1
|
Zhang M, Ding X, Wu LP, He MQ, Chen ZY, Shi BY, Wang Y. A Promising Mouse Model of Graves' Orbitopathy Induced by Adenovirus Expressing Thyrotropin Receptor A Subunit. Thyroid 2021; 31:638-648. [PMID: 33076782 DOI: 10.1089/thy.2020.0088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Graves' orbitopathy (GO) is the most common and serious manifestation of Graves' disease (GD). It is characterized by orbital inflammation and tissue remodeling. Although several GO models have been reported, most lack a full assessment or mechanistic evaluation. Here, we established a promising mouse model mimicking many aspects of human GO with a frequency of 70% and characterized the key role of T cells in the progression of GO. Methods: An adenovirus expressing the human thyrotropin (TSH) receptor A subunit (Ad-TSHRA) was injected in the muscles of female BALB/C mice nine times to induce GO. At predetermined time points, histological examinations of retrobulbar tissues and thyroid glands were performed to dynamically monitor changes; serum autoantibodies and total thyroxine levels were examined to evaluate thyroid function. Flow cytometry of CD4+ T cell subgroups and RNA sequencing (RNA-Seq) of splenocytes were also performed to explore the underlying mechanism. Results: After nine injections, 7 of 10 mice challenged with Ad-TSHRA developed the orbital changes associated with GO. Seven mice manifested retrobulbar fibrosis, and four mice showed adipogenesis. Exophthalmia, conjunctival redness, and orbital lymphocyte infiltration were also observed in a subset of mice. The orbitopathy was first detected after seven injections and followed the hyperplastic change observed in thyroids after four injections. Flow cytometry revealed increased proportions of Th1 cells and decreased proportions of Th2 cells and regulatory T (Treg) cells in the splenocytes of GO mice. This change in CD4+ T cell subgroups was confirmed by orbital immunohistochemical staining. Genes involved in T cell receptor signaling, proliferation, adhesion, inflammation, and cytotoxicity were upregulated in GO mice according to the RNA-Seq; a trend of upregulation of these GO-specific genes was observed in mice with hyperthyroidism without orbitopathy after four injections. Conclusions: A GO mouse model was successfully established by administering nine injections of Ad-TSHRA. The model was achieved with a frequency of 70% and revealed the importance of T cell immunity. A potential time window from Graves' hyperthyroidism to GO was presented for the first time. Therefore, this model could be used to study the pathogenesis and novel treatments for GO.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Ding
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li-Ping Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming-Qian He
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zi-Yi Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bing-Yin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Chen Z, Liu Y, Hu S, Zhang M, Shi B, Wang Y. Decreased Treg Cell and TCR Expansion Are Involved in Long-Lasting Graves' Disease. Front Endocrinol (Lausanne) 2021; 12:632492. [PMID: 33912135 PMCID: PMC8074859 DOI: 10.3389/fendo.2021.632492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Graves' disease (GD) is a T cell-mediated organ-specific autoimmune disorder. GD patients who have taken anti-thyroid drugs (ATDs) for more than 5 years with positive anti-thyroid stimulating hormone receptor autoantibodies value were defined as persistent GD (pGD). To develop novel immunotherapies for pGD, we investigated the role of T cells in the long-lasting phase of GD. Clinical characteristics were compared between the pGD and newly diagnosed GD (nGD) (N = 20 respectively). Flow cytometric analysis was utilized to determine the proportions of Treg and Th17 cells (pGD, N = 12; nGD, N = 14). T cell receptor sequencing (TCR-seq) and RNA sequencing (RNA-seq) were also performed (pGD, N = 13; nGD, N = 20). Flow cytometric analysis identified lower proportions of Th17 and Treg cells in pGD than in nGD (P = 0.0306 and P = 0.0223). TCR-seq analysis revealed a lower diversity (P = 0.0025) in pGD. Specifically, marked clonal expansion, represented by an increased percentage of top V-J recombination, was observed in pGD patients. Interestingly, pGD patients showed more public T cell clonotypes than nGD patients (2,741 versus 966). Meanwhile, RNA-seq analysis revealed upregulation of the inflammation and chemotaxis pathways in pGD. Specifically, the expression of pro-inflammatory and chemotactic genes (IL1B, IL13, IL8, and CCL4) was increased in pGD, whereas Th17 and Treg cells associated genes (RORC, CARD9, STAT5A, and SATB1) decreased in pGD. Additionally, TCR diversity was negatively correlated with the expression of pro-inflammatory or chemotactic genes (FASLG, IL18R1, CCL24, and CCL14). These results indicated that Treg dysregulation and the expansion of pathogenic T cell clones might be involved in the long-lasting phase of GD via upregulating chemotaxis or inflammation response. To improve the treatment of pGD patients, ATDs combined therapies, especially those aimed at improving Treg cell frequencies or targeting specific expanded pathogenic TCR clones, are worth exploring in the future.
