1
|
Arenillas C, Celada L, Ruiz-Cantador J, Calsina B, Datta D, García-Galea E, Fasani R, Moreno-Cárdenas AB, Alba-Linares JJ, Miranda-Barrio B, Martínez-Montes ÁM, Alvarez-Escola C, Lecumberri B, González García A, K. Flores S, Esquivel E, Ding Y, Peitzsch M, Robles-Guirado JÁ, Regojo Zapata RM, Pozo-Kreilinger JJ, Iglesias C, Dwight T, Muir CA, Oleaga A, Garrido-Lestache Rodríguez-Monte ME, Del Cerro MJ, Martínez-Bendayán I, Álvarez-González E, Cubiella T, Lourenço DM, A. Pereira MA, Burnichon N, Buffet A, Broberg C, Dickson PV, Fraga MF, Llorente Pendás JL, Rueda Soriano J, Buendía Fuentes F, Toledo SP, Clifton-Bligh R, Dienstmann R, Villanueva J, Capdevila J, Gimenez-Roqueplo AP, Favier J, Nuciforo P, Young WF, Bechmann N, Opotowsky AR, Vaidya A, Bancos I, Weghorn D, Robledo M, Casteràs A, Dos-Subirà L, Adameyko I, Chiara MD, Dahia PL, Toledo RA. Convergent Genetic Adaptation in Human Tumors Developed Under Systemic Hypoxia and in Populations Living at High Altitudes. Cancer Discov 2025; 15:1037-1062. [PMID: 40199338 PMCID: PMC12046333 DOI: 10.1158/2159-8290.cd-24-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/21/2024] [Accepted: 01/27/2025] [Indexed: 04/10/2025]
Abstract
SIGNIFICANCE This study reveals a broad convergence in genetic adaptation to hypoxia between natural populations and tumors, suggesting that insights from natural populations could enhance our understanding of cancer biology and identify novel therapeutic targets. See related commentary by Lee, p. 875.
Collapse
Affiliation(s)
- Carlota Arenillas
- Biomarkers and Clonal Dynamics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lucía Celada
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - José Ruiz-Cantador
- Adult Congenital Heart Disease Unit, Department of Cardiology, Hospital Universitario La Paz, Madrid, Spain
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Debayan Datta
- Biomarkers and Clonal Dynamics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Eduardo García-Galea
- Oncology Data Science (ODysSey) Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roberta Fasani
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana Belén Moreno-Cárdenas
- Biomarkers and Clonal Dynamics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan José Alba-Linares
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Berta Miranda-Barrio
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Integrated Adult Congenital Heart Disease Unit, Department of Cardiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, the Netherlands
| | - Ángel M. Martínez-Montes
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Beatriz Lecumberri
- Department of Endocrinology and Nutrition, Hospital Universitario La Paz, Madrid, Spain
| | - Ana González García
- Adult Congenital Heart Disease Unit, Department of Cardiology, Hospital Universitario La Paz, Madrid, Spain
| | - Shahida K. Flores
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas
| | - Emmanuel Esquivel
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas
| | - Yanli Ding
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - José-Ángel Robles-Guirado
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | | | - Carmela Iglesias
- Department of Pathology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Trisha Dwight
- Cancer Genetics, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
| | - Christopher A. Muir
- Department of Endocrinology, St. Vincent’s Hospital, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Amelia Oleaga
- Department of Endocrinology and Nutrition, Hospital Universitario de Basurto, Bilbao, Spain
| | | | - Maria Jesús Del Cerro
- Department of Pediatric Cardiology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Isaac Martínez-Bendayán
- Department of Pediatric Cardiology, Instituto de Investigación Biomédica (Cardiopatía Estructural y Congénita) and Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Enol Álvarez-González
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Department of Functional Biology, Genetic Area, University of Oviedo, Oviedo, Spain
| | - Tamara Cubiella
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Delmar Muniz Lourenço
- Endocrinology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Maria Adelaide A. Pereira
- Endocrinology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Nelly Burnichon
- AP-HP, Hôpital Européen Georges Pompidou, Département de Médecine Génomique des Tumeurs et des Cancers, Paris, France
- Inserm, Centre de recherche des Cordeliers, Université Paris-Cité, Sorbonne Université, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Alexandre Buffet
- AP-HP, Hôpital Européen Georges Pompidou, Département de Médecine Génomique des Tumeurs et des Cancers, Paris, France
- Inserm, Centre de recherche des Cordeliers, Université Paris-Cité, Sorbonne Université, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Craig Broberg
- Adult Congenital Heart Program, Division of Cardiology, Oregon Health and Science University, Portland, Oregon
| | - Paxton V. Dickson
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mario F. Fraga
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José Luis Llorente Pendás
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Joaquín Rueda Soriano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Adult Congenital Heart Disease Unit, Department of Cardiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Francisco Buendía Fuentes
