1
|
Lazcano I, Rodríguez Rodríguez A, Uribe RM, Orozco A, Joseph-Bravo P, Charli JL. Evolution of thyrotropin-releasing factor extracellular communication units. Gen Comp Endocrinol 2021; 305:113642. [PMID: 33039406 DOI: 10.1016/j.ygcen.2020.113642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/12/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Thyroid hormones (THs) are ancient signaling molecules that contribute to the regulation of metabolism, energy homeostasis and growth. In vertebrates, the hypothalamus-pituitary-thyroid (HPT) axis links the corresponding organs through hormonal signals, including thyrotropin releasing factor (TRF), and thyroid stimulating hormone (TSH) that ultimately activates the synthesis and secretion of THs from the thyroid gland. Although this axis is conserved among most vertebrates, the identity of the hypothalamic TRF that positively regulates TSH synthesis and secretion varies. We review the evolution of the hypothalamic factors that induce TSH secretion, including thyrotropin-releasing hormone (TRH), corticotrophin-releasing hormone (CRH), urotensin-1-3, and sauvagine, and non-mammalian glucagon-like peptide in metazoans. Each of these peptides is part of an extracellular communication unit likely composed of at least 3 elements: the peptide, G-protein coupled receptor and bioavailability regulator, set up on the central neuroendocrine articulation. The bioavailability regulators include a TRH-specific ecto-peptidase, pyroglutamyl peptidase II, and a CRH-binding protein, that together with peptide secretion/transport rate and transduction coupling and efficiency at receptor level shape TRF signal intensity and duration. These vertebrate TRF communication units were coopted from bilaterian ancestors. The bona fide elements appeared early in chordates, and are either used alternatively, in parallel, or sequentially, in different vertebrate classes to control centrally the activity of the HPT axis. Available data also suggest coincidence between apparition of ligand and bioavailability regulator.
Collapse
Affiliation(s)
- Iván Lazcano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Adair Rodríguez Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Aurea Orozco
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico.
| |
Collapse
|
2
|
Cohen LJ, Esterhazy D, Kim SH, Lemetre C, Aguilar RR, Gordon EA, Pickard AJ, Cross JR, Emiliano AB, Han SM, Chu J, Vila-Farres X, Kaplitt J, Rogoz A, Calle PY, Hunter C, Bitok JK, Brady SF. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 2017; 549:48-53. [PMID: 28854168 PMCID: PMC5777231 DOI: 10.1038/nature23874] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 08/01/2017] [Indexed: 02/08/2023]
Abstract
Commensal bacteria are believed to have important roles in human health. The mechanisms by which they affect mammalian physiology remain poorly understood, but bacterial metabolites are likely to be key components of host interactions. Here we use bioinformatics and synthetic biology to mine the human microbiota for N-acyl amides that interact with G-protein-coupled receptors (GPCRs). We found that N-acyl amide synthase genes are enriched in gastrointestinal bacteria and the lipids that they encode interact with GPCRs that regulate gastrointestinal tract physiology. Mouse and cell-based models demonstrate that commensal GPR119 agonists regulate metabolic hormones and glucose homeostasis as efficiently as human ligands, although future studies are needed to define their potential physiological role in humans. Our results suggest that chemical mimicry of eukaryotic signalling molecules may be common among commensal bacteria and that manipulation of microbiota genes encoding metabolites that elicit host cellular responses represents a possible small-molecule therapeutic modality (microbiome-biosynthetic gene therapy).
Collapse
Affiliation(s)
- Louis J Cohen
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Daria Esterhazy
- Laboratory of Mucosal Immunology, Rockefeller University, New York, New York 10065, USA
| | - Seong-Hwan Kim
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Christophe Lemetre
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Rhiannon R Aguilar
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Emma A Gordon
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Amanda J Pickard
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ana B Emiliano
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York 10065, USA
| | - Sun M Han
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - John Chu
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Xavier Vila-Farres
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Jeremy Kaplitt
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Aneta Rogoz
- Laboratory of Mucosal Immunology, Rockefeller University, New York, New York 10065, USA
| | - Paula Y Calle
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Craig Hunter
- Comparative Biosciences Center, Rockefeller University, New York, New York 10065, USA
| | - J Kipchirchir Bitok
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
3
|
Tine M, Kuhl H, Teske PR, Tschöp MH, Jastroch M. Diversification and coevolution of the ghrelin/growth hormone secretagogue receptor system in vertebrates. Ecol Evol 2016; 6:2516-35. [PMID: 27066235 PMCID: PMC4797157 DOI: 10.1002/ece3.2057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022] Open
Abstract
The gut hormone ghrelin is involved in numerous metabolic functions, such as the stimulation of growth hormone secretion, gastric motility, and food intake. Ghrelin is modified by ghrelin O-acyltransferase (GOAT) or membrane-bound O-acyltransferase domain-containing 4 (MBOAT4) enabling action through the growth hormone secretagogue receptors (GHS-R). During the course of evolution, initially strong ligand/receptor specificities can be disrupted by genomic changes, potentially modifying physiological roles of the ligand/receptor system. Here, we investigated the coevolution of ghrelin, GOAT, and GHS-R in vertebrates. We combined similarity search, conserved synteny analyses, phylogenetic reconstructions, and protein structure comparisons to reconstruct the evolutionary history of the ghrelin system. Ghrelin remained a single-gene locus in all vertebrate species, and accordingly, a single GHS-R isoform was identified in all tetrapods. Similar patterns of the nonsynonymous (dN) and synonymous (dS) ratio (dN/dS) in the vertebrate lineage strongly suggest coevolution of the ghrelin and GHS-R genes, supporting specific functional interactions and common physiological pathways. The selection profiles do not allow confirmation as to whether ghrelin binds specifically to GOAT, but the ghrelin dN/dS patterns are more similar to those of GOAT compared to MBOAT1 and MBOAT2 isoforms. Four GHS-R isoforms were identified in teleost genomes. This diversification of GHS-R resulted from successive rounds of duplications, some of which remained specific to the teleost lineage. Coevolution signals are lost in teleosts, presumably due to the diversification of GHS-R but not the ghrelin gene. The identification of the GHS-R diversity in teleosts provides a molecular basis for comparative studies on ghrelin's physiological roles and regulation, while the comparative sequence and structure analyses will assist translational medicine to determine structure-function relationships of the ghrelin/GHS-R system.