Collapse
Affiliation(s)
- Ziyi Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yufeng Liu
- MOE Key Laboratory for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- Genome Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shiqian Hu
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Bingyin Shi, ; Yue Wang,
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- MOE Key Laboratory for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- Genome Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Bingyin Shi, ; Yue Wang,
| |
Collapse
|
3
|
Chen Z, Wang Y, Ding X, Zhang M, He M, Zhao Y, Hu S, Zhao F, Wang J, Xie B, Shi B. The proportion of peripheral blood Tregs among the CD4+ T cells of autoimmune thyroid disease patients: a meta-analysis. Endocr J 2020; 67:317-326. [PMID: 31827051 DOI: 10.1507/endocrj.ej19-0307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Autoimmune thyroid disease (AITD) is characterized by a loss of self-tolerance to thyroid antigen. Tregs, whose proportions are controversial among CD4+ T cell from AITD patients (AITDs), are crucial in immune tolerance. Considering that drugs might affect Treg levels, we assumed that the differences originated from different treatment statuses. Thus, we performed a meta-analysis to explore proportions of Tregs in untreated and treated AITDs. PubMed, Embase and ISI Web of Knowledge were searched for relevant studies. Review Manager 5.3 and Stata 14.0 were used to conduct the meta-analysis. Subgroup analysis based on different diseases and cell surface markers was performed. Egger linear regression analysis was used to assess publication bias. Approximately 1,100 AITDs and healthy controls (HCs) from fourteen studies were included. Proportions of Tregs among CD4+ T cells of untreated AITDs were significantly lower than those in HCs (p = 0.002), but were not in treated patients (p = 0.40). Subgroup analysis revealed lower proportions of Tregs in untreated Graves' disease patients (GDs) (p = 0.001) but did not show obvious differences in untreated Hashimoto's thyroiditis patients (HTs) (p = 0.62). Furthermore, proportions of circulating FoxP3+ Tregs were reduced in untreated GDs (p < 0.00001) and HTs (p = 0.04). No publication bias was found. In this first meta-analysis exploring proportions of circulating Tregs among CD4+ T cells of AITDs with different treatment statuses, we found that Tregs potentially contribute to the pathogenesis of AITD but function differently in GD and HT. Remarkably, FoxP3+ Tregs, which were decreased in both diseases, might be promising targets for novel therapies.