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Adult Congenital Heart Disease Unit, Department of Cardiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | | | - Roderick Clifton-Bligh
- Department of Endocrinology and Cancer Genetics Unit, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
| | - Rodrigo Dienstmann
- Oncology Data Science (ODysSey) Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- University of Vic – Central University of Catalonia, Vic, Spain
| | - Josep Villanueva
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Jaume Capdevila
- Neuroendocrine and Endocrine Tumor Translational Research Program (NET-VHIO), Vall Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Medical Oncology, Gastrointestinal and Endocrine Tumor Unit, Vall d’Hebron Hospital Universitari, Vall d’Hebron Hospital Campus, Barcelona, Spain
| | - Anne-Paule Gimenez-Roqueplo
- AP-HP, Hôpital Européen Georges Pompidou, Département de Médecine Génomique des Tumeurs et des Cancers, Paris, France
- Inserm, Centre de recherche des Cordeliers, Université Paris-Cité, Sorbonne Université, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Judith Favier
- Inserm, Centre de recherche des Cordeliers, Université Paris-Cité, Sorbonne Université, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alexander R. Opotowsky
- Cincinnati Adult Congenital Heart Disease Program, Heart Institute, Cincinnati Children’s Hospital, University of Cincinnati, Cincinnati, Ohio
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anand Vaidya
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Irina Bancos
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota
| | | | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Anna Casteràs
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Endocrinology and Nutrition, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Dos-Subirà
- Integrated Adult Congenital Heart Disease Unit, Department of Cardiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, the Netherlands
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - María-Dolores Chiara
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Patricia L.M. Dahia
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas
| | - Rodrigo A. Toledo
- Biomarkers and Clonal Dynamics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Bishop T, Ratcliffe PJ. HIF2α: the interface between oxygen-sensing systems in physiology and pathology. Physiology (Bethesda) 2025:10.1152/physiol.00043.2024. [PMID: 39946558 PMCID: PMC7617529 DOI: 10.1152/physiol.00043.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/02/2024] [Indexed: 03/29/2025] Open
Abstract
More than 100 years after the original descriptions of altitude adaptation, it is now clear that many of these responses are mediated by a specific isoform of the transcription factor hypoxia-inducible factor (HIF-2α). Here, we review this work, including connectivity with the oxygen chemosensitive response itself, and with paraganglioma, a tumour often affecting chemosensitive tissues.
Collapse
|
3
|
Jucht AE, Scholz CC. PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions. Pflugers Arch 2024; 476:1307-1337. [PMID: 38509356 PMCID: PMC11310289 DOI: 10.1007/s00424-024-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.
Collapse
Affiliation(s)
- Agnieszka E Jucht
- Institute of Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany.
| |
Collapse
|
4
|
Prange-Barczynska M, Jones HA, Sugimoto Y, Cheng X, Lima JD, Ratnayaka I, Douglas G, Buckler KJ, Ratcliffe PJ, Keeley TP, Bishop T. Hif-2α programs oxygen chemosensitivity in chromaffin cells. J Clin Invest 2024; 134:e174661. [PMID: 39106106 PMCID: PMC11405041 DOI: 10.1172/jci174661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/29/2024] [Indexed: 08/09/2024] Open
Abstract
The study of transcription factors that determine specialized neuronal functions has provided invaluable insights into the physiology of the nervous system. Peripheral chemoreceptors are neurone-like electrophysiologically excitable cells that link the oxygen concentration of arterial blood to the neuronal control of breathing. In the adult, this oxygen chemosensitivity is exemplified by type I cells of the carotid body, and recent work has revealed one isoform of the hypoxia-inducible transcription factor (HIF), HIF-2α, as having a nonredundant role in the development and function of that organ. Here, we show that activation of HIF-2α, including isolated overexpression of HIF-2α but not HIF-1α, is sufficient to induce oxygen chemosensitivity in adult adrenal medulla. This phenotypic change in the adrenal medulla was associated with retention of extra-adrenal paraganglioma-like tissues resembling the fetal organ of Zuckerkandl, which also manifests oxygen chemosensitivity. Acquisition of chemosensitivity was associated with changes in the adrenal medullary expression of gene classes that are ordinarily characteristic of the carotid body, including G protein regulators and atypical subunits of mitochondrial cytochrome oxidase. Overall, the findings suggest that, at least in certain tissues, HIF-2α acts as a phenotypic driver for cells that display oxygen chemosensitivity, thus linking 2 major oxygen-sensing systems.
