1
|
Gilbert K, Mauger C, Young AA, Suinesiaputra A. Artificial Intelligence in Cardiac Imaging With Statistical Atlases of Cardiac Anatomy. Front Cardiovasc Med 2020; 7:102. [PMID: 32695795 PMCID: PMC7338378 DOI: 10.3389/fcvm.2020.00102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
In many cardiovascular pathologies, the shape and motion of the heart provide important clues to understanding the mechanisms of the disease and how it progresses over time. With the advent of large-scale cardiac data, statistical modeling of cardiac anatomy has become a powerful tool to provide automated, precise quantification of the status of patient-specific heart geometry with respect to reference populations. Powered by supervised or unsupervised machine learning algorithms, statistical cardiac shape analysis can be used to automatically identify and quantify the severity of heart diseases, to provide morphometric indices that are optimally associated with clinical factors, and to evaluate the likelihood of adverse outcomes. Recently, statistical cardiac atlases have been integrated with deep neural networks to enable anatomical consistency of cardiac segmentation, registration, and automated quality control. These combinations have already shown significant improvements in performance and avoid gross anatomical errors that could make the results unusable. This current trend is expected to grow in the near future. Here, we aim to provide a mini review highlighting recent advances in statistical atlasing of cardiac function in the context of artificial intelligence in cardiac imaging.
Collapse
Affiliation(s)
- Kathleen Gilbert
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Charlène Mauger
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Alistair A Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.,Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Avan Suinesiaputra
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.,Centre for Computational Imaging and Simulation Technologies in Biomedicine, School of Computing, University of Leeds, Leeds, United Kingdom.,School of Medicine, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
2
|
Congenital heart disease in adults (when kids grow up) pediatric geriatric anesthesia. Curr Opin Anaesthesiol 2020; 33:335-342. [PMID: 32371630 DOI: 10.1097/aco.0000000000000849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The current review focuses on the new development of adult congenital heart disease (ACHD) patients in the areas of imaging, percutaneous interventions, ventricular assist devices and transplantation. RECENT FINDINGS Since the last ACHD publication in the journal, several advances have been made in the evaluation and treatment of these patients. As CHD patients' longevity increases pregnancy, comorbities and acquired heart disease become a concern. Recent data show that the incidence of complications in low-risk CHD is not higher that the regular population. In addition, breakthrough research in percutaneous valve implantation has been published showing good outcomes but needing intensive care recovery in a significant number of patients. In the ACHD heart failure population, assist device and transplant fields mounting evidence shows that these therapies should not be the last resort since low-risk ACHD patient may have similar outcomes to those with acquired heart disease. Finally risk stratification is important in ACHD to define better ways to recover from surgery and anesthesia. SUMMARY The field of anesthesia for ACHD is growing with new indications for diagnostic, interventional and surgical procedures. Tailoring cardiac and noncardiac care to the different risk profile in ACHD patients will be defined in the next few years. VIDEO ABSTRACT Motta summary clip: http://links.lww.com/COAN/A65.
Collapse
|
4
|
Marsico R, Bruno VD, Chivasso P, Baritussio A, Rapetto F, Guida GA, Benedetto U, Caputo M. Impact of Isolated Tricuspid Valve Repair on Right Ventricular Remodelling in an Adult Congenital Heart Disease Population. Front Cardiovasc Med 2017; 4:21. [PMID: 28503552 PMCID: PMC5408069 DOI: 10.3389/fcvm.2017.00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/27/2017] [Indexed: 11/13/2022] Open
Abstract
Background Surgical repair of isolated congenital tricuspid valve (TV) disease is rare with no well-defined indication and outcomes. Moreover, the role of right ventricle (RV) in this context has not yet been investigated. Objectives We sought to assess the impact of congenital TV repair on cardiac remodelling and clinical–functional status and the importance of the RV function in an adult congenital heart disease (ACHD) population. Methods and results From January 2005 to December 2015, 304 patients underwent TV surgery in our centre. Of these, 27 (ACHD) patients had isolated TV repair. Patients were evaluated with preoperative and postoperative transthoracic echocardiogram. Survival rate has been investigated with a mean clinical follow-up (FU) of 3.7 ± 2.3 years, whereas the mean echocardiographic FU was 2.9 ± 1.8 years. The clinical and functional status of patients showed a statistically significant improvement after the surgical repair in terms of New York Heart Association class (66.7 vs 7.4%; p < 0.01), clinical signs of heart failure (29.6 vs 7.4%; p < 0.01), and left ventricular function (14.8 vs 7.4%; p < 0.01). The RV and right atrium diameter were significantly reduced after surgery (5.15 ± 1.21 vs 4.32 ± 1.16; p < 0.01) and (44.7 ± 16.7 vs 26.7 ± 9.2; p < 0.01), respectively. The degree of postoperative pulmonary hypertension was also significantly reduced (40.7 vs 7.4%; p < 0.01). The survival rate was 96.3% at 1 year and 93.7% at 5 years. One patient (3.7%) had early failure of the tricuspid repair requiring a reoperation. Conclusion Isolated TV repair for adult congenital disease significantly improved patients’ clinical and functional status and allowed right ventricular remodelling and functional improvement.
Collapse
Affiliation(s)
- Roberto Marsico
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Vito Domenico Bruno
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Pierpaolo Chivasso
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Anna Baritussio
- Cardiovascular Magnetic Resonance Unit, NIHR Bristol Cardiovascular Biomedical Research Unit, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Filippo Rapetto
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Gustavo A Guida
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Umberto Benedetto
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Massimo Caputo
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Burchill LJ, Huang J, Tretter JT, Khan AM, Crean AM, Veldtman GR, Kaul S, Broberg CS. Noninvasive Imaging in Adult Congenital Heart Disease. Circ Res 2017; 120:995-1014. [DOI: 10.1161/circresaha.116.308983] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 11/16/2022]
Abstract
Multimodality cardiovascular imaging plays a central role in caring for patients with congenital heart disease (CHD). CHD clinicians and scientists are interested not only in cardiac morphology but also in the maladaptive ventricular responses and extracellular changes predisposing to adverse outcomes in this population. Expertise in the applications, strengths, and pitfalls of these cardiovascular imaging techniques as they relate to CHD is essential. The purpose of this article is to provide an overview of cardiovascular imaging in CHD. We focus on the role of 3 widely used noninvasive imaging techniques in CHD—echocardiography, cardiac magnetic resonance imaging, and cardiac computed tomography. Consideration is given to the common goals of cardiac imaging in CHD, including assessment of structural and residual heart disease before and after surgery, quantification of ventricular volume and function, stress imaging, shunt quantification, and tissue characterization. Extracardiac imaging is highlighted as an increasingly important aspect of CHD care.
Collapse
Affiliation(s)
- Luke J. Burchill
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| | - Jennifer Huang
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| | - Justin T. Tretter
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| | - Abigail M. Khan
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| | - Andrew M. Crean
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| | - Gruschen R. Veldtman
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| | - Sanjiv Kaul
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| | - Craig S. Broberg
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| |
Collapse
|