1
|
Ohmoto A, Shigematsu Y, Saito R, Dobashi A, Fujiwara Y, Togashi Y, Yonese J, Inamura K, Takahashi S. Prognosis and tumor microenvironment in pseudohypoxic pheochromocytoma/paraganglioma. Virchows Arch 2024:10.1007/s00428-024-04009-x. [PMID: 39694932 DOI: 10.1007/s00428-024-04009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Pheochromocytoma and paraganglioma (PPGL) are rare tumors that occur in the adrenal medulla and extra-adrenal tissues, respectively. The prognosis and tumor microenvironment (TME) of pseudohypoxic PPGL as a major entity have not been fully described. Based on the clinical database of 65 patients with PPGL, we assessed the morphological features as well as the immunohistochemistry of pseudohypoxia-related proteins (SDHB and CAIX) and TME-related immune cell markers. Furthermore, we compared the relapse-free survival (RFS) rates in localized patients between the pathological subgroups. Among 50 available specimens, 84% and 30% of the cases exhibited at least one morphological adverse feature including vascular/capsular invasion and a Ki-67 index > 3%, respectively. The SDHB and CAIX positivity rates were 81% and 51%. Concerning the immune cell markers, the CD163-positive cell numbers were higher in hypoxia-associated PPGL composed of SDHB-negative or CAIX-positive cases than in non-hypoxia PPGL (median 66 vs. 23/mm2). Concerning prognosis, RFS rates were significantly lower in cases with Ki-67 indices > 3% and SDHB-negativity than in those with Ki-67 indices ≤ 3% and SDHB-positivity (3-year rate: 64% vs. 100%, P < 0.001; 57% vs. 100%, P = 0.03). In contrast, RFS was comparable between CAIX-positive and CAIX-negative PPGL cases. Our analyses suggested that SDHB-deficient PPGL exhibited a higher incidence of relapse. Furthermore, M2 macrophage infiltration in TME might be crucial in pseudohypoxic PPGL pathogenesis.
Collapse
Affiliation(s)
- Akihiro Ohmoto
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 1358550, Japan.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 417 East 68th Street, New York, NY, 10065, USA.
| | - Yasuyuki Shigematsu
- Department of Pathology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 1358550, Japan
- Division of Pathology, Cancer Institute of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 1358550, Japan
| | - Rumiko Saito
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 1358550, Japan
- Department of Clinical Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 1358550, Japan
| | - Akito Dobashi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 1358550, Japan
| | - Yu Fujiwara
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel, 281 First Avenue, New York, NY, 10003, USA
| | - Yuki Togashi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 1358550, Japan
| | - Junji Yonese
- Department of Genitourinary Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 1358550, Japan
| | - Kentaro Inamura
- Department of Pathology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 1358550, Japan
- Division of Pathology, Cancer Institute of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 1358550, Japan
- Division of Tumor Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 3290498, Japan
| | - Shunji Takahashi
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 1358550, Japan.
| |
Collapse
|
2
|
张 博, 王 圣, 胡 怡, 骆 春, 李 世, 楼 梓, 王 菁, 陈 正, 殷 善. [Endothelial cells and fibroblasts mediate the microenvironmental regulatory network of carotid body paraganglioma]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2024; 38:788-796. [PMID: 39193734 PMCID: PMC11839575 DOI: 10.13201/j.issn.2096-7993.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Indexed: 08/29/2024]
Abstract
Objective:To explore the gene expression characteristics of endothelial cells and fibroblasts in the microenvironment of SDHD-mutated carotid body tumors(SDHD-CBT), to fine the functional enrichment of each subcluster, and to further explore the network of cell-cell interactions in the microenvironment of SDHD-CBT. Methods:The bioinformatics analysis was used to download and reanalyze the single-nuclear RNA sequencing data of SDHD-CBT, SDHB mutated thoracic and abdominal paraganglioma(SDHB-ATPGL), SDHB-CBT, and normal adrenal medulla(NAM), to clarify the information of cell populations of the samples. We focused on exploring the gene expression profiles of endothelial cells and fibroblasts subclusters, and performed functional enrichment analysis based on Gene Ontology(GO) resources. CellChat was used to compare the cell-cell interactions networks of different clinical samples and predict significant signaling pathways in SDHD-CBT. Results:A total of 7 cell populations were profiled. The main subtypes of endothelial cells in SDHD-CBT are arterial and venous endothelial cells, and the main subtypes of fibroblasts are myofibroblasts and pericytes. Compared to NAM, SDHB-CBT and SDHB-ATPGL, cell communication involving endothelial cells and fibroblasts in SDHD-CBT is more abundant, with significant enrichment in pathways such as FGF, PTN, WNT, PROS, PERIOSTIN, and TGFb. Conclusion:Endothelial cells and fibroblasts in SDHD-CBT are heterogeneous and involved in important cellular interactionprocesses, in which the discovery of FGF,PTN,WNT,PROS,PERIOSTIN and TGFb signals may play an important role in the regulation of microenvironment of SDHD-CBT.
