1
|
Du X, Li Q, Wu Z, Xue L. miR-92a-3p and miR-182-3p as potential biomarkers for the differential diagnosis of gestational diabetes mellitus and its correlation with pregnancy outcomes. Ir J Med Sci 2025:10.1007/s11845-025-03953-0. [PMID: 40208476 DOI: 10.1007/s11845-025-03953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) poses a significant threat to the health of both the mother and the fetus during pregnancy, potentially resulting in adverse pregnancy outcomes (APOs), including preterm labor and obstructed labor. OBJECTIVE This study aimed to evaluate the expression of serum microRNA (miR)-92a-3p and miR-182-3p in GDM and their clinical significance, providing ideas for clinical diagnosis and management. METHODS A total of 80 patients with GDM served as the GDM group, and 80 healthy pregnant females served as controls. Quantitative real-time PCR was utilized to examine the relative expression of miR-92a-3p and miR-182-3p. Logistic regression modeling and ROC curves were utilized to evaluate the clinical significance of serum miR-92a-3p and miR-182-3p in GDM. RESULTS miR-92a-3p and miR-182-3p was upregulated in GDM patients. The expression of miR-92a-3p and miR-182-3p were positively correlated with 1 h OGTT, 2 h OGTT, and HOMA-IR. The ROC curves demonstrated that the areas under the curve (AUCs) of miR-92a-3p, miR-182-3p, and the combination of the two in the diagnosis of GDM were 0.890, 0.813, and 0.921, respectively. Elevated levels of serum miR-92a-3p and miR-182-3p were linked to APOs. The AUCs of miR-92a-3p, miR-182-3p, and the combination of the two for predicting APOs were 0.795, 0.775, and 0.845, respectively. CONCLUSION miR-92a-3p and miR-182-3p exhibited diagnostic value for GDM and were correlated with APOs in patients.
Collapse
Affiliation(s)
- Xiaoshuang Du
- Shandong Second Medical University, Weifang, 261000, China
- Department of Gynaecology and Obstetrics, Weifang Brain Hospital, No. 553, Dongfeng West Street, Weicheng District, Weifang, 261000, China
| | - Qi Li
- Center of Reproductive Medicine, Qingdao Women and Children's Hospital, Qingdao, 266000, China
| | - Zhenlan Wu
- Obstetrics and Gynecology