1
|
Charoenngam N, Wattanachayakul P, Mannstadt M. CASRdb: A Publicly Accessible Comprehensive Database for Disease-Associated Calcium-Sensing Receptor Variants. J Clin Endocrinol Metab 2025; 110:297-302. [PMID: 39484850 DOI: 10.1210/clinem/dgae769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
CONTEXT Genetic testing of the calcium-sensing receptor (CASR) gene is crucial for confirming diagnoses of familial hypocalciuric hypercalcemia type I (FHH1) and autosomal dominant hypocalcemia type I (ADH1). Therefore, we created a publicly accessible comprehensive database of the disease-causing variants of the CASR gene. EVIDENCE ACQUISITION We used 2 sources for variant reports: (1) we conducted a systematic review in the Embase and PubMed databases from inception to March 2023, using search strategies associated with CASR. We identified all articles reporting CASR variants associated with disorders of calcium metabolism. (2) Additionally, data associated with pathogenic (P) or likely pathogenic (LP) variants in the ClinVar and LOVD databases were retrieved. Benign or likely benign variants were excluded. Variants of uncertain significance (VUS) were included only if they were reported in the literature. We generated a library of CASR variants associated with phenotypes, which has been made available on a website. EVIDENCE SYNTHESIS We identified a total of 498 variants, of which 121 (24.3%) were associated with ADH1 and 377 (75.7%) with FHH1. Most included variants were identified from the literature (117 activating and 352 inactivating variants), and the majority of these were not documented in ClinVar/LOVD (73/117, 62.4% activating variants; 207/352, 58.8% inactivating variants). CONCLUSION We developed CASRdb, a database that compiles information on all CASR variants associated with disorders of calcium metabolism from existing literature and genomic databases. Our database stands out due to the substantially higher number of disease-associated variants it contains, highlighting its comprehensive nature. The website is available at http://casrdb.mgh.harvard.edu.
Collapse
Affiliation(s)
- Nipith Charoenngam
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Thompson MD, Percy ME, Cole DEC, Bichet DG, Hauser AS, Gorvin CM. G protein-coupled receptor (GPCR) gene variants and human genetic disease. Crit Rev Clin Lab Sci 2024; 61:317-346. [PMID: 38497103 DOI: 10.1080/10408363.2023.2286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 11/19/2023] [Indexed: 03/19/2024]
Abstract
Genetic variations in the genes encoding G protein-coupled receptors (GPCRs) can disrupt receptor structure and function, which can result in human genetic diseases. Disease-causing mutations have been reported in at least 55 GPCRs for more than 66 monogenic diseases in humans. The spectrum of pathogenic and likely pathogenic variants includes loss of function variants that decrease receptor signaling on one extreme and gain of function that may result in biased signaling or constitutive activity, originally modeled on prototypical rhodopsin GPCR variants identified in retinitis pigmentosa, on the other. GPCR variants disrupt ligand binding, G protein coupling, accessory protein function, receptor desensitization and receptor recycling. Next generation sequencing has made it possible to identify variants of uncertain significance (VUS). We discuss variants in receptors known to result in disease and in silico strategies for disambiguation of VUS such as sorting intolerant from tolerant and polymorphism phenotyping. Modeling of variants has contributed to drug development and precision medicine, including drugs that target the melanocortin receptor in obesity and interventions that reverse loss of gonadotropin-releasing hormone receptor from the cell surface in idiopathic hypogonadotropic hypogonadism. Activating and inactivating variants of the calcium sensing receptor (CaSR) gene that are pathogenic in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia have enabled the development of calcimimetics and calcilytics. Next generation sequencing has continued to identify variants in GPCR genes, including orphan receptors, that contribute to human phenotypes and may have therapeutic potential. Variants of the CaSR gene, some encoding an arginine-rich region that promotes receptor phosphorylation and intracellular retention, have been linked to an idiopathic epilepsy syndrome. Agnostic strategies have identified variants of the pyroglutamylated RF amide peptide receptor gene in intellectual disability and G protein-coupled receptor 39 identified in psoriatic arthropathy. Coding variants of the G protein-coupled receptor L1 (GPR37L1) orphan receptor gene have been identified in a rare familial progressive myoclonus epilepsy. The study of the role of GPCR variants in monogenic, Mendelian phenotypes has provided the basis of modeling the significance of more common variants of pharmacogenetic significance.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, ON, Canada
| | - Maire E Percy
- Departments of Physiology and Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - David E C Cole
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel G Bichet
- Department of Physiology and Medicine, Hôpital du Sacré-Coeur, Université de Montréal, QC, Canada
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