Collapse
Affiliation(s)
- Mbaye Tine
- Genome Centre at Max Planck Institute for Plant Breeding Research Carl-von-Linné-Weg 10D-50829 Köln Germany; Molecular Zoology Laboratory Department of Zoology University of Johannesburg Kingsway Campus Auckland Park 2006 South Africa
| | - Heiner Kuhl
- Max Planck Institute for Molecular Genetics Ihnestrasse 63-73 14195 Berlin Germany
| | - Peter R Teske
- Molecular Zoology Laboratory Department of Zoology University of Johannesburg Kingsway Campus Auckland Park 2006 South Africa
| | - Matthias H Tschöp
- Helmholtz Diabetes Center & German Diabetes Center (DZD) Helmholtz Zentrum München, 85764 Neuherberg, Germany; Division of Metabolic Diseases Technische Universität München 80333 Munich Germany
| | - Martin Jastroch
- Helmholtz Diabetes Center & German Diabetes Center (DZD) Helmholtz Zentrum München, 85764 Neuherberg, Germany; Division of Metabolic Diseases Technische Universität München 80333 Munich Germany
| |
Collapse
|
4
|
Das A, Panitz F, Gregersen VR, Bendixen C, Holm LE. Deep sequencing of Danish Holstein dairy cattle for variant detection and insight into potential loss-of-function variants in protein coding genes. BMC Genomics 2015; 16:1043. [PMID: 26645365 PMCID: PMC4673847 DOI: 10.1186/s12864-015-2249-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/27/2015] [Indexed: 12/30/2022] Open
Abstract
Background Over the last few years, continuous development of high-throughput sequencing platforms and sequence analysis tools has facilitated reliable identification and characterization of genetic variants in many cattle breeds. Deep sequencing of entire genomes within a cattle breed that has not been thoroughly investigated would be imagined to discover functional variants that are underlying phenotypic differences. Here, we sequenced to a high coverage the Danish Holstein cattle breed to detect and characterize single nucleotide polymorphisms (SNPs), insertion/deletions (Indels), and loss-of-function (LoF) variants in protein-coding genes in order to provide a comprehensive resource for subsequent detection of causal variants for recessive traits. Results We sequenced four genetically unrelated Danish Holstein cows with a mean coverage of 27X using an Illumina Hiseq 2000. Multi-sample SNP calling identified 10,796,794 SNPs and 1,295,036 indels whereof 482,835 (4.5 %) SNPs and 231,359 (17.9 %) indels were novel. A comparison between sequencing-derived SNPs and genotyping from the BovineHD BeadChip revealed a concordance rate of 99.6–99.8 % for homozygous SNPs and 93.3–96.5 % for heterozygous SNPs. Annotation of the SNPs discovered 74,886 SNPs and 1937 indels affecting coding sequences with 2145 being LoF mutations. The frequency of LoF variants differed greatly across the genome, a hot spot with a strikingly high density was observed in a 6 Mb region on BTA18. LoF affected genes were enriched for functional categories related to olfactory reception and underrepresented for genes related to key cellular constituents and cellular and biological process regulation. Filtering using sequence derived genotype data for 288 Holstein animals from the 1000 bull genomes project removing variants containing homozygous individuals retained 345 of the LoF variants as putatively deleterious. A substantial number of the putative deleterious LoF variants had a minor allele frequency >0.05 in the 1000 bull genomes data set. Conclusions Deep sequencing of Danish Holstein genomes enabled us to identify 12.1 million variants. An investigation into LoF variants discovered a set of variants predicted to disrupt protein-coding genes. This catalog of variants will be a resource for future studies to understand variation underlying important phenotypes, particularly recessively inherited lethal phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2249-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashutosh Das
- Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| | - Frank Panitz
- Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| | | | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| | - Lars-Erik Holm
- Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| |
Collapse
|