Collapse
Affiliation(s)
- Ziyi Chen
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yue Wang
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xi Ding
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Meng Zhang
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mingqian He
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yang Zhao
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shiqian Hu
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Fengyi Zhao
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jingya Wang
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Baosong Xie
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Bingyin Shi
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
4
|
McLachlan SM, Rapoport B. A transgenic mouse that spontaneously develops pathogenic TSH receptor antibodies will facilitate study of antigen-specific immunotherapy for human Graves' disease. Endocrine 2019; 66:137-148. [PMID: 31560118 DOI: 10.1007/s12020-019-02083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Graves' hyperthyroidism can be treated but not cured. Antigen-specific immunotherapy would accomplish this goal, for which purpose an animal model is an invaluable tool. Two types of animal models are available. First, pathogenic TSHR antibodies (TSHRAb) can be induced by injecting mice with fibroblasts co-expressing the human TSHR (hTSHR) and MHC class II, or in mammals using plasmid or adenovirus vectors encoding the hTSHR or its A-subunit. Second, a mouse model that spontaneously develops pathogenic TSHRAb resembling those in human disease was recently described. This outcome was accomplished by transgenic intrathyroidal expression of the hTSHR A-subunit in NOD.H2h4 mice that are genetically predisposed to develop thyroiditis but, without the transgene, do not generate TSHRAb. Recently, novel approaches to antigen-specific immunotherapy have been tested, primarily in the induced model, by injecting TSHR A-subunit protein or cyclic TSHR peptides. T-cell tolerance has also been induced in "humanized" HLA-DR3 mice by injecting synthetic peptides predicted in silico to mimic naturally processed TSHR T-cell epitopes. Indeed, a phase 1 study based on the latter approach has been conducted in humans. In the spontaneous model (hTSHR/NOD.H2h mice), injection of soluble or nanoparticle-bearing hTSHR A-subunits had the unwanted effect of exacerbating pathogenic TSHRAb levels. A promising avenue for tolerance induction, successful in other conditions and yet to be tested with the TSHR, involves encapsulating the antigen. In conclusion, these studies provide insight into the potential outcome of immunotherapeutic approaches and emphasize the importance of a spontaneous model to test future novel, antigen-specific immunotherapies for Graves' disease.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Department of Medicine, University of California Los Angeles, 100 Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Basil Rapoport
- Department of Medicine, University of California Los Angeles, 100 Medical Plaza Driveway, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Quintard B, Giorgiadis M, Feirrera X, Lefaux B, Schohn C, Lemberger K. Evidence for the possible occurrence of Grave's disease in a blue-eyed black lemur (Eulemur flavifrons). Primates 2017; 59:123-126. [PMID: 29264764 DOI: 10.1007/s10329-017-0644-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/09/2017] [Indexed: 11/28/2022]
Abstract
The blue-eyed black lemur (Eulemur flavifrons) is classified by the International Union for Conservation of Nature (IUCN) as critically endangered. A 23-year-old male housed at Mulhouse Zoo presented with lethargy, polyphagia, alopecia, and chronic weight loss. Clinical examination suggested an endocrine pathology such as hyperthyroidism. Secondary examinations included cervical ultrasound, thyroid biopsy, and scintigraphy. The latter revealed elevated thyroid activity. Blood analysis was performed to measure the level of anti-receptor thyroid-stimulating hormone antibodies, which allowed us to test the autoimmune hypothesis. The high level of antibodies together with levels of thyroid-stimulating hormone and the scintigraphy images led to the diagnosis of Grave's disease. Carbimazole treatment followed by thyroidectomy resulted in a quick weight gain and general improvement in health status. The following breeding season, the treated individual sired an offspring. To the authors' knowledge, this is the first report of likely Grave's disease in a non-human primate.
Collapse
Affiliation(s)
- Benoît Quintard
- Parc Zoologique et botanique de Mulhouse, 51 rue du jardin Zoologique, 68100, Mulhouse, France.
