1
|
Yamaguchi-Tanaka M, Takagi K, Sato A, Yamazaki Y, Miyashita M, Masamune A, Suzuki T. Regulation of Stromal Cells by Sex Steroid Hormones in the Breast Cancer Microenvironment. Cancers (Basel) 2024; 16:4043. [PMID: 39682229 DOI: 10.3390/cancers16234043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer is a prevalent hormone-dependent malignancy, and estrogens/estrogen receptor (ER) signaling are pivotal therapeutic targets in ER-positive breast cancers, where endocrine therapy has significantly improved treatment efficacy. However, the emergence of both de novo and acquired resistance to these therapies continues to pose challenges. Additionally, androgens are produced locally in breast carcinoma tissues by androgen-producing enzymes, and the androgen receptor (AR) is commonly expressed in breast cancer cells. Intratumoral androgens play a significant role in breast cancer progression and are closely linked to resistance to endocrine treatments. The tumor microenvironment, consisting of tumor cells, immune cells, fibroblasts, extracellular matrix, and blood vessels, is crucial for tumor progression. Stromal cells influence tumor progression through direct interactions with cancer cells, the secretion of soluble factors, and modulation of tumor immunity. Estrogen and androgen signaling in breast cancer cells affects the tumor microenvironment, and the expression of hormone receptors correlates with the diversity of the stromal cell profile. Notably, various stromal cells also express ER or AR, which impacts breast cancer development. This review describes how sex steroid hormones, particularly estrogens and androgens, affect stromal cells in the breast cancer microenvironment. We summarize recent findings focusing on the effects of ER/AR signaling in breast cancer cells on stromal cells, as well as the direct effects of ER/AR signaling in stromal cells.
Collapse
Affiliation(s)
- Mio Yamaguchi-Tanaka
- Personalized Medicine Center, Tohoku University Hospital, Sendai 980-8574, Japan
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Atsushi Masamune
- Personalized Medicine Center, Tohoku University Hospital, Sendai 980-8574, Japan
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Pathology, Tohoku University Hospital, Sendai 980-8574, Japan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
2
|
Simmen FA, Pabona JMP, Al-Dwairi A, Alhallak I, Montales MTE, Simmen RCM. Malic Enzyme 1 (ME1) Promotes Adiposity and Hepatic Steatosis and Induces Circulating Insulin and Leptin in Obese Female Mice. Int J Mol Sci 2023; 24:ijms24076613. [PMID: 37047583 PMCID: PMC10095602 DOI: 10.3390/ijms24076613] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Malic Enzyme 1 (ME1) supports lipogenesis, cholesterol synthesis, and cellular redox potential by catalyzing the decarboxylation of L-malate to pyruvate, and the concomitant reduction of NADP to NADPH. We examined the contribution of ME1 to the development of obesity by provision of an obesogenic diet to C57BL/6 wild type (WT) and MOD-1 (lack ME1 protein) female mice. Adiposity, serum hormone levels, and adipose, mammary gland, liver, and small intestine gene expression patterns were compared between experimental groups after 10 weeks on a diet. Relative to WT female mice, MOD-1 female mice exhibited lower body weights and less adiposity; decreased concentrations of insulin, leptin, and estrogen; higher concentrations of adiponectin and progesterone; smaller-sized mammary gland adipocytes; and reduced hepatosteatosis. MOD-1 mice had diminished expression of Lep gene in abdominal fat; Lep, Pparg, Klf9, and Acaca genes in mammary glands; Pparg and Cdkn1a genes in liver; and Tlr9 and Ffar3 genes in the small intestine. By contrast, liver expression of Cdkn2a and Lepr genes was augmented in MOD-1, relative to WT mice. Results document an integrative role for ME1 in development of female obesity, suggest novel linkages with specific pathways/genes, and further support the therapeutic targeting of ME1 for obesity, diabetes, and fatty liver disease.
Collapse
Affiliation(s)
- Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - John Mark P. Pabona
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, College of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Maria Theresa E. Montales
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rosalia C. M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Magni V, Capra D, Cozzi A, Monti CB, Mobini N, Colarieti A, Sardanelli F. Mammography biomarkers of cardiovascular and musculoskeletal health: A review. Maturitas 2023; 167:75-81. [PMID: 36308974 DOI: 10.1016/j.maturitas.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Breast density (BD) and breast arterial calcifications (BAC) can expand the role of mammography. In premenopause, BD is related to body fat composition: breast adipose tissue and total volume are potential indicators of fat storage in visceral depots, associated with higher risk of cardiovascular disease (CVD). Women with fatty breast have an increased likelihood of hypercholesterolemia. Women without cardiometabolic diseases with higher BD have a lower risk of diabetes mellitus, hypertension, chest pain, and peripheral vascular disease, while those with lower BD are at increased risk of cardiometabolic diseases. BAC, the expression of Monckeberg sclerosis, are associated with CVD risk. Their prevalence, 13 % overall, rises after menopause and is reduced in women aged over 65 receiving hormonal replacement therapy. Due to their distinct pathogenesis, BAC are associated with hypertension but not with other cardiovascular risk factors. Women with BAC have an increased risk of acute myocardial infarction, ischemic stroke, and CVD death; furthermore, moderate to severe BAC load is associated with coronary artery disease. The clinical use of BAC assessment is limited by their time-consuming manual/visual quantification, an issue possibly solved by artificial intelligence-based approaches addressing BAC complex topology as well as their large spectrum of extent and x-ray attenuations. A link between BD, BAC, and osteoporosis has been reported, but data are still inconclusive. Systematic, standardised reporting of BD and BAC should be encouraged.
