1
|
Atanasova VS, de Jesus Cardona C, Hejret V, Tiefenbacher A, Mair T, Tran L, Pfneissl J, Draganić K, Binder C, Kabiljo J, Clement J, Woeran K, Neudert B, Wohlhaupter S, Haase A, Domazet S, Hengstschläger M, Mitterhauser M, Müllauer L, Tichý B, Bergmann M, Schweikert G, Hartl M, Dolznig H, Egger G. Mimicking Tumor Cell Heterogeneity of Colorectal Cancer in a Patient-derived Organoid-Fibroblast Model. Cell Mol Gastroenterol Hepatol 2023; 15:1391-1419. [PMID: 36868311 PMCID: PMC10141529 DOI: 10.1016/j.jcmgh.2023.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND & AIMS Patient-derived organoid cancer models are generated from epithelial tumor cells and reflect tumor characteristics. However, they lack the complexity of the tumor microenvironment, which is a key driver of tumorigenesis and therapy response. Here, we developed a colorectal cancer organoid model that incorporates matched epithelial cells and stromal fibroblasts. METHODS Primary fibroblasts and tumor cells were isolated from colorectal cancer specimens. Fibroblasts were characterized for their proteome, secretome, and gene expression signatures. Fibroblast/organoid co-cultures were analyzed by immunohistochemistry and compared with their tissue of origin, as well as on gene expression levels compared with standard organoid models. Bioinformatics deconvolution was used to calculate cellular proportions of cell subsets in organoids based on single-cell RNA sequencing data. RESULTS Normal primary fibroblasts, isolated from tumor adjacent tissue, and cancer associated fibroblasts retained their molecular characteristics in vitro, including higher motility of cancer associated compared with normal fibroblasts. Importantly, both cancer-associated fibroblasts and normal fibroblasts supported cancer cell proliferation in 3D co-cultures, without the addition of classical niche factors. Organoids grown together with fibroblasts displayed a larger cellular heterogeneity of tumor cells compared with mono-cultures and closely resembled the in vivo tumor morphology. Additionally, we observed a mutual crosstalk between tumor cells and fibroblasts in the co-cultures. This was manifested by considerably deregulated pathways such as cell-cell communication and extracellular matrix remodeling in the organoids. Thrombospondin-1 was identified as a critical factor for fibroblast invasiveness. CONCLUSION We developed a physiological tumor/stroma model, which will be vital as a personalized tumor model to study disease mechanisms and therapy response in colorectal cancer.
Collapse
Affiliation(s)
- Velina S Atanasova
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Václav Hejret
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Andreas Tiefenbacher
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Carina Binder
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Julijan Kabiljo
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Clinic of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Janik Clement
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Katharina Woeran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Barbara Neudert
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Astrid Haase
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sandra Domazet
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | | | | | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Boris Tichý
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michael Bergmann
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Clinic of General Surgery, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schweikert
- Max Planck Institute for Intelligent Systems, Tübingen, Germany; Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Markus Hartl
- Department of Biochemistry and Cell Biology, Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria; Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6:218. [PMID: 34108441 PMCID: PMC8190181 DOI: 10.1038/s41392-021-00641-0] [Citation(s) in RCA: 384] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
To flourish, cancers greatly depend on their surrounding tumor microenvironment (TME), and cancer-associated fibroblasts (CAFs) in TME are critical for cancer occurrence and progression because of their versatile roles in extracellular matrix remodeling, maintenance of stemness, blood vessel formation, modulation of tumor metabolism, immune response, and promotion of cancer cell proliferation, migration, invasion, and therapeutic resistance. CAFs are highly heterogeneous stromal cells and their crosstalk with cancer cells is mediated by a complex and intricate signaling network consisting of transforming growth factor-beta, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase, Wnt, Janus kinase/signal transducers and activators of transcription, epidermal growth factor receptor, Hippo, and