| | - Marine Giorgiadis
- Parc Zoologique et botanique de Mulhouse, 51 rue du jardin Zoologique, 68100, Mulhouse, France
| | - Xavier Feirrera
- Clinique vétérinaire des Halles, 28 faubourg de Saverne, 67000, Strasbourg, France
| | - Brice Lefaux
- Parc Zoologique et botanique de Mulhouse, 51 rue du jardin Zoologique, 68100, Mulhouse, France
| | - Christophe Schohn
- Clinique du Diaconat Roosevelt, 14 boulevard du président Roosevelt, 68200, Mulhouse, France
| | | |
Collapse
|
6
|
Ungerer M, Faßbender J, Li Z, Münch G, Holthoff HP. Review of Mouse Models of Graves' Disease and Orbitopathy-Novel Treatment by Induction of Tolerance. Clin Rev Allergy Immunol 2017; 52:182-193. [PMID: 27368808 PMCID: PMC5346423 DOI: 10.1007/s12016-016-8562-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Various approaches have been used to model human Graves' disease in mice, including transfected fibroblasts, and plasmid or adenoviral immunisations with the extracellular A subunit of the human thyrotropin receptor (TSHR). Some of these models were only observed for a short time period or were self-limiting. A long-term model for human Graves' disease was established in mice using continuing immunisations (4-weekly injections) with recombinant adenovirus expressing TSHR. Generation of TSHR binding cAMP-stimulatory antibodies, thyroid enlargement and alterations, elevated serum thyroxin levels, tachycardia and cardiac hypertrophy were maintained for at least 9 months in all Ad-TSHR-immunised mice. Here, we show that these mice suffer from orbitopathy, which was detected by serial orbital sectioning and histomorphometry. Attempts to treat established Graves' disease in preclinical mouse model studies have included small molecule allosteric antagonists and specific antagonist antibodies which were isolated from hypothyroid patients. In addition, novel peptides have been conceived which mimic the cylindrical loops of the TSHR leucine-rich repeat domain, in order to re-establish tolerance toward the antigen. Here, we show preliminary results that one set of these peptides improves or even cures all signs and symptoms of Graves' disease in mice after six consecutive monthly injections. First beneficial effects were observed 3-4 months after starting these therapies. In immunologically naïve mice, administration of the peptides did not induce any immune response.
Collapse
Affiliation(s)
- Martin Ungerer
- Procorde (Advancecor), Fraunhoferstrasse 9a, 82152, Martinsried, Germany.
| | - Julia Faßbender
- Procorde (Advancecor), Fraunhoferstrasse 9a, 82152, Martinsried, Germany
| | - Zhongmin Li
- Procorde (Advancecor), Fraunhoferstrasse 9a, 82152, Martinsried, Germany
| | - Götz Münch
- Procorde (Advancecor), Fraunhoferstrasse 9a, 82152, Martinsried, Germany
| | | |
Collapse
|
7
|
Rapoport B, McLachlan SM. TSH Receptor Cleavage Into Subunits and Shedding of the A-Subunit; A Molecular and Clinical Perspective. Endocr Rev 2016; 37:114-34. [PMID: 26799472 PMCID: PMC4823380 DOI: 10.1210/er.2015-1098] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/14/2016] [Indexed: 02/07/2023]
Abstract
The TSH receptor (TSHR) on the surface of thyrocytes is unique among the glycoprotein hormone receptors in comprising two subunits: an extracellular A-subunit, and a largely transmembrane and cytosolic B-subunit. Unlike its ligand TSH, whose subunits are encoded by two genes, the TSHR is expressed as a single polypeptide that subsequently undergoes intramolecular cleavage into disulfide-linked subunits. Cleavage is associated with removal of a C-peptide region, a mechanism similar in some respects to insulin cleavage into disulfide linked A- and B-subunits with loss of a C-peptide region. The potential pathophysiological importance of TSHR cleavage into A- and B-subunits is that some A-subunits are shed from the cell surface. Considerable experimental evidence supports the concept that A-subunit shedding in genetically susceptible individuals is a factor contributing to the induction and/or affinity maturation of pathogenic thyroid-stimulating autoantibodies, the direct cause of Graves' disease. The noncleaving gonadotropin receptors are not associated with autoantibodies that induce a "Graves' disease of the gonads." We also review herein current information on the location of the cleavage sites, the enzyme(s) responsible for cleavage, the mechanism by which A-subunits are shed, and the effects of cleavage on receptor signaling.
