1
|
Baumgartner K, Westerhausen C. Recent advances of surface acoustic wave-based sensors for noninvasive cell analysis. Curr Opin Biotechnol 2023; 79:102879. [PMID: 36634534 DOI: 10.1016/j.copbio.2022.102879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023]
Abstract
In the past years, the application of surface acoustic waves (SAWs) as sensors for biological applications has reached high relevance in the field of biotechnology. From rapid advances in designs and materials, new opportunities have emerged, especially for sensing of living cells. Additionally, the combination of SAW sensors with microfluidics and optical microscopy has expanded the market of possible applications. Differentiation of infected and healthy red blood cells or aggressive and nonaggressive tumor cells, and monitoring of wound healing, bacteria, or viral antigen concentrations via SAW-based sensors are only a few examples of recent achievements in cell biology. The rapid growth of this field requires frequent reviewing of the recent progress to maintain high research standards and promote future developments.
Collapse
Affiliation(s)
- Kathrin Baumgartner
- Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany; Hanns-Seidel-Stiftung e.V., 80636 Munich, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, 80799 Munich, Germany; Institute of Physics, Experimental Physics I, University of Augsburg, 86159 Augsburg, Germany
| | - Christoph Westerhausen
- Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, 80799 Munich, Germany; Institute of Physics, Experimental Physics I, University of Augsburg, 86159 Augsburg, Germany; Augsburg Center for Innovative Technologies (ACIT), 86159 Augsburg, Germany.
| |
Collapse
|
2
|
Szittner Z, Péter B, Kurunczi S, Székács I, Horváth R. Functional blood cell analysis by label-free biosensors and single-cell technologies. Adv Colloid Interface Sci 2022; 308:102727. [DOI: 10.1016/j.cis.2022.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/01/2022]
|
3
|
Wu D, Voldman J. An integrated model for bead-based immunoassays. Biosens Bioelectron 2020; 154:112070. [PMID: 32056966 DOI: 10.1016/j.bios.2020.112070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 11/16/2022]
Abstract
Bead-based immunoassays have shown great promise for rapid and sensitive protein quantification. However, there still lacks holistic understanding of assay performance that can inform assay design and optimization. In this paper, we present an integrated mathematical model for surface coverage bead-based assays. This model examines the building blocks of surface coverage assays, including heterogeneous binding of analyte molecules on bead or sensor surfaces, attachment of bead labels to sensor surfaces, and generation of electrochemical current by bead labels. To demonstrate and validate this model, we analyze a semi-homogeneous bead-based electronic enzyme-linked immunosorbent assay and find that experimental results agree with various model predictions. We show that the model can provide design guidance for choice of various assay parameters including bead size, bead number, antibody affinity and assay time, and provide a perspective to reconcile the performance of various implementations of surface coverage assays.
Collapse
Affiliation(s)
- Dan Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Joel Voldman
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
4
|
Chen JY, Penn LS, Xi J. Quartz crystal microbalance: Sensing cell-substrate adhesion and beyond. Biosens Bioelectron 2018; 99:593-602. [DOI: 10.1016/j.bios.2017.08.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/03/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
|
5
|
Identification of an in vivo orally active dual-binding protein-protein interaction inhibitor targeting TNFα through combined in silico/in vitro/in vivo screening. Sci Rep 2017; 7:3424. [PMID: 28611375 PMCID: PMC5469758 DOI: 10.1038/s41598-017-03427-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/28/2017] [Indexed: 12/31/2022] Open
Abstract
TNFα is a homotrimeric pro-inflammatory cytokine, whose direct targeting by protein biotherapies has been an undeniable success for the treatment of chronic inflammatory diseases. Despite many efforts, no orally active drug targeting TNFα has been identified so far. In the present work, we identified through combined in silico/in vitro/in vivo approaches a TNFα direct inhibitor, compound 1, displaying nanomolar and micromolar range bindings to TNFα. Compound 1 inhibits the binding of TNFα with both its receptors TNFRI and TNFRII. Compound 1 inhibits the TNFα induced apoptosis on L929 cells and the TNFα induced NF-κB activation in HEK cells. In vivo, oral administration of compound 1 displays a significant protection in a murine TNFα-dependent hepatic shock model. This work illustrates the ability of low-cost combined in silico/in vitro/in vivo screening approaches to identify orally available small-molecules targeting challenging protein-protein interactions such as homotrimeric TNFα.