3
|
Saglia C, Arruga F, Scolari C, Kalantari S, Albanese S, Bracciamà V, Corso Faini A, Brach Del Prever G, Luca M, Romeo C, Mioli F, Migliorero M, Tessaris D, Carli D, Amoroso A, Vaisitti T, De Sanctis L, Deaglio S. Functional evaluation of a novel nonsense variant of the calcium-sensing receptor gene leading to hypocalcemia. Eur J Endocrinol 2024; 190:296-306. [PMID: 38561929 DOI: 10.1093/ejendo/lvae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE The calcium-sensing receptor (CASR) gene encodes a G protein-coupled receptor crucial for calcium homeostasis. Gain-of-function CASR variants result in hypocalcemia, while loss-of-function variants lead to hypercalcemia. This study aims to assess the functional consequences of the novel nonsense CASR variant [c.2897_2898insCTGA, p.(Gln967*) (Q967*)] identified in adolescent patient with chronic hypocalcemia, a phenotype expected for a gain-of-function variants. DESIGN AND METHODS To functionally characterize the Q967* mutant receptor, both wild-type (WT) and mutant CASR were transiently transfected into HEK293T cells and calcium-sensing receptor (CaSR) protein expression and functions were comparatively evaluated using multiple read-outs. RESULTS Western blot analysis revealed that the CaSR mutant protein displayed a lower molecular weight compared with the WT, consistent with the loss of the last 122 amino acids in the intracellular domain. Mitogen-activated protein kinase activation and serum responsive element luciferase assays demonstrated that the mutant receptor had higher baseline activity than the WT. Extracellular-signal-regulated kinase/c-Jun N-terminal kinase phosphorylation, however, remained consistently high in the mutant, without significant modulations following exposure to increasing extracellular calcium (Ca2+o) levels, suggesting that the mutant receptor is more sensitive to Ca2+o compared with the WT. CONCLUSIONS This study provides functional validation of the pathogenicity of a novel nonsense CASR variant, resulting in an abnormally hyperfunctioning protein consistent with the patient's phenotype. Functional analyses indicate that mutant receptor is constitutively active and poorly sensitive to increasing concentrations of extracellular calcium, suggesting that the cytoplasmic tail may contain elements regulating signal transduction.
Collapse
Affiliation(s)
- Claudia Saglia
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Caterina Scolari
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Silvia Kalantari
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Serena Albanese
- Department of Public Health and Pediatric Sciences, University of Torino, Torino 10126, Italy
- Pediatric Endocrinology, Regina Margherita Childrens' Hospital, Torino 10126, Italy
| | - Valeria Bracciamà
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Angelo Corso Faini
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Giulia Brach Del Prever
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Maria Luca
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Carmelo Romeo
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Fiorenza Mioli
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | | | - Daniele Tessaris
- Department of Public Health and Pediatric Sciences, University of Torino, Torino 10126, Italy
- Pediatric Endocrinology, Regina Margherita Childrens' Hospital, Torino 10126, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Luisa De Sanctis
- Department of Public Health and Pediatric Sciences, University of Torino, Torino 10126, Italy
- Pediatric Endocrinology, Regina Margherita Childrens' Hospital, Torino 10126, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| |
Collapse
|
4
|
Fukami M, Suzuki E, Igarashi M, Miyado M, Ogata T. Gain-of-function mutations in G-protein-coupled receptor genes associated with human endocrine disorders. Clin Endocrinol (Oxf) 2018; 88:351-359. [PMID: 29029377 DOI: 10.1111/cen.13496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 11/28/2022]
Abstract
The human genome encodes more than 700 G-protein-coupled receptors (GPCRs), many of which are involved in hormone secretion. To date, more than 100 gain-of-function (activating) mutations in at least ten genes for GPCRs, in addition to several loss-of-function mutations, have been implicated in human endocrine disorders. Previously reported gain-of-function GPCR mutations comprise various missense substitutions, frameshift mutations, intragenic inframe deletions and copy-number gains. Such mutations appear in both germline and somatic tumour cells, and lead to various hormonal abnormalities reflecting excessive receptor activity. Phenotypic consequences of these mutations include distinctive endocrine syndromes, as well as relatively common hormonal abnormalities. Such mutations encode hyperfunctioning receptors with increased constitutive activity, broadened ligand specificity, increased ligand sensitivity and/or delayed receptor desensitization. Furthermore, recent studies proposed a paradoxical gain-of-function mechanism caused by inactive GPCR mutants. Molecular diagnosis of GPCR activating mutations serves to improve the clinical management of mutation-positive patients. This review aims to introduce new aspects regarding gain-of-function mutations in GPCR genes associated with endocrine disorders.
