielastic neutron scattering (QENS). We prepared the solution sample of 9.5 mg/ml purified αSyn, and that of 46 mg/ml αSyn in the fibril state, both at pD 7.4 in D2O. The QENS experiments on these samples were performed using the near-backscattering spectrometer, BL02 (DNA), at the Materials and Life Science Facility at the Japan Accelerator Research Complex, Japan. Analysis of the QENS spectra obtained shows that diffusive global motions are observed in the monomeric state but largely suppressed in the fibril state. However, the amplitude of the side chain motion is shown to be larger in the fibril state than in the monomeric state. This implies that significant solvent space exists within the fibrils, which is attributed to the αSyn molecules within the fibrils having a distribution of conformations. The larger amplitude of the side chain motion in the fibril state than in the monomeric state implies that the fibril state is entropically favorable.
Collapse
Affiliation(s)
- Satoru Fujiwara
- Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
- * E-mail:
| | - Katsuya Araki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsuhito Matsuo
- Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
| | - Hisashi Yagi
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Takeshi Yamada
- Research Center for Neutron Science and Technology, CROSS-Tokai, Tokai, Ibaraki, Japan
| | - Kaoru Shibata
- Neutron Science Section, J-PARC Center, Tokai, Ibaraki, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
13
|
Sharma VK, Mamontov E, Anunciado DB, O’Neill H, Urban V. Nanoscopic Dynamics of Phospholipid in Unilamellar Vesicles: Effect of Gel to Fluid Phase Transition. J Phys Chem B 2015; 119:4460-70. [DOI: 10.1021/acs.jpcb.5b00220] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. K. Sharma
- Biology
and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Solid
State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - E. Mamontov
- Chemical
and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - D. B. Anunciado
- Biology
and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - H. O’Neill
- Biology
and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - V. Urban
- Biology
and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
14
|
Noue ACDL, Peters J, Gervais P, Martinez N, Perrier-Cornet JM, Natali F. Proton dynamics in bacterial spores, a neutron scattering investigation. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20158302003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Picosecond dynamics in haemoglobin from different species: A quasielastic neutron scattering study. Biochim Biophys Acta Gen Subj 2014; 1840:2989-99. [DOI: 10.1016/j.bbagen.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/22/2022]
|
16
|
High-pressure SANS and fluorescence unfolding study of calmodulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1560-8. [DOI: 10.1016/j.bbapap.2014.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/06/2014] [Accepted: 05/16/2014] [Indexed: 11/15/2022]
|
17
|
Sharma VK, Mitra S, Johnson M, Mukhopadhyay R. Dynamics in anionic micelles: effect of phenyl ring. J Phys Chem B 2013; 117:6250-5. [PMID: 23614686 DOI: 10.1021/jp401831y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Micellar dynamics in sodium dodecyl benzene sulfonate (SDBS) is studied using quasi-elastic neutron scattering (QENS) technique. Results are compared with sodium dodecyl sulfate (SDS), a very similar surfactant except for the presence of a phenyl ring in SDBS. SDBS is a very important system for various industrial usages and variety of other applications. The aim here is to investigate the effect of molecular architecture of the surfactant molecule on micellar dynamics. Analysis of the QENS data showed that there exists two distinct motions in both of the micellar systems: whole micellar motion or global motion and the internal motion of the monomer within the micelles. The global diffusion associated with the whole micelle is found to be Fickian in nature. The diffusion coefficient corresponding to the global motion is found to be significantly lower for SDBS than SDS micelles. As far as internal motion is concerned, the structure factor indicates that the alkyl chains are more flexible in SDS compared with SDBS. Similar behavior is also reported in a recent molecular-dynamics simulation study. Detailed analysis showed that a localized translational diffusion model in which the hydrogen atoms undergo diffusion within a sphere could describe the internal motions in both the micelles. Diffusion coefficients corresponding to internal motions is found to be lower in the case of SDBS micelles compared with SDS micelles, implying that internal motions in SDBS micelles are relatively hindered vis-a-vis SDS micelles. This could be understood in terms of denser packing in SDBS micelles due to the presence of π-stacking.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | |
Collapse
|
18
|