Collapse
|
6
|
Chronaki D, Stratiotis DI, Tsortos A, Anastasiadou E, Gizeli E. Screening between normal and cancer human thyroid cells through comparative adhesion studies using the Quartz Crystal Microbalance. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
7
|
Li X, Pei Y, Zhang R, Shuai Q, Wang F, Aastrup T, Pei Z. A suspension-cell biosensor for real-time determination of binding kinetics of protein–carbohydrate interactions on cancer cell surfaces. Chem Commun (Camb) 2013; 49:9908-10. [DOI: 10.1039/c3cc45006f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
A novel approach to determining the affinity of protein–carbohydrate interactions employing adherent cancer cells grown on a biosensor surface. Biosens Bioelectron 2012; 35:160-166. [DOI: 10.1016/j.bios.2012.02.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 11/18/2022]
|
9
|
Saitakis M, Gizeli E. Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cell Mol Life Sci 2012; 69:357-71. [PMID: 21997385 PMCID: PMC11114954 DOI: 10.1007/s00018-011-0854-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 01/09/2023]
Abstract
Acoustic biosensors offer the possibility to analyse cell attachment and spreading. This is due to the offered speed of detection, the real-time non-invasive approach and their high sensitivity not only to mass coupling, but also to viscoelastic changes occurring close to the sensor surface. Quartz crystal microbalance (QCM) and surface acoustic wave (Love-wave) systems have been used to monitor the adhesion of animal cells to various surfaces and record the behaviour of cell layers under various conditions. The sensors detect cells mostly via their sensitivity in viscoelasticity and mechanical properties. Particularly, the QCM sensor detects cytoskeletal rearrangements caused by specific drugs affecting either actin microfilaments or microtubules. The Love-wave sensor directly measures cell/substrate bonds via acoustic damping and provides 2D kinetic and affinity parameters. Other studies have applied the QCM sensor as a diagnostic tool for leukaemia and, potentially, for chemotherapeutic agents. Acoustic sensors have also been used in the evaluation of the cytocompatibility of artificial surfaces and, in general, they have the potential to become powerful tools for even more diverse cellular analysis.
Collapse
Affiliation(s)
- Michael Saitakis
- Department of Biology, University of Crete, Heraklion-Crete, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, 100 N. Plastira Vassilika Vouton, 70013 Heraklion-Crete, Greece
| | - Electra Gizeli
- Department of Biology, University of Crete, Heraklion-Crete, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, 100 N. Plastira Vassilika Vouton, 70013 Heraklion-Crete, Greece
| |
Collapse
|
10
|
Quantification of the effect of glycocalyx condition on membrane receptor interactions using an acoustic wave sensor. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:209-15. [DOI: 10.1007/s00249-010-0632-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/16/2010] [Accepted: 09/28/2010] [Indexed: 10/18/2022]
|
11
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
12
|
Saitakis M, Tsortos A, Gizeli E. Probing the interaction of a membrane receptor with a surface-attached ligand using whole cells on acoustic biosensors. Biosens Bioelectron 2010; 25:1688-93. [DOI: 10.1016/j.bios.2009.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/20/2009] [Accepted: 12/07/2009] [Indexed: 01/17/2023]
|
13
|
Abstract
Acoustic sensors probe the response of a thin layer to the mechanical displacement associated with an acoustic wave. Acoustic measurements provide two simultaneous time-resolved signals; one signal is related to the velocity or frequency of the acoustic wave and is mainly a function of adsorbed mass, while the second signal, related to the oscillation amplitude, is associated with energy dissipation and is a function of the viscoelastic properties of the adsorbed layer. The methods described in this chapter explore the relationship between the acoustic measurements of adsorbed liposomes and the mechanical properties of the lipid bilayer. This is carried out using a well-characterized model system consisting of liposomes prepared from an unsaturated phospholipid and a range of mole fractions of cholesterol. Real-time acoustic measurements are shown to be sensitive to changes in the liposome cholesterol content, regardless of the mode of attachment of the liposome to the device surface. This sensitivity is not due to changes in the density of the bilayer, or to changes in the extent of liposome-surface interactions, thus leaving the mechanical properties of the bilayer as the feature that is probably being measured. Some mechanisms by which the acoustic response could be generated are suggested in this chapter.
Collapse
|