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| |
Collapse
|
8
|
Rapoport B, McLachlan SM. Withdrawn: TSH Receptor Cleavage Into Subunits and Shedding of the A-Subunit; A Molecular and Clinical Perspective. Endocr Rev 2016; 2016:23-42. [PMID: 27454362 PMCID: PMC6958993 DOI: 10.1210/er.2015-1098.2016.1.test] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/14/2016] [Indexed: 12/29/2022]
Abstract
The TSH receptor (TSHR) on the surface of thyrocytes is unique among the glycoprotein hormone receptors in comprising two subunits: an extracellular A-subunit, and a largely transmembrane and cytosolic B-subunit. Unlike its ligand TSH, whose subunits are encoded by two genes, the TSHR is expressed as a single polypeptide that subsequently undergoes intramolecular cleavage into disulfide-linked subunits. Cleavage is associated with removal of a C-peptide region, a mechanism similar in some respects to insulin cleavage into disulfide linked A- and B-subunits with lossofaC-peptideregion. The potential pathophysiological importance of TSHR cleavage into A-and B-subunits is that some A-subunits are shed from the cell surface. Considerable experimental evidence supports the concept that A-subunit shedding in genetically susceptible individuals is a factor contributing to the induction and/or affinity maturation of pathogenic thyroid-stimulating autoantibodies, the direct cause of Graves' disease. The noncleaving gonadotropin receptors are not associated with autoantibodies that induce a "Graves' disease of the gonads." We also review herein current information on the location of the cleavage sites, the enzyme(s) responsible for cleavage, the mechanism by which A-subunits are shed, and the effects of cleavage on receptor signaling. (Endocrine Reviews 37: 114-134, 2016).
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| |
Collapse
|
9
|
Rapoport B, Aliesky HA, Banuelos B, Chen CR, McLachlan SM. A unique mouse strain that develops spontaneous, iodine-accelerated, pathogenic antibodies to the human thyrotrophin receptor. THE JOURNAL OF IMMUNOLOGY 2015; 194:4154-61. [PMID: 25825442 DOI: 10.4049/jimmunol.1500126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/24/2015] [Indexed: 11/19/2022]
Abstract
Abs that stimulate the thyrotropin receptor (TSHR), the cause of Graves' hyperthyroidism, only develop in humans. TSHR Abs can be induced in mice by immunization, but studying pathogenesis and therapeutic intervention requires a model without immunization. Spontaneous, iodine-accelerated, thyroid autoimmunity develops in NOD.H2(h4) mice associated with thyroglobulin and thyroid-peroxidase, but not TSHR, Abs. We hypothesized that transferring the human TSHR A-subunit to NOD.H2(h4) mice would result in loss of tolerance to this protein. BALB/c human TSHR A-subunit mice were bred to NOD.H2(h4) mice, and transgenic offspring were repeatedly backcrossed to NOD.H2(h4) mice. All offspring developed Abs to thyroglobulin and thyroid-peroxidase. However, only TSHR-transgenic NOD.H2(h4) mice (TSHR/NOD.H2(h4)) developed pathogenic TSHR Abs as detected using clinical Graves' disease assays. As in humans, TSHR/NOD.H2(h4) female mice were more prone than male mice to developing pathogenic TSHR Abs. Fortunately, in view of the confounding effect of excess thyroid hormone on immune responses, spontaneously arising pathogenic human TSHR Abs cross-react poorly with the mouse TSHR and do not cause thyrotoxicosis. In summary, the TSHR/NOD.H2(h4) mouse strain develops spontaneous, iodine-accelerated, pathogenic TSHR Abs in female mice, providing a unique model to investigate disease pathogenesis and test novel TSHR Ag-specific immunotherapies aimed at curing Graves' disease in humans.
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute/David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90048
| | - Holly A Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute/David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90048
| | - Bianca Banuelos
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute/David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90048
| | - Chun-Rong Chen
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute/David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90048
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute/David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90048
| |
Collapse
|