1
|
Zhou X, Jiang S, Guo S, Yao S, Sheng Q, Zhang Q, Dong J, Liao L. C/EBPβ-Lin28a positive feedback loop triggered by C/EBPβ hypomethylation enhances the proliferation and migration of vascular smooth muscle cells in restenosis. Chin Med J (Engl) 2025; 138:419-429. [PMID: 38809089 PMCID: PMC11845193 DOI: 10.1097/cm9.0000000000003110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The main cause of restenosis after percutaneous transluminal angioplasty (PTA) is the excessive proliferation and migration of vascular smooth muscle cells (VSMCs). Lin28a has been reported to play critical regulatory roles in this process. However, whether CCAAT/enhancer-binding proteins β (C/EBPβ) binds to the Lin28a promoter and drives the progression of restenosis has not been clarified. Therefore, in the present study, we aim to clarify the role of C/EBPβ-Lin28a axis in restenosis. METHODS Restenosis and atherosclerosis rat models of type 2 diabetes ( n = 20, for each group) were established by subjecting to PTA. Subsequently, the difference in DNA methylation status and expression of C/EBPβ between the two groups were assessed. EdU, Transwell, and rescue assays were performed to assess the effect of C/EBPβ on the proliferation and migration of VSMCs. DNA methylation status was further assessed using Methyltarget sequencing. The interaction between Lin28a and ten-eleven translocation 1 (TET1) was analysed using co-immunoprecipitation (Co-IP) assay. Student's t -test and one-way analysis of variance were used for statistical analysis. RESULTS C/EBPβ expression was upregulated and accompanied by hypomethylation of its promoter in restenosis when compared with atherosclerosis. In vitroC/EBPβ overexpression facilitated the proliferation and migration of VSMCs and was associated with increased Lin28a expression. Conversely, C/EBPβ knockdown resulted in the opposite effects. Chromatin immunoprecipitation assays further demonstrated that C/EBPβ could directly bind to Lin28a promoter. Increased C/EBPβ expression and enhanced proliferation and migration of VSMCs were observed after decitabine treatment. Further, mechanical stretch promoted C/EBPβ and Lin28a expression accompanied by C/EBPβ hypomethylation. Additionally, Lin28a overexpression reduced C/EBPβ methylation via recruiting TET1 and enhanced C/EBPβ-mediated proliferation and migration of VSMCs. The opposite was noted in Lin28a knockdown cells. CONCLUSION Our findings suggest that the C/EBPβ-Lin28a axis is a driver of restenosis progression, and presents a promising therapeutic target for restenosis.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250014, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250014, China
| | - Shan Jiang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Siyi Guo
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuai Yao
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qiqi Sheng
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qian Zhang
- Department of Pharmacology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250014, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250014, China
| |
Collapse
|
2
|
Zhang Q, Zhou X, Li X, Yao S, Jiang S, Zhang R, Zou Z, Liao L, Dong J. Effect of down-regulation of let-7c/g on triggering a double-negative feedback loop and promoting restenosis. Chin Med J (Engl) 2023; 136:2484-2495. [PMID: 37433785 PMCID: PMC10586861 DOI: 10.1097/cm9.0000000000002763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) are the main causes of restenosis (RS) in diabetic lower extremity arterial disease (LEAD). However, the relevant pathogenic mechanisms are poorly understood. METHODS In this study, we introduced a "two-step injury protocol" rat RS model, which started with the induction of atherosclerosis (AS) and was followed by percutaneous transluminal angioplasty (PTA). Hematoxylin-eosin (HE) staining and immunohistochemistry staining were used to verify the form of RS. Two-step transfection was performed, with the first transfection of Lin28a followed by a second transfection of let-7c and let-7g, to explore the possible mechanism by which Lin28a exerted effects. 5-ethynyl-2΄-deoxyuridine (EdU) and Transwell assay were performed to evaluate the ability of proliferation and migration of VSMCs. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to detect the expression of Lin28a protein and let-7 family members. RESULTS Using a combination of in vitro and in vivo experiments, we discovered that let-7c, let-7g, and microRNA98 (miR98) were downstream targets of Lin28a. More importantly, decreased expression of let-7c/let-7g increased Lin28a, leading to further inhibition of let-7c/let-7g. We also found an increased level of let-7d in the RS pathological condition, suggesting that it may function as a protective regulator of the Lin28a/let-7 loop by inhibiting the proliferation and migration of VSMCs. CONCLUSION These findings indicated the presence of a double-negative feedback loop consisting of Lin28a and let-7c/let-7g, which may be responsible for the vicious behavior of VSMCs in RS.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