nuclear factor kappa-light-chain-enhancer of activated B cells, etc., signaling pathways. These signals in CAFs exhibit their own special characteristics during the cancer progression and have the potential to be targeted for anticancer therapy. Therefore, a comprehensive understanding of these signaling cascades in interactions between cancer cells and CAFs is necessary to fully realize the pivotal roles of CAFs in cancers. Herein, in this review, we will summarize the enormous amounts of findings on the signals mediating crosstalk of CAFs with cancer cells and its related targets or trials. Further, we hypothesize three potential targeting strategies, including, namely, epithelial-mesenchymal common targets, sequential target perturbation, and crosstalk-directed signaling targets, paving the way for CAF-directed or host cell-directed antitumor therapy.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qingxiang Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shuzhi Deng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
3
|
Ning X, Zhang H, Wang C, Song X. Exosomes Released by Gastric Cancer Cells Induce Transition of Pericytes Into Cancer-Associated Fibroblasts. Med Sci Monit 2018; 24:2350-2359. [PMID: 29668670 PMCID: PMC5922989 DOI: 10.12659/msm.906641] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are functionally and structurally essential for tumor progression. There are 3 main origins of CAFs: mesenchymal stem cells (MSCs), epithelial-to-mesenchymal (EMT) transition cells, and tissue-resident cells. Pericytes retain characteristics of progenitor cells and can differentiate into other cells under normal physiological conditions and into myofibroblasts under pathological conditions. Exosomes play an important role in intercellular communication by transferring membrane components and nucleic acids between different cells. In this study, we evaluated whether cancer cell-derived exosomes are involved in regulating the transition of pericytes to CAFs. Material/Methods Exosomes from GES-1 and SGC7901 cells were isolated by serial centrifugation and purified from the supernatant by the 30% sucrose/D2O cushion method. A transmission electron microscope was used to observe exosome morphologies, and nanoparticle tracking analysis was used to analyze size distribution of exosomes. Western blot analysis, immunofluorescent staining, and qPCR were employed to detect CAFs marker expression and signaling pathways involved in CAFs transition. Results Gastric cancer cell-derived exosomes enhanced pericytes proliferation and migration and induced the expression of CAFs marker in pericytes. We then demonstrated that the PI3K/AKT and MEK/ERK pathways were activated by tumor-derived exosomes, and BMP pathway inhibition reverses cancer exosomes-induced CAFs transition. Conclusions Our results suggest that gastric cancer cells induce the transition of pericytes to CAFs by exosomes-mediated BMP transfer and PI3K/AKT and MEK/ERK pathway activation, and suggest that pericytes may be an important source of CAFs.
Collapse
Affiliation(s)
- Xiaofei Ning
- Department of General Surgery, Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong, China (mainland)
| | - Hongran Zhang
- Department of Gastrointestinal, Affiliated Hospital of Jining Medical College, Jining, Shandong, China (mainland)
| | - Cong Wang
- Department of Ultrasound, Affiliated Hospital of Jining Medical College, Jining, Shandong, China (mainland)
| | - Xiuqi Song
- Department of General Surgery, Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong, China (mainland)
| |
Collapse
|
4
|
Roubaud G, Liaw BC, Oh WK, Mulholland DJ. Strategies to avoid treatment-induced lineage crisis in advanced prostate cancer. Nat Rev Clin Oncol 2017; 14:269-283. [PMID: 27874061 PMCID: PMC5567685 DOI: 10.1038/nrclinonc.2016.181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The increasing potency of therapies that target the androgen receptor (AR) signalling axis has correlated with a rise in the proportion of patients with prostate cancer harbouring an adaptive phenotype, termed treatment-induced lineage crisis. This phenotype is characterized by features that include soft-tissue metastasis and/or resistance to standard anticancer therapies. Potent anticancer treatments might force cancer cells to evolve and develop alternative cell lineages that are resistant to primary therapies, a mechanism similar to the generation of multidrug- resistant microorganisms after continued antibiotic use. Herein, we assess the hypothesis that treatment-adapted phenotypes harbour reduced AR expression and/or activity, and acquire compensatory strategies for cell survival. We highlight the striking similarities between castration-resistant prostate cancer and triple-negative breast cancer, another poorly differentiated endocrine malignancy. Alternative treatment paradigms are needed to avoid therapy-induced resistance. Herein, we present a new clinical trial strategy designed to evaluate the potential of rapid drug cycling as an approach to delay the onset of resistance and treatment-induced lineage crisis in patients with metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, 229 Cours de l'Argonne, Bordeaux 33076, France