Collapse
Affiliation(s)
- Veronica Magni
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy.
| | - Davide Capra
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy.
| | - Andrea Cozzi
- Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Italy.
| | - Caterina B Monti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy.
| | - Nazanin Mobini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy.
| | - Anna Colarieti
- Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Italy
| | - Francesco Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy; Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Italy.
| |
Collapse
|
4
|
Crosstalk between Depression and Breast Cancer via Hepatic Epoxide Metabolism: A Central Comorbidity Mechanism. Molecules 2022; 27:molecules27217269. [PMID: 36364213 PMCID: PMC9655600 DOI: 10.3390/molecules27217269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Breast cancer (BC) is a serious global challenge, and depression is one of the risk factors and comorbidities of BC. Recently, the research on the comorbidity of BC and depression has focused on the dysfunction of the hypothalamic–pituitary–adrenal axis and the persistent stimulation of the inflammatory response. However, the further mechanisms for comorbidity remain unclear. Epoxide metabolism has been shown to have a regulatory function in the comorbid mechanism with scattered reports. Hence, this article reviews the role of epoxide metabolism in depression and BC. The comprehensive review discloses the imbalance in epoxide metabolism and its downstream effect shared by BC and depression, including overexpression of inflammation, upregulation of toxic diols, and disturbed lipid metabolism. These downstream effects are mainly involved in the construction of the breast malignancy microenvironment through liver regulation. This finding provides new clues on the mechanism of BC and depression comorbidity, suggesting in particular a potential relationship between the liver and BC, and provides potential evidence of comorbidity for subsequent studies on the pathological mechanism.
Collapse
|
5
|
Al-Mohaissen M, Alkhedeiri A, Al-Madani O, Lee T, Hamdoun A, Al-Harbi M. Association of mammographic density and benign breast calcifications individually or combined with hypertension, diabetes, and hypercholesterolemia in women ≥40 years of age: a retrospective study. J Investig Med 2022; 70:1308-1315. [PMID: 35190487 PMCID: PMC9240332 DOI: 10.1136/jim-2021-002296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 11/08/2022]
Abstract
Recent evidence has linked certain mammographic characteristics, including breast calcifications (Bcs) and mammographic density (MD), with atherosclerotic cardiovascular disease risk factors in women, but data are limited and inconsistent. We aimed to evaluate the association of MD and/or Bcs with hypertension, diabetes, and hypercholesterolemia in women ≥40 years of age. Through hospital electronic records, we retrospectively identified mammograms of non-pregnant women aged ≥40 years and without breast cancer and retrieved reports and relevant data. MD and Bcs were recorded; risk factor status was diagnosed based on treatment profile and clinical and laboratory data. In total, 1406 women were included. MD was inversely related to hypertension, diabetes, hypercholesterolemia, triglyceride levels, age, and body mass index (BMI) (p value for trend <0.001). Bcs were positively associated with hypertension, diabetes, hypercholesterolemia, age, BMI, and elevated creatinine (p<0.05). Controlling for age and BMI, MD category A (MD-A) was independently associated with hypercholesterolemia; Bcs were independently associated with diabetes. Combining MD-A with Bcs did not increase the odds significantly. Analysis for additive interactions revealed a significant interaction between MD-A and BMI, increasing the odds of hypertension, and a trend for increased odds of diabetes by adding MD-A and/or Bcs to BMI. Decreased MD and presence of Bcs are associated with hypertension, diabetes, and hypercholesterolemia in women ≥40 years of age. MD-A may represent a new obesity index independently associated with hypercholesterolemia and additive to hypertension risk. Bcs are independently associated with diabetes. Combining MD and Bcs did not improve the odds significantly, which may reflect mechanistic differences.
Collapse
Affiliation(s)
- Maha Al-Mohaissen
- Department of Clinical Sciences (Cardiology), College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Arwa Alkhedeiri
- Department of Radiology, King Abdullah Bin Abdulaziz University Hospital, Riyadh, Saudi Arabia
| | - Ohoud Al-Madani
- Department of Research Informatics, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Terry Lee
- Centre for Health Evaluation and Outcome Sciences, Vancouver, British Columbia, Canada
| | - Anas Hamdoun
- Department of Radiology, King Abdullah Bin Abdulaziz University Hospital, Riyadh, Saudi Arabia
| | - Mohammad Al-Harbi
- Department of Radiology, King Abdullah Bin Abdulaziz University Hospital, Riyadh, Saudi Arabia
| |
Collapse
|