Collapse
Affiliation(s)
- Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Erina Suzuki
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Igarashi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
5
|
Vahe C, Benomar K, Espiard S, Coppin L, Jannin A, Odou MF, Vantyghem MC. Diseases associated with calcium-sensing receptor. Orphanet J Rare Dis 2017; 12:19. [PMID: 28122587 PMCID: PMC5264458 DOI: 10.1186/s13023-017-0570-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/13/2017] [Indexed: 12/29/2022] Open
Abstract
The calcium-sensing receptor (CaSR) plays a pivotal role in systemic calcium metabolism by regulating parathyroid hormone secretion and urinary calcium excretion. The diseases caused by an abnormality of the CaSR are genetically determined or are more rarely acquired. The genetic diseases consist of hyper- or hypocalcemia disorders. Hypercalcaemia disorders are related to inactivating mutations of the CASR gene either heterozygous (autosomal dominant familial benign hypercalcaemia, still named hypocalciuric hypercalcaemia syndrome type 1) or homozygous (severe neonatal hyperparathyroidism). The A986S, R990G and Q1011E variants of the CASR gene are associated with higher serum calcium levels than in the general population, hypercalciuria being also associated with the R990G variant. The differential diagnosis consists in the hypocalciuric hypercalcaemia syndrome, types 2 (involving GNA11 gene) and 3 (involving AP2S1 gene); hyperparathyroidism; abnormalities of vitamin D metabolism, involving CYP24A1 and SLC34A1 genes; and reduced GFR. Hypocalcemia disorders, which are more rare, are related to heterozygous activating mutations of the CASR gene (type 1), consisting of autosomal dominant hypocalcemia disorders, sometimes with a presentation of pseudo-Bartter’s syndrome. The differential diagnosis consists of the hypercalciuric hypocalcaemia syndrome type 2, involving GNA11 gene and other hypoparathyroidism aetiologies. The acquired diseases are related to the presence of anti-CaSR antibodies, which can cause hyper- or especially hypocalcemia disorders (for instance in APECED syndromes), determined by their functionality. Finally, the role of CaSR in digestive, respiratory, cardiovascular and neoplastic diseases is gradually coming to light, providing new therapeutic possibilities. Two types of CaSR modulators are known: CaSR agonists (or activators, still named calcimimetics) and calcilytic antagonists (or inhibitors of the CasR). CaSR agonists, such as cinacalcet, are indicated in secondary and primary hyperparathyroidism. Calcilytics have no efficacy in osteoporosis, but could be useful in the treatment of hypercalciuric hypocalcaemia syndromes.
Collapse
Affiliation(s)
- C Vahe
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - K Benomar
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - S Espiard
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - L Coppin
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie-Pathologie, Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - A Jannin
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - M F Odou
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie-Pathologie, Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - M C Vantyghem
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France. .,Equipe INSERM 1190 Prise en charge translationnelle du diabète, Lille Cedex, France. .,Institut EGID (European Genomic Institute for Diabetes), Lille Cedex, France.
| |
Collapse
|
6
|
Hendy GN, Canaff L. Calcium-Sensing Receptor Gene: Regulation of Expression. Front Physiol 2016; 7:394. [PMID: 27679579 PMCID: PMC5020072 DOI: 10.3389/fphys.2016.00394] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022] Open
Abstract
The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5′-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2–7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes—promoter methylation of the GC-rich P2 promoter, histone acetylation—as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the “tumor suppressor” activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2—the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR—the calciostat—is regulated physiologically and pathophysiologically at the gene level.
Collapse
Affiliation(s)
- Geoffrey N Hendy
- Experimental Therapeutics and Metabolism, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University Montréal, QC, Canada
| | - Lucie Canaff
- Experimental Therapeutics and Metabolism, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University Montréal, QC, Canada
| |
Collapse
|
7
|
Mayr B, Glaudo M, Schöfl C. Activating Calcium-Sensing Receptor Mutations: Prospects for Future Treatment with Calcilytics. Trends Endocrinol Metab 2016; 27:643-652. [PMID: 27339034 DOI: 10.1016/j.tem.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022]
Abstract
Activating mutations of the G protein-coupled receptor, calcium-sensing receptor (CaSR), cause autosomal dominant hypocalcemia and Bartter syndrome type 5. These mutations lower the set-point for extracellular calcium sensing, thereby causing decreased parathyroid hormone secretion and disturbed renal calcium handling with hypercalciuria. Available therapies increase serum calcium levels but raise the risk of complications in affected patients. Symptom relief and the prevention of adverse outcome is currently very difficult to achieve. Calcilytics act as CaSR antagonists that attenuate its activity, thereby correcting the molecular defect of activating CaSR proteins in vitro and elevating serum calcium in mice and humans in vivo, and have emerged as the most promising therapeutics for the treatment of these rare and difficult to treat diseases.
Collapse
Affiliation(s)
- Bernhard Mayr
- Division of Endocrinology and Diabetes, Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Germany.
| | - Markus Glaudo
- Division of Endocrinology and Diabetes, Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Germany
| | - Christof Schöfl
- Division of Endocrinology and Diabetes, Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Germany
| |
Collapse
|