| | - Xianzhi Li
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
| | - Shuai Yao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shan Jiang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Rui Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Zhiwei Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
3
|
Zhou M, Qi L, Gu Y. GRIA2/ENPP3 Regulates the Proliferation and Migration of Vascular Smooth Muscle Cells in the Restenosis Process Post-PTA in Lower Extremity Arteries. Front Physiol 2021; 12:712400. [PMID: 34504438 PMCID: PMC8423086 DOI: 10.3389/fphys.2021.712400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
Restenosis is the main restriction on the long-term efficacy of percutaneous transluminal angioplasty (PTA) therapy for peripheral artery disease (PAD). Interventions to prevent restenosis are poor, and the exact mechanism is unclear. Here, we aimed to elucidate the role of GRIA2 in the restenosis process post-PTA in lower extremity arteries. We searched the differentially expressed genes (DEGs) between atherosclerotic and restenotic artery plaques in the Gene Expression Omnibus (GEO), and five DEGs were identified. Combined with Gene Ontology (GO) enrichment analysis, GRIA2 was significantly correlated with the restenosis process. Tissue samples were used to examine GRIA2 expression by immunofluorescence staining of atherosclerotic and restenotic artery plaques. The regulation of GRIA2 in vascular smooth muscle cells (VSMCs) was confirmed by lentiviral transfection. Overexpression of GRIA2 promoted the proliferation and migration of VSMCs. Using Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein–protein interaction (PPI) network, a strong connection between ENPP3 and GRIA2 was discovered. In vitro results showed that the high expression of GRIA2 in VSMCs enhanced the expression of ENPP3, while downregulation of GRIA2 downregulated ENPP3. GRIA2 is highly differentially expressed in restenotic arterial plaques, promoting the proliferation and migration of VSMCs through upregulation of ENPP3. These discoveries will help us to obtain a better understanding of restenosis in lower extremity arteries.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lixing Qi
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Ling K, Zhou W, Guo Y, Hu G, Chu J, Xie F, Li Y, Wang W. H 2S attenuates oxidative stress via Nrf2/NF-κB signaling to regulate restenosis after percutaneous transluminal angioplasty. Exp Biol Med (Maywood) 2021; 246:226-239. [PMID: 32996350 PMCID: PMC7871122 DOI: 10.1177/1535370220961038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
Restenosis after angioplasty of peripheral arteries is a clinical problem involving oxidative stress. Hydrogen sulfide (H2S) participates in oxidative stress regulation and activates nuclear factor erythroid 2-related factor 2 (Nrf2). This study investigated the effect of H2S and Nrf2 on restenosis-induced arterial injury. Using an in vivo rat model of restenosis, we investigated whether H2S inhibits restenosis after percutaneous transluminal angioplasty (PTA) and the oxidative stress-related mechanisms implicated therein. The involvement of Nrf2 was explored using Nrf2-shRNA. Neointimal formation and the deposition of elastic fibers were assessed histologically. Inflammatory cytokine secretion and the expression of proteins associated with oxidative stress and inflammation were evaluated. The artery of rats subjected to restenosis showed increased arterial intimal thickness, with prominent elastic fiber deposition. Sodium hydrosulfide (NaHS), an H2S donor, counteracted these changes in vivo. Restenosis caused a decrease in anti-oxidative stress signaling. This phenomenon was inhibited by NaHS, but Nrf2-shRNA counteracted the effects of NaHS. In terms of inflammation, inflammatory cytokines were upregulated, whereas NaHS suppressed the induced inflammatory reaction. Similarly, Nrf2 downregulation blocked the effect of NaHS. In vitro studies using aortic endothelial and vascular smooth muscle cells isolated from experimental animals showed consistent results as those of in vivo studies, and the participation of the nuclear factor-kappa B signaling pathway was demonstrated. Collectively, H2S played a role in regulating post-PTA restenosis by alleviating oxidative stress, modulating anti-oxidant defense, and targeting Nrf2-related pathways via nuclear factor-kappa B signaling.