Collapse
Affiliation(s)
- 博雅 张
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 圣明 王
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 怡冰 胡
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 春雨 骆
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 世媛 李
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 梓涵 楼
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 菁菁 王
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 正侬 陈
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 善开 殷
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
3
|
张 博, 楼 梓, 王 菁, 胡 怡, 陈 正. [Advance in HIF expression and immune microenvironment in pseudohypoxic HNPGL]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2024; 38:823-829. [PMID: 39193740 PMCID: PMC11839587 DOI: 10.13201/j.issn.2096-7993.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 08/29/2024]
Abstract
This article systematically reviewed the pathological features, molecular mechanisms, and tumor microenvironment of head and neck paraganglioma(HNPGL), with a focus on pseudohypoxic HNPGL. It was demonstrated that pseudohypoxic HNPGL mainly involves multiple gene mutations, such as SDHx and VHL/EPAS1, which affect the stability and activity of HIF protein and exacerbate the development of the tumor. Meanwhile, the paper also analyzed the expression patterns of HIF-1α and HIF-2α in HNPGL, and found that differences in HIF activation may have an impact on the therapeutic response of specific subtypes. In addition, the paper explored the tumor microenvironment of HNPGL and found that immune cells such as macrophages, CD4⁺T cells, and CD8⁺T cells play an important role in the tumor, and the heterogeneity of the immune microenvironment also affects the choice of therapeutic approaches and responsiveness. Through comprehensive analysis, these findings not only contribute to a deeper understanding of the pathogenesis and developmental process of HNPGL, but also provide clues for future personalized treatments for specific subtypes.
Collapse
Affiliation(s)
- 博雅 张
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 梓涵 楼
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 菁菁 王
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 怡冰 胡
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 正侬 陈
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
4
|
Wang X, Sun J, Feng G, Tian X, Zhao Y, Gao Z, Sun W. Proteomic characterization of head and neck paraganglioma and its molecular classification. Front Mol Neurosci 2024; 17:1391568. [PMID: 39234408 PMCID: PMC11371750 DOI: 10.3389/fnmol.2024.1391568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Background Head and neck paragangliomas (HNPGLs) are rare neuroendocrine tumors that pose significant challenges in both diagnosis and treatment. The pathogenic mechanism remains unclear, and there is no proteomic analysis-based molecular classification. Therefore, gaining a deeper understanding of this disease from the protein level is crucial because proteins play a fundamental role in the occurrence and development of tumors. Methods We collected 44 tumor samples from patients diagnosed with HNPGL. The adrenal paraganglioma tissue (N = 46) was used as the disease control group and the chorda tympani nerves (N = 18) were used as the control group. High-pH reversed-phase liquid chromatography and liquid chromatography with tandem mass spectrometry analyses were used to build an integrated protein database of tumor samples. We then obtained two sets of differentially expressed proteins between the tumor group and the control group to identify the unique proteomic signatures of HNPGLs. Ingenuity pathway analysis annotations were used to perform the functional analysis. Subsequently, we developed a clinically relevant molecular classification for HNPGLs that connected the clinical characteristics with meaningful proteins and pathways to explain the varied clinical manifestations. Results We identified 6,640 proteins in the HNPGL group, and 314 differentially expressed proteins unique to HNPGL were discovered via inter-group comparison. We identified two HNPGL subgroups that significantly differed in clinical manifestation and proteomic characteristics. On the basis of the proteomic results, we proposed a pathogenic mechanism underlying HNPGL. Conclusion We conducted a comprehensive analysis of the molecular mechanisms of HNPGL to build, for the first time, a clinically relevant molecular classification. By focusing on differential proteomic analyses between different types of paragangliomas, we were able to obtain a comprehensive description of the proteomic characteristics of HNPGL, which will be valuable for the search for significant biomarkers as a new treatment method for HNPGL.