| | - Bobby C Liaw
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 1470 Madison Avenue, New York, New York 10029, USA
| | - William K Oh
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 1470 Madison Avenue, New York, New York 10029, USA
| | - David J Mulholland
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 1470 Madison Avenue, New York, New York 10029, USA
| |
Collapse
|
5
|
Liang M, Adisetiyo H, Liu X, Liu R, Gill P, Roy-Burman P, Jones JO, Mulholland DJ. Identification of Androgen Receptor Splice Variants in the Pten Deficient Murine Prostate Cancer Model. PLoS One 2015. [PMID: 26196517 PMCID: PMC4510390 DOI: 10.1371/journal.pone.0131232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Androgen receptor (AR) variants are associated with resistance to anti androgen therapy both in human prostate cancer cell lines and clinical samples. These observations support the hypothesis that AR isoform accumulation is a consequence of selective therapeutic pressure on the full length AR. The Pten deficient prostate cancer model proceeds with well-defined kinetics including progression to castration resistant prostate cancer (CRPC). While surgical castration and enzalutamide treatments yield an initial therapeutic response, Pten-/-epithelia continue to proliferate yielding locally invasive primary tumor pathology. That most epithelium remains AR positive, but ligand independent, suggests the presence of oncogenic AR variants. To address this hypothesis, we have used a panel of recently described Pten-/- tumor cell lines derived from both from hormone intact (E4, E8) and castrated Pten mutants (cE1, cE2) followed by RACE PCR to identify and characterize three novel truncated, amino terminus containing AR variants (mAR-Va, b, c). Variants appear not only conserved throughout progression but are correlated with nearly complete loss of full length AR (AR-FL) at castrate androgen levels. The overexpression of variants leads to enhanced transcriptional activity of AR while knock down studies show reduced transcriptional output. Collectively, the identification of truncated AR variants in the conditional PTEN deletion model supports a role for maintaining the CRPC phenotype and provides further therapeutic applications of this preclinical model.
Collapse
Affiliation(s)
- Mengmeng Liang
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Helty Adisetiyo
- Children’s Hospital of Los Angeles, Los Angeles, California, United States of America
| | - Xiuqing Liu
- St. Luke's Hospital, Internal medicine resident, Chesterfield, Missouri, United States of America
| | - Ren Liu
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Parkash Gill
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Pradip Roy-Burman
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Jeremy O. Jones
- Beckman Research Institute, City of Hope, Duarte, California, United States of America
- * E-mail: (DJM); (JJ)
| | - David J. Mulholland
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: (DJM); (JJ)
| |
Collapse
|
6
|
Cipollini M, Landi S, Gemignani F. MicroRNA binding site polymorphisms as biomarkers in cancer management and research. Pharmgenomics Pers Med 2014; 7:173-91. [PMID: 25114582 PMCID: PMC4126202 DOI: 10.2147/pgpm.s61693] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of eukaryotic gene expression. They have been implicated in a broad range of biological processes, and miRNA-related genetic alterations probably underlie several human diseases. Single nucleotide polymorphisms of transcripts may modulate the posttranscriptional regulation of gene expression by miRNAs and explain interindividual variability in cancer risk and in chemotherapy response. On the basis of recent association studies published in the literature, the present review mainly summarizes the potential role of miRNAs as molecular biomarkers for disease susceptibility, diagnosis, prognosis, and drug-response prediction in tumors. Many clues suggest a role for polymorphisms within the 3' untranslated regions of KRAS rs61764370, SET8 rs16917496, and MDM4 rs4245739 as SNPs in miRNA binding sites highly promising in the biology of human cancer. However, more studies are needed to better characterize the composite spectrum of genetic determinants for future use of markers in risk prediction and clinical management of diseases, heading toward personalized medicine.
Collapse
Affiliation(s)
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|