1
|
Chen Z, Gong C, Wang S, Lu H, Zhu Y, Ge RS, Tang Y, Ying Y. Benzophenone UV-filters: Inhibition on human and rat 17β-hydroxysteroid dehydrogenase 1 - insights from 3D-QSAR and docking studies. J Steroid Biochem Mol Biol 2025; 250:106739. [PMID: 40122306 DOI: 10.1016/j.jsbmb.2025.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Benzophenone (BP) UV-filters have been extensively used for the prevention of UV-induced adverse effects in personal care products. Their potential to interfere with steroidogenesis in the female reproductive system remains uncertain. 17β-Hydroxysteroid dehydrogenase 1 (17β-HSD1) facilitates the conversion of estrone to estradiol, playing a key role in estrogen activation. This study delves into the effects of eleven BPs on human and rat 17β-HSD1, while also analysing the 3D-quntitative structure-activity relationship (3D-QSAR) and the underlying mechanisms. The inhibitory potency of inhibiting human placental 17β-HSD1 was found to be in the order of BP-2 (IC50, 11.42 μM) > BP-1 (14.17 μM) > BP-4 (49.05 μM) > BP-6 (63.49 μM) = BP-8 (63.46 μM) > others. BP-1 and BP-2 markedly inhibited estradiol secretion by human placental BeWo cells at ≥ 1 μM. In contrast, the inhibitory strength of suppressing rat ovarian 17β-HSD1 activity was found to be in the order of BP-2 (IC50, 13.33 μM) > BP-1 (15.09 μM) > BP-4 (22.68 μM) > BP-12 (31.12 μM) > BP-3 (97.11 μM) > BP (119.99 μM) > others. Mode action analysis revealed that these BP compounds acted as mixed inhibitors of both human and rat 17β-HSD1. The introduction of a 4-hydroxyl substitution in the benzene ring was found to markedly increase the inhibitory potency against human and rat 17β-HSD1. BP-1 and BP-2 demonstrated the ability to penetrate human BeWo cells and inhibit estradiol secretion at ≥ 1 μM. Docking analysis revealed that the 2-hydroxyl group of BP-1 and BP-2 forms a hydrogen bond with catalytic residue Ser142 of human 17β-HSD1. 3D-QSAR pharmacophore analysis showed that there are hydrophobic regions and hydrogen bond donor can interact with BPs. In conclusion, this study establishes that BP-2 is the most potent inhibitors of human 17β-HSD1 among the BPs under investigation, highlighting a significant difference in the structure-activity relationship.
Collapse
Affiliation(s)
- Zhuoqi Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chaochao Gong
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Han Lu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
2
|
Beevors LI, Sundar S, Foster PA. Steroid metabolism and hormonal dynamics in normal and malignant ovaries. Essays Biochem 2024; 68:491-507. [PMID: 38994724 PMCID: PMC11625866 DOI: 10.1042/ebc20240028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The ovaries are key steroid hormone production sites in post-pubertal females. However, current research on steroidogenic enzymes, endogenous hormone concentrations and their effects on healthy ovarian function and malignant development is limited. Here, we discuss the importance of steroid enzymes in normal and malignant ovaries, alongside hormone concentrations, receptor expression and action. Key enzymes include STS, 3β-HSD2, HSD17B1, ARK1C3, and aromatase, which influence ovarian steroidal action. Both androgen and oestrogen action, via their facilitating enzyme, drives ovarian follicle activation, development and maturation in healthy ovarian tissue. In ovarian cancer, some data suggest STS and oestrogen receptor α may be linked to aggressive forms, while various oestrogen-responsive factors may be involved in ovarian cancer metastasis. In contrast, androgen receptor expression and action vary across ovarian cancer subtypes. For future studies investigating steroidogenesis and steroidal activity in ovarian cancer, it is necessary to differentiate between disease subtypes for a comprehensive understanding.