Collapse
Affiliation(s)
- Maria Prange-Barczynska
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Holly A. Jones
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Yoichiro Sugimoto
- The Francis Crick Institute, London, United Kingdom
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Xiaotong Cheng
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Joanna D.C.C. Lima
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Indrika Ratnayaka
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Gillian Douglas
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Keith J. Buckler
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter J. Ratcliffe
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Thomas P. Keeley
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Tammie Bishop
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Karna B, Pellegata NS, Mohr H. Animal and Cell Culture Models of PPGLs - Achievements and Limitations. Horm Metab Res 2024; 56:51-64. [PMID: 38171372 DOI: 10.1055/a-2204-4549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on rare tumors heavily relies on suitable models for basic and translational research. Paragangliomas (PPGL) are rare neuroendocrine tumors (NET), developing from adrenal (pheochromocytoma, PCC) or extra-adrenal (PGL) chromaffin cells, with an annual incidence of 2-8 cases per million. While most PPGL cases exhibit slow growth and are primarily treated with surgery, limited systemic treatment options are available for unresectable or metastatic tumors. Scarcity of appropriate models has hindered PPGL research, preventing the translation of omics knowledge into drug and therapy development. Human PPGL cell lines are not available, and few animal models accurately replicate the disease's genetic and phenotypic characteristics. This review provides an overview of laboratory models for PPGLs, spanning cellular, tissue, organ, and organism levels. We discuss their features, advantages, and potential contributions to diagnostics and therapeutics. Interestingly, it appears that in the PPGL field, disease models already successfully implemented in other cancers have not been fully explored.
Collapse
Affiliation(s)
- Bhargavi Karna
- Institute for Diabetes and Cancer, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Natalia Simona Pellegata
- Institute for Diabetes and Cancer, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
6
|
Jones RB, Cohen DL. Congenital Cyanotic Heart Disease and the Association with Pheochromocytomas and Paragangliomas. Curr Cardiol Rep 2023; 25:1451-1460. [PMID: 37847359 DOI: 10.1007/s11886-023-01974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE OF REVIEW Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors that commonly produce excess catecholamines causing significant morbidity and mortality. Patients with cyanotic congenital heart disease (CCHD) develop PPGLs at a higher frequency than the general population. This review will summarize recent research in the association of PPGL and CCHD. RECENT FINDINGS Advances in molecular genetics have provided new insights into a variety of germline mutations and somatic mutations related to PPGLs. In the CCHD population, mutations can occur in the hypoxia signaling pathway with gain-of-function somatic mutations in EPAS1, which prevent degradation of hypoxia-inducible factor-2 alpha. These mutations are implicated in oncogenesis. PPGLs associated with CCHD develop as early as age 15 years and have predominantly noradrenergic secretion. Surgical removal is considered the first line of therapy, although belzutifan, a HIF-2α inhibitor, is currently being tested as a potential therapy. Early screening with plasma metanephrines may assist in identifying PPGLs in patients with CCHD.