Collapse
Affiliation(s)
- Xi Wang
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiameng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Feng
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Tian
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Zhao
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiqiang Gao
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Qin S, Xu Y, Yu S, Han W, Fan S, Ai W, Zhang K, Wang Y, Zhou X, Shen Q, Gong K, Sun L, Zhang Z. Molecular classification and tumor microenvironment characteristics in pheochromocytomas. eLife 2024; 12:RP87586. [PMID: 38407266 PMCID: PMC10942623 DOI: 10.7554/elife.87586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Pheochromocytomas (PCCs) are rare neuroendocrine tumors that originate from chromaffin cells in the adrenal gland. However, the cellular molecular characteristics and immune microenvironment of PCCs are incompletely understood. Here, we performed single-cell RNA sequencing (scRNA-seq) on 16 tissues from 4 sporadic unclassified PCC patients and 1 hereditary PCC patient with Von Hippel-Lindau (VHL) syndrome. We found that intra-tumoral heterogeneity was less extensive than the inter-individual heterogeneity of PCCs. Further, the unclassified PCC patients were divided into two types, metabolism-type (marked by NDUFA4L2 and COX4I2) and kinase-type (marked by RET and PNMT), validated by immunohistochemical staining. Trajectory analysis of tumor evolution revealed that metabolism-type PCC cells display phenotype of consistently active metabolism and increased metastasis potential, while kinase-type PCC cells showed decreased epinephrine synthesis and neuron-like phenotypes. Cell-cell communication analysis showed activation of the annexin pathway and a strong inflammation reaction in metabolism-type PCCs and activation of FGF signaling in the kinase-type PCC. Although multispectral immunofluorescence staining showed a lack of CD8+ T cell infiltration in both metabolism-type and kinase-type PCCs, only the kinase-type PCC exhibited downregulation of HLA-I molecules that possibly regulated by RET, suggesting the potential of combined therapy with kinase inhibitors and immunotherapy for kinase-type PCCs; in contrast, the application of immunotherapy to metabolism-type PCCs (with antigen presentation ability) is likely unsuitable. Our study presents a single-cell transcriptomics-based molecular classification and microenvironment characterization of PCCs, providing clues for potential therapeutic strategies to treat PCCs.
Collapse
Affiliation(s)
- Sen Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Yawei Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Shimiao Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Wencong Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Shiheng Fan
- Shenzhen Institute of Ladder for Cancer ResearchShenzhenChina
| | - Wenxiang Ai
- Shenzhen Institute of Ladder for Cancer ResearchShenzhenChina
| | - Kenan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Yizhou Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Xuehong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Qi Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Kan Gong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Zheng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| |
Collapse
|
6
|
Kraljevic I. Editorial: A year in review: discussions in adrenal endocrinology. Front Endocrinol (Lausanne) 2023; 14:1291582. [PMID: 37810878 PMCID: PMC10558014 DOI: 10.3389/fendo.2023.1291582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
- Ivana Kraljevic
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Endocrinology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Martinelli S, Amore F, Canu L, Maggi M, Rapizzi E. Tumour microenvironment in pheochromocytoma and paraganglioma. Front Endocrinol (Lausanne) 2023; 14:1137456. [PMID: 37033265 PMCID: PMC10073672 DOI: 10.3389/fendo.2023.1137456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Pheochromocytomas and Paragangliomas (Pheo/PGL) are rare catecholamine-producing tumours derived from adrenal medulla or from the extra-adrenal paraganglia respectively. Around 10-15% of Pheo/PGL develop metastatic forms and have a poor prognosis with a 37% of mortality rate at 5 years. These tumours have a strong genetic determinism, and the presence of succinate dehydrogenase B (SDHB) mutations are highly associated with metastatic forms. To date, no effective treatment is present for metastatic forms. In addition to cancer cells, the tumour microenvironment (TME) is also composed of non-neoplastic cells and non-cellular components, which are essential for tumour initiation and progression in multiple cancers, including Pheo/PGL. This review, for the first time, provides an overview of the roles of TME cells such as cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) on Pheo/PGL growth and progression. Moreover, the functions of the non-cellular components of the TME, among which the most representatives are growth factors, extracellular vesicles and extracellular matrix (ECM) are explored. The importance of succinate as an oncometabolite is emerging and since Pheo/PGL SDH mutated accumulate high levels of succinate, the role of succinate and of its receptor (SUCNR1) in the modulation of the carcinogenesis process is also analysed. Further understanding of the mechanism behind the complicated effects of TME on Pheo/PGL growth and spread could suggest novel therapeutic targets for further clinical treatments.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Francesca Amore
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Elena Rapizzi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- *Correspondence: Elena Rapizzi,
| |
Collapse
|
8
|