Sharma VK, Mitra S, Garcia Sakai V, Mukhopadhyay R. Dynamical features in cationic micelles of varied chain length. J Phys Chem B 2012; 116:9007-15. [PMID: 22775756 DOI: 10.1021/jp304841a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chain length is one of the parameters controlling the structural arrangement of micelle monomers, such that one can tailor the monomers for different applications, but the effect of chain length on the dynamical behavior of micelles is unknown. In this article, we report a study on the effect of varying chain length on the dynamical behavior of alkyltrimethylammonium bromide (C(n)TAB) micelles (n = 10, 12, 14, and 16) using incoherent quasielastic neutron scattering (QENS). The data analysis clearly shows the presence of two distinct motions: global motion of whole micelles and faster internal motions of the C(n)TAB monomers. The global diffusion is Fickian in nature, whereas the internal motions can be described with a model that considers the motions of the headgroup and the hydrophobic alkyl chain separately. Methyl groups in the headgroup undergo 3-fold jump rotations, and the hydrogen atoms belonging to the alkyl chain undergo localized translational diffusion. The hydrogen atoms belonging to the alkyl chain are confined within spherical volumes that increase linearly along the C(n)TAB chain: the hydrogen atoms closer to the headgroup move within smaller spheres with lower diffusion coefficients than those farther from the headgroup. The main result is that, with increasing chain length, the dynamics of the C(n)TAB monomer is greatly affected: diffusion is reduced and occurs in smaller spheres, and residence times are increased. Global motion is also hindered with increased chain length.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | |
Collapse
|
19
|
Gibrat G, Assairi L, Craescu CT, Hui Bon Hoa G, Loew D, Lombard B, Blouquit L, Bellissent-Funel MC. Use of SANS and biophysical techniques to reveal subtle conformational differences between native apo-calmodulin and its unfolded states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1097-106. [PMID: 22709575 DOI: 10.1016/j.bbapap.2012.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 05/24/2012] [Accepted: 06/01/2012] [Indexed: 11/16/2022]
Abstract
Apo-calmodulin, a small, mainly α, soluble protein is a calcium-dependent protein activator. It is made of two N- and C-terminal domains having a sequence homology of 70%, an identical folding but different stabilities, and is thus an interesting system for unfolding studies. The use of small angle neutron scattering (SANS) and other biophysical techniques has permitted to reveal conformational difference between native and thermal denatured states of apo-calmodulin. The results show that secondary and tertiary structures of apo-calmodulin evolve in a synchronous way, indicating the absence in the unfolding pathway of molten-globule state sufficiently stable to affect transition curves. From SANS experiments, at 85 °C, apo-calmodulin adopts a polymer chain conformation with some residual local structures. After cooling down, apo-calmodulin recovers a compact state, with a secondary structure close to the native one but with a higher radius of gyration and a different tyrosine environment. In fact on a timescale of few minutes, heat denaturation of apo-calmodulin is partially reversible, but on a time scale of hours (for SANS experiments), the long exposure to heat may lead to a non-reversibility due to some chemical perturbation of the protein. In fact, from Mass Spectrometry measurements, we got evidence of dehydration and deamidation of heated apo-calmodulin.
Collapse
|
20
|
Yoshida K, Vogtt K, Izaola Z, Russina M, Yamaguchi T, Bellissent-Funel MC. Alcohol induced structural and dynamic changes in β-lactoglobulin in aqueous solution: A neutron scattering study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:502-10. [DOI: 10.1016/j.bbapap.2011.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/24/2011] [Accepted: 12/29/2011] [Indexed: 11/25/2022]
|
21
|
Dee DR, Myers B, Yada RY. Dynamics of thermodynamically stable, kinetically trapped, and inhibitor-bound states of pepsin. Biophys J 2012; 101:1699-709. [PMID: 21961596 DOI: 10.1016/j.bpj.2011.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 07/19/2011] [Accepted: 08/01/2011] [Indexed: 11/17/2022] Open
Abstract
The pepsin folding mechanism involves a prosegment (PS) domain that catalyzes folding, which is then removed, resulting in a kinetically trapped native state. Although native pepsin (Np) is kinetically stable, it is irreversibly denatured due to a large folding barrier, and in the absence of the PS it folds to a more thermodynamically stable denatured state, termed refolded pepsin (Rp). This system serves as a model to understand the nature of kinetic barriers and folding transitions between compact states. Quasielastic neutron scattering (QENS) was used to characterize and compare the flexibility of Np, as a kinetically trapped state, with that of Rp, as a thermodynamically stable fold. Additionally, the dynamics of Np were compared with those of a partially unfolded form and a thermally stabilized, inhibitor-bound form. QENS revealed length-scale-dependent differences between Np and Rp on a picosecond timescale and indicated greater flexibility in Np, leading to the conclusion that kinetic stabilization likely does not correspond to reduced internal dynamics. Furthermore, large differences were observed upon inhibition, indicating that QENS of proteins in solution may prove useful for examining the role of conformational entropy changes in ligand binding.