Collapse
Affiliation(s)
- Robert Benson Jones
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Debbie L Cohen
- Division of Renal Electrolyte and Hypertension, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Delamare M, Le Roy A, Pacault M, Schmitt L, Garrec C, Maaziz N, Myllykoski M, Rimbert A, Karaghiannis V, Aral B, Catherwood M, Airaud F, Mansour-Hendili L, Hoogewijs D, Peroni E, Idriss S, Lesieur V, Caillaud A, Si-Tayeb K, Chariau C, Gaignerie A, Rab M, Haferlach T, Meggendorfer M, Bézieau S, Benetti A, Casadevall N, Hirsch P, Rose C, Wemeau M, Galacteros F, Cassinat B, Bellosillo B, Bento C, Van Wijk R, Petrides PE, Randi ML, McMullin MF, Koivunen P, Girodon F, Gardie B. Characterization of genetic variants in the EGLN1/PHD2 gene identified in a European collection of patients with erythrocytosis. Haematologica 2023; 108:3068-3085. [PMID: 37317877 PMCID: PMC10620589 DOI: 10.3324/haematol.2023.282913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Hereditary erythrocytosis is a rare hematologic disorder characterized by an excess of red blood cell production. Here we describe a European collaborative study involving a collection of 2,160 patients with erythrocytosis sequenced in ten different laboratories. We focused our study on the EGLN1 gene and identified 39 germline missense variants including one gene deletion in 47 probands. EGLN1 encodes the PHD2 prolyl 4-hydroxylase, a major inhibitor of hypoxia-inducible factor. We performed a comprehensive study to evaluate the causal role of the identified PHD2 variants: (i) in silico studies of localization, conservation, and deleterious effects; (ii) analysis of hematologic parameters of carriers identified in the UK Biobank; (iii) functional studies of the protein activity and stability; and (iv) a comprehensive study of PHD2 splicing. Altogether, these studies allowed the classification of 16 pathogenic or likely pathogenic mutants in a total of 48 patients and relatives. The in silico studies extended to the variants described in the literature showed that a minority of PHD2 variants can be classified as pathogenic (36/96), without any differences from the variants of unknown significance regarding the severity of the developed disease (hematologic parameters and complications). Here, we demonstrated the great value of federating laboratories working on such rare disorders in order to implement the criteria required for genetic classification, a strategy that should be extended to all hereditary hematologic diseases.
Collapse
Affiliation(s)
- Marine Delamare
- Ecole Pratique des Hautes Etudes, EPHE, Université PSL, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Amandine Le Roy
- Ecole Pratique des Hautes Etudes, EPHE, Université PSL, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Mathilde Pacault
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Service de Génétique Médicale, CHU de Nantes, Nantes
| | - Loïc Schmitt
- Ecole Pratique des Hautes Etudes, EPHE, Université PSL, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Céline Garrec
- Service de Génétique Médicale, CHU de Nantes, Nantes
| | - Nada Maaziz
- Service d'Hématologie Biologique, Pôle Biologie, CHU de Dijon, Dijon
| | - Matti Myllykoski
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, 90014 Oulu, Finland. 90014 Oulu
| | - Antoine Rimbert
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Valéna Karaghiannis
- Ecole Pratique des Hautes Etudes, EPHE, Université PSL, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Bernard Aral
- Service d'Hématologie Biologique, Pôle Biologie, CHU de Dijon, Dijon
| | | | | | - Lamisse Mansour-Hendili
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil, France; Université Paris-Est Créteil, IMRB Equipe Pirenne, Laboratoire d'excellence LABEX GRex, Créteil
| | - David Hoogewijs
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, CH-1700 Fribourg, Switzerland; National Center of Competence in Research "Kidney.CH"
| | - Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy; Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro
| | - Salam Idriss
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Valentine Lesieur
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Amandine Caillaud
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Karim Si-Tayeb
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Caroline Chariau
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, FR-44000, Nantes
| | - Anne Gaignerie
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, FR-44000, Nantes
| | - Minke Rab
- Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht
| | | | | | - Stéphane Bézieau
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Service de Génétique Médicale, CHU de Nantes, Nantes
| | - Andrea Benetti
- Department of Medicine-DIMED, University of Padua, Via Giustiniani 2, 35128, Padua
| | - Nicole Casadevall
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, 75012, Paris
| | - Pierre Hirsch
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, 75012, Paris
| | - Christian Rose
- Service d'onco-hématologie, Saint-Vincent de Paul Hospital, Boulevard de Belfort, Université Catholique de Lille, Univ. Nord de France, F-59000 Lille
| | - Mathieu Wemeau
- Hematology Department, Claude Huriez Hospital, Lille Hospital, 59000 Lille
| | - Frédéric Galacteros
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil, France; Red Cell Disease Referral Center-UMGGR, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil
| | - Bruno Cassinat
- Université Paris Cité, APHP, Hôpital Saint-Louis, Laboratoire de Biologie Cellulaire, Paris
| | | | - Celeste Bento
- Hematology Department, Centro Hospitalar e Universitário de Coimbra; CIAS, University of Coimbra
| | - Richard Van Wijk
- Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht
| | - Petro E Petrides
- Hematology Oncology Center and Ludwig-Maximilians-University Munich Medical School, Munich
| | - Maria Luigia Randi
- Department of Medicine-DIMED, University of Padua, Via Giustiniani 2, 35128, Padua
| | - Mary Frances McMullin
- Belfast Health and Social Care Trust, Belfast N.Ireland; Queen's University, Belfast, N. Ireland
| | - Peppi Koivunen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, 90014 Oulu, Finland. 90014 Oulu
| | - François Girodon
- Service d'Hématologie Biologique, Pôle Biologie, CHU de Dijon, Dijon, France; Inserm U1231, Université de Bourgogne, Dijon, France; Laboratoire d'Excellence GR-Ex
| | - Betty Gardie
- Ecole Pratique des Hautes Etudes, EPHE, Université PSL, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Laboratoire d'Excellence GR-Ex
| |
Collapse
|
8
|
Toledo RA, Jimenez C, Armaiz-Pena G, Arenillas C, Capdevila J, Dahia PLM. Hypoxia-Inducible Factor 2 Alpha (HIF2α) Inhibitors: Targeting Genetically Driven Tumor Hypoxia. Endocr Rev 2023; 44:312-322. [PMID: 36301191 DOI: 10.1210/endrev/bnac025] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/01/2022] [Indexed: 11/19/2022]
Abstract
Tumors driven by deficiency of the VHL gene product, which is involved in degradation of the hypoxia-inducible factor subunit 2 alpha (HIF2α), are natural candidates for targeted inhibition of this pathway. Belzutifan, a highly specific and well-tolerated HIF2α inhibitor, recently received FDA approval for the treatment of nonmetastatic renal cell carcinomas, pancreatic neuroendocrine tumors, and central nervous system hemangioblastomas from patients with von Hippel-Lindau disease, who carry VHL germline mutations. Such approval is a milestone in oncology; however, the full potential, and limitations, of HIF2α inhibition in the clinic are just starting to be explored. Here we briefly recapitulate the molecular rationale for HIF2α blockade in tumors and review available preclinical and clinical data, elaborating on mutations that might be particularly sensitive to this approach. We also outline some emerging mechanisms of intrinsic and acquired resistance to HIF2α inhibitors, including acquired mutations of the gatekeeper pocket of HIF2α and its interacting partner ARNT. Lastly, we propose that the high efficacy of belzutifan observed in tumors with genetically driven hypoxia caused by VHL mutations suggests that a focus on other mutations that similarly lead to HIF2α stabilization, such as those occurring in neuroendocrine tumors with disruptions in the tricarboxylic acid cycle (SDHA/B/C/D, FH, MDH2, IDH2), HIF hydroxylases (EGLN/PHDs), and the HIF2α-encoding gene, EPAS1, are warranted.
Collapse
Affiliation(s)
- Rodrigo A Toledo
- Gastrointestinal and Endocrine Tumors Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gustavo Armaiz-Pena
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Carlota Arenillas
- Gastrointestinal and Endocrine Tumors Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Jaume Capdevila
- Gastrointestinal and Endocrine Tumors Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medical Oncology Department, Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron University Hospital, Vall Hebron Institute of Oncology (VHIO), IOB Quiron-Teknon, 08035 Barcelona, Spain
| | - Patricia L M Dahia
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
9
|
Clifton-Bligh RJ. The diagnosis and management of pheochromocytoma and paraganglioma during pregnancy. Rev Endocr Metab Disord 2023; 24:49-56. [PMID: 36637675 PMCID: PMC9884650 DOI: 10.1007/s11154-022-09773-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 01/14/2023]
Abstract
Diagnosis of pheochromocytoma or paraganglioma (PPGL) in pregnancy has been associated historically with high rates of materno-fetal morbidity and mortality. Recent evidence suggests outcomes are improved by recognition of PPGL before or during pregnancy and appropriate medical management with alpha-blockade. Whether antepartum surgery (before the third trimester) is required remains controversial and open to case-based merits. Women with PPGL in pregnancy are more commonly delivered by Caesarean section, although vaginal delivery appears to be safe in selected cases. At least some PPGLs express the luteinizing hormone/chorionic gonadotropin receptor (LHCGR) which may explain their dramatic manifestation in pregnancy. PPGLs in pregnancy are often associated with heritable syndromes, and genetic counselling and testing should be offered routinely in this setting. Since optimal outcomes are only achieved by early recognition of PPGL in (or ideally before) pregnancy, it is incumbent for clinicians to be aware of this diagnosis in a pregnant woman with hypertension occurring before 20 weeks' gestation, and acute and/or refractory hypertension particularly if paroxysmal and accompanied by sweating, palpitations and/or headaches. All women with a past history of PPGL and/or heritable PPGL syndrome should be carefully assessed for the presence of residual or recurrent disease before considering pregnancy.