Ghosal S, Hadrava Vanova K, Uher O, Das S, Patel M, Meuter L, Huynh TT, Jha A, Talvacchio S, Knue M, Prodanov T, Zeiger MA, Nilubol N, Taieb D, Crona J, Shankavaram UT, Pacak K. Immune signature of pheochromocytoma and paraganglioma in context of neuroendocrine neoplasms associated with prognosis. Endocrine 2023; 79:171-179. [PMID: 36370152 PMCID: PMC10683554 DOI: 10.1007/s12020-022-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE To understand prognostic immune cell infiltration signatures in neuroendocrine neoplasms (NENs), particularly pheochromocytoma and paraganglioma (PCPG), we analyzed tumor transcriptomic data from The Cancer Genome Atlas (TCGA) and other published tumor transcriptomic data of NENs. METHODS We used CIBERSORT to infer immune cell infiltrations from bulk tumor transcriptomic data from PCPGs, in comparison to gastroenteropancreatic neuroendocrine tumors (GEPNETs) and small cell lung carcinomas (SCLCs). PCPG immune signature was validated with NanoString immune panel in an independent cohort. Unsupervised clustering of the immune infiltration scores from CIBERSORT was used to find immune clusters. A prognostic immune score model for PCPGs and the other NENs were calculated as a linear combination of the estimated infiltration of activated CD8+/CD4+ T cells, activated NK cells, and M0 and M2 macrophages. RESULTS In PCPGs, we found five dominant immune clusters, associated with M2 macrophages, monocytes, activated NK cells, M0 macrophages and regulatory T cells, and CD8+/CD4+ T cells respectively. Non-metastatic tumors were associated with activated NK cells and metastatic tumors were associated with M0 macrophages and regulatory T cells. In GEPNETs and SCLCs, M0 macrophages and regulatory T cells were associated with unfavorable outcomes and features, such as metastasis and high-grade tumors. The prognostic immune score model for PCPGs and the NENs could predict non-aggressive and non-metastatic diseases. In PCPGs, the immune score was also an independent predictor of metastasis-free survival in a multivariate Cox regression analysis. CONCLUSION The transcriptomic immune signature in PCPG correlates with clinical features like metastasis and prognosis.
Collapse
Affiliation(s)
- Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katerina Hadrava Vanova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ondrej Uher
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Shaoli Das
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leah Meuter
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thanh-Truc Huynh
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara Talvacchio
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marianne Knue
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamara Prodanov
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martha A Zeiger
- Office of Surgeon Scientists Programs, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France
- European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France
| | - Joakim Crona
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset ing 78, 75185, Uppsala, Sweden
| | - Uma T Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Hadrava Vanova K, Uher O, Meuter L, Ghosal S, Talvacchio S, Patel M, Neuzil J, Pacak K. PD-L1 expression and association with genetic background in pheochromocytoma and paraganglioma. Front Oncol 2022; 12:1045517. [PMID: 36439433 PMCID: PMC9691952 DOI: 10.3389/fonc.2022.1045517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2023] Open
Abstract
Metastatic pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors associated with poor prognosis and limited therapeutic options. Recent advances in oncology-related immunotherapy, specifically in targeting of programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathways, have identified a new treatment potential in a variety of tumors, including advanced and rare tumors. Only a fraction of patients being treated by immune checkpoint inhibitors have shown to benefit from it, displaying a need for strategies which identify patients who may most likely show a favorable response. Building on recent, promising outcomes in a clinical study of metastatic PPGL using pembrolizumab, a humanized IgG4κ monoclonal antibody targeting the PD-1/PD-L1 pathway, we examined PD-L1 and PD-L2 expression in relation to oncogenic drivers in our PPGL patient cohort to explore whether expression can predict metastatic potential and/or be considered a predictive marker for targeted therapy. We evaluated RNA expression in the NIH cohort of 48 patients with known genetic predisposition (sporadic; pseudohypoxia: SDHB, VHL, EPAS1, EGLN1; kinase signaling: RET, NF1) and 6 normal medulla samples (NAM). For comparison, 72 PPGL samples from The Cancer Genome Atlas (TCGA) were used for analysis of gene expression based on the variant status (pseudohypoxia: SDHB, VHL, EPAS1, EGLN1; kinase signaling: NF1, RET). Expression of PD-L1 was elevated in the PPGL cohort compared to normal adrenal medulla, aligning with the TCGA analysis, whereas PD-L2 was not elevated. However, expression of PD-L1 was lower in the pseudohypoxia cluster compared to the sporadic and the kinase signaling subtype cluster, suggesting that sporadic and kinase signaling cluster PPGLs could benefit from PD-1/PD-L1 therapy more than the pseudohypoxia cluster. Within the pseudohypoxia cluster, expression of PD-L1 was significantly lower in both SDHB- and non-SDHB-mutated tumors compared to sporadic tumors. PD-L1 and PD-L2 expression was not affected by the metastatic status. We conclude that PD-L1 and PD-L2 expression in our cohort of PPGL tumors was not linked to metastatic behavior, however, the presence of PPGL driver mutation could be a predictive marker for PD-L1-targeted therapy and an important feature for further clinical studies in patients with PPGL.
Collapse
Affiliation(s)
- Katerina Hadrava Vanova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Ondrej Uher
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Leah Meuter
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sara Talvacchio
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czechia
- Faculty of Science and 1st Medical Faculty, Charles University, Prague, Czechia
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|