Collapse
Affiliation(s)
- Derek R Dee
- Biophysics Interdepartmental Group, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
22
|
Moskovitz Y, Srebnik S. Thermal stability limits of proteins in solution and adsorbed on a hydrophobic surface. Phys Chem Chem Phys 2012; 14:8013-22. [DOI: 10.1039/c2cp00005a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Sharma VK, Mitra S, Verma G, Hassan PA, Garcia Sakai V, Mukhopadhyay R. Internal dynamics in SDS micelles: neutron scattering study. J Phys Chem B 2010; 114:17049-56. [PMID: 21138301 DOI: 10.1021/jp108274y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular dynamics of sodium dodecyl sulfate (SDS) micelle has been investigated using high-resolution incoherent quasielastic neutron scattering technique. Data analysis clearly shows presence of two distinct motions: whole micellar motion or global diffusion and faster internal motion of the SDS monomer. The global diffusion associated with the whole micelle is found to be Fickian in nature, and the corresponding diffusion coefficients are found to be consistent with those obtained from dynamic light scattering measurements. The internal motion is described with a model consistent with the structure of the micelle and which accounts for the flexibility of the chains. The SDS monomer consists of a head group, which lies on the surface of the globular micelle, and a tail that hangs from the head toward the center of the globule. Considering various factors like conformational changes of the SDS chains, bending, stretching of the chemical bonds, etc., the dynamics of the SDS molecules is successfully described by a model in which the hydrogen atoms undergo localized translational motion confined within spherical volumes. This volume increases linearly along the SDS chain such that the hydrogen atoms closer to the head group move within smaller spheres with lower diffusion constant than the hydrogen atoms away from the head group. This model is found to be consistent with the data over the whole temperature and concentration range. Diffusivity and the volume of the spheres are also found to increase with temperature. The effect of lowering the SDS concentration is found to be similar to that of increasing the temperature.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | | | | | |
Collapse
|
24
|
Appavou MS, Gibrat G, Bellissent-Funel MC. Temperature dependence on structure and dynamics of Bovine Pancreatic Trypsin Inhibitor (BPTI): a neutron scattering study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1398-406. [PMID: 19464393 DOI: 10.1016/j.bbapap.2009.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/27/2009] [Accepted: 05/14/2009] [Indexed: 11/25/2022]
Abstract
We have studied the influence of temperature on the structure of BPTI in solution by small angle neutron scattering. We have investigated the variation of the radius of gyration and the modification of the shape of BPTI between ambient temperature and 368 K. Results have shown an increase of the radius of gyration from 10.9 A at ambient temperature up to 13.3 A at 368 K. Global and internal dynamics of BPTI in solution were studied by quasielastic neutron scattering. The analysis of neutron data in terms of intermediate scattering function reveals two relaxation times tau(1) and tau(2) related respectively to global translational diffusive motions and to internal motions of protein. Motions of protons belonging to lateral chains of residues located at the surface of the protein have been detected. The results are compared to the recently published results concerning the influence of pressure on structure and dynamics of BPTI in solution [Appavou MS et al. Biochimica et Biophysica Acta, 1764, 2006, pp 414-423].
Collapse
Affiliation(s)
- M-S Appavou
- Laboratoire Léon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | | | | |
Collapse
|
25
|
Stadler AM, Digel I, Artmann GM, Embs JP, Zaccai G, Büldt G. Hemoglobin dynamics in red blood cells: correlation to body temperature. Biophys J 2008; 95:5449-61. [PMID: 18708462 PMCID: PMC2586580 DOI: 10.1529/biophysj.108.138040] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A transition in hemoglobin behavior at close to body temperature has been discovered recently by micropipette aspiration experiments on single red blood cells (RBCs) and circular dichroism spectroscopy on hemoglobin solutions. The transition temperature was directly correlated to the body temperatures of a variety of species. In an exploration of the molecular basis for the transition, we present neutron scattering measurements of the temperature dependence of hemoglobin dynamics in whole human RBCs in vivo. The data reveal a change in the geometry of internal protein motions at 36.9 degrees C, at human body temperature. Above that temperature, amino acid side-chain motions occupy larger volumes than expected from normal temperature dependence, indicating partial unfolding of the protein. Global protein diffusion in RBCs was also measured and the findings compared favorably with theoretical predictions for short-time self-diffusion of noncharged hard-sphere colloids. The results demonstrated that changes in molecular dynamics in the picosecond time range and angstrom length scale might well be connected to a macroscopic effect on whole RBCs that occurs at body temperature.
Collapse
|