Collapse
Affiliation(s)
- Roderick J Clifton-Bligh
- University of Sydney, Sydney, NSW, Australia.
- Department of Endocrinology, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| |
Collapse
|
10
|
Single-cell transcriptomic analysis of neuroepithelial cells and other cell types of the gills of zebrafish (Danio rerio) exposed to hypoxia. Sci Rep 2022; 12:10144. [PMID: 35710785 PMCID: PMC9203529 DOI: 10.1038/s41598-022-13693-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/26/2022] [Indexed: 12/21/2022] Open
Abstract
The fish gill is a multifunctional organ involved in numerous physiological processes, such as gas exchange and sensing of hypoxia by respiratory chemoreceptors, called neuroepithelial cells (NECs). Many studies have focused on zebrafish (Danio rerio) to investigate the structure, function and development of the gills, yet the transcriptomic profile of most gill cells remains obscure. We present the results of a comprehensive transcriptomic analysis of the gills of zebrafish using single-cell RNA sequencing (scRNA‐seq). Gill cells from ETvmat2:EGFP zebrafish were individually labelled before scRNA‐seq library construction using 10× Genomics Chromium technology. 12,819 cells were sequenced with an average depth of over 27,000 reads per cell. We identified a median of 485 genes per cell and 16 cell clusters, including NECs, neurons, pavement cells, endothelial cells and mitochondrion-rich cells. The identity of NECs was confirmed by expression of slc18a2, encoding the vesicular monoamine transporter, Vmat2. Highly differentially-expressed genes in NECs included tph1a, encoding tryptophan hydroxylase, sv2 (synaptic vesicle protein), and proteins implicated in O2 sensing (ndufa4l2a, cox8al and epas1a). In addition, NECs and neurons expressed genes encoding transmembrane receptors for serotonergic, cholinergic or dopaminergic neurotransmission. Differential expression analysis showed a clear shift in the transcriptome of NECs following 14 days of acclimation to hypoxia. NECs in the hypoxia group showed high expression of genes involved in cell cycle control and proliferation. The present article provides a complete cell atlas for the zebrafish gill and serves as a platform for future studies investigating the molecular biology and physiology of this organ.
Collapse
|
11
|
Watts D, Jaykar MT, Bechmann N, Wielockx B. Hypoxia signaling pathway: A central mediator in endocrine tumors. Front Endocrinol (Lausanne) 2022; 13:1103075. [PMID: 36699028 PMCID: PMC9868855 DOI: 10.3389/fendo.2022.1103075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Adequate oxygen levels are essential for the functioning and maintenance of biological processes in virtually every cell, albeit based on specific need. Thus, any change in oxygen pressure leads to modulated activation of the hypoxia pathway, which affects numerous physiological and pathological processes, including hematopoiesis, inflammation, and tumor development. The Hypoxia Inducible Factors (HIFs) are essential transcription factors and the driving force of the hypoxia pathway; whereas, their inhibitors, HIF prolyl hydroxylase domain (PHDs) proteins are the true oxygen sensors that critically regulate this response. Recently, we and others have described the central role of the PHD/HIF axis in various compartments of the adrenal gland and its potential influence in associated tumors, including pheochromocytomas and paragangliomas. Here, we provide an overview of the most recent findings on the hypoxia signaling pathway in vivo, including its role in the endocrine system, especially in adrenal tumors.
Collapse
|