Collapse
Affiliation(s)
- Ken Ling
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Guo
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guofu Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Chu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fen Xie
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
5
|
Zou Z, Zhou X, Zhang R, Zhang Q, Jiang S, Xu C, Zhang R, Xie T, Zhu H, Gong P, Zhang D, Ma H, Liao L, Dong J. Lin28a up-regulation is associated with the formation of restenosis via promoting proliferation and migration of vascular smooth muscle cells. J Cell Mol Med 2020; 24:9682-9691. [PMID: 32710472 PMCID: PMC7520293 DOI: 10.1111/jcmm.15506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/16/2020] [Accepted: 05/29/2020] [Indexed: 01/16/2023] Open
Abstract
To explore the potential role of Lin28a in the development of restenosis after percutaneous transluminal angioplasty, double‐balloon injury surgery and mono‐balloon injury surgery were used to establish restenosis and atherosclerosis models, respectively, so as to better distinguish restenosis from atherosclerotic lesions. Immunohistochemical analysis revealed that significantly higher expression of Lin28a was observed in the iliac arteries of restenosis plaques than that of atherosclerosis plaques. Immunofluorescence studies showed the colocalization of Lin28a with α‐smooth muscle actin in restenosis plaques, rather than in atherosclerosis plaques, which suggested that Lin28a might be related to the unique behaviour of vascular smooth muscle cells (VSMCs) in restenosis. To further confirm above hypothesis, Lin28a expression was up‐regulated by transfection of Lenti‐Lin28a and inhibited by Lenti‐Lin28a‐shRNA transfection in cultured VSMCs, and then the proliferation and migration capability of VSMCs were detected by EdU and Transwell assays, respectively. Results showed that the proliferation and migration of VSMCs were significantly increased in accordance with the up‐regulation of Lin28a expression, while above behaviours of VSMCs were significantly suppressed after inhibiting the expression of Lin28a. In conclusion, the up‐regulation of Lin28a exerts its modulatory effect on VSMCs’ proliferation and migration, which may play a critical role in contributing to pathological formation of restenosis.
Collapse
Affiliation(s)
- Zhiwei Zou
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruzhen Zhang
- Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Shan Jiang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Chunmei Xu
- Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Tianyue Xie
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huangao Zhu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Piyun Gong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Dongmei Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Huimei Ma
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| |
Collapse
|
6
|
Zhou X, Mou Y, Shen X, Yang T, Liu J, Liu F, Dong J, Liao L. The role of atorvastatin on the restenosis process post-PTA in a diabetic rabbit model. BMC Cardiovasc Disord 2016; 16:153. [PMID: 27422557 PMCID: PMC4947282 DOI: 10.1186/s12872-016-0324-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 06/10/2016] [Indexed: 12/01/2022] Open
Abstract
Background Restenosis remains to be a major limitation of percutaneous transluminal angioplasty (PTA) for diabetic patients with peripheral vascular disease (PVD). Despite of stations routine implements to prevent such progress, its exact effect is unclear. Methods and results In our study, balloon was successfully implanted in the iliac artery of atherosclerotic rabbit. Patency of the narrowed artery was interrogated using ultrasound. Atorvastatin or vehicle was administered orally to rabbits from day 0 to day 28 after double-injury surgery. On day 7, day 14, and day 28, restenotic arteries were harvested and processed for histopathlogical analysis. Our data show that, after double-injury surgery, the intima was composed mostly by SMCs at all time course in rabbits undergoing surgery process. Significant increases in stenosis rates were noted from day 7 to day 14 (from 21 ± 5.85 % to 60.93 ± 12.46 %). On day 28 after double-injury surgery, severe restenosis was observed and daily administration of atorvastatin cannot prevent restenosis’ formation (88.69 ± 3.71 % vs. 90.02 ± 3.11 %, P > 0.05). The PCNA index and SMCs proliferation were correlated with the scores of the vascular pathology. Conclusions Our results indicate that double-injury model can mimic clinical restenosis, based on this model, atorvastatin showed no therapeutic effect on restenosis process in diabetic rabbits after PTA.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766, Jingshi Road, Lixia District, Jinan, 250000, Shandong Province, China
| | - Yaru Mou
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, Shandong, China
| | - Xue Shen
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianshu Yang
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Fupeng Liu
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766, Jingshi Road, Lixia District, Jinan, 250000, Shandong Province, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital of Shandong University, No.44, wenhuan Road, Lixia District, Jinan, 250000, Shandong Province, China.
| | - Lin Liao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766, Jingshi Road, Lixia District, Jinan, 250000, Shandong Province, China.
| |
Collapse
|