Collapse
Affiliation(s)
- Lucy I Beevors
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
| | - Sudha Sundar
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, U.K
| | - Paul A Foster
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
- Centre for Diabetes, Endocrinology, and Metabolism, Birmingham Health Partners, Birmingham, U.K
| |
Collapse
|
3
|
He J, Ji Z, Sang J, Quan H, Zhang H, Lu H, Zheng J, Wang S, Ge RS, Li X. Potent inhibition of human and rat 17β-hydroxysteroid dehydrogenase 1 by curcuminoids and the metabolites: 3D QSAR and in silico docking analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:433-456. [PMID: 38785078 DOI: 10.1080/1062936x.2024.2355529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Curcumin, an extensively utilized natural pigment in the food industry, has attracted considerable attention due to its potential therapeutic effects, such as anti-tumorigenic and anti-inflammatory activities. The enzyme 17β-Hydroxysteroid dehydrogenase 1 (17β-HSD1) holds a crucial position in oestradiol production and exhibits significant involvement in oestrogen-responsive breast cancers and endometriosis. This study investigated the inhibitory effects of curcuminoids, metabolites, and analogues on 17β-HSD1, a key enzyme in oestradiol synthesis. Screening 10 compounds, including demethoxycurcumin (IC50, 3.97 μM) and dihydrocurcumin (IC50, 5.84 μM), against human and rat 17β-HSD1 revealed varying inhibitory potencies. These compounds suppressed oestradiol secretion in human BeWo cells at ≥ 5-10 μM. 3D-Quantitative structure-activity relationship (3D-QSAR) and molecular docking analyses elucidated the interaction mechanisms. Docking studies and Gromacs simulations suggested competitive or mixed binding to the steroid or NADPH/steroid binding sites of 17β-HSD1. Predictive 3D-QSAR models highlighted the importance of hydrophobic regions and hydrogen bonding in inhibiting 17β-HSD1 activity. In conclusion, this study provides valuable insights into the inhibitory effects and mode of action of curcuminoids, metabolites, and analogues on 17β-HSD1, which may have implications in the field of hormone-related disorders.
Collapse
Affiliation(s)
- J He
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Z Ji
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - J Sang
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - H Quan
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - H Zhang
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - H Lu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - J Zheng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - S Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - R S Ge
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang Province, China
| | - X Li
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Cen YK, Zhang L, Jiang Y, Meng XF, Li Y, Xiang C, Xue YP, Zheng YG. Not exclusively the activity, but the sweet spot: a dehydrogenase point mutation synergistically boosts activity, substrate tolerance, thermal stability and yield. Org Biomol Chem 2024; 22:3009-3018. [PMID: 38529785 DOI: 10.1039/d4ob00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Catalytic activity is undoubtedly a key focus in enzyme engineering. The complicated reaction conditions hinder some enzymes from industrialization even though they have relatively promising activity. This has occurred to some dehydrogenases. Hydroxysteroid dehydrogenases (HSDHs) specifically catalyze the conversion between hydroxyl and keto groups, and hold immense potential in the synthesis of steroid medicines. We underscored the importance of 7α-HSDH activity, and analyzed the overall robustness and underlying mechanisms. Employing a high-throughput screening approach, we comprehensively assessed a mutation library, and obtained a mutant with enhanced enzymatic activity and overall stability/tolerance. The superior mutant (I201M) was identified to harbor improved thermal stability, substrate susceptibility, cofactor affinity, as well as the yield. This mutant displayed a 1.88-fold increase in enzymatic activity, a 1.37-fold improvement in substrate tolerance, and a 1.45-fold increase in thermal stability when compared with the wild type (WT) enzyme. The I201M mutant showed a 2.25-fold increase in the kcat/KM ratio (indicative of a stronger binding affinity for the cofactor). This mutant did not exhibit the highest enzyme activity compared with all the tested mutants, but these improved characteristics contributed synergistically to the highest yield. When a substrate at 100 mM was present, the 24 h yield by I201M reached 89.7%, significantly higher than the 61.2% yield elicited by the WT enzyme. This is the first report revealing enhancement of the catalytic efficiency, cofactor affinity, substrate tolerance, and thermal stability of NAD(H)-dependent 7α-HSDH through a single-point mutation. The mutated enzyme reached the highest enzymatic activity of 7α-HSDH ever reported. High enzymatic activity is undoubtedly crucial for enabling the industrialization of an enzyme. Our findings demonstrated that, when compared with other mutants boasting even higher enzymatic activity, mutants with excellent overall robustness were superior for industrial applications. This principle was exemplified by highly active enzymes such as 7α-HSDH.
Collapse
Affiliation(s)
- Yu-Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lin Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yue Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiang-Fu Meng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yuan Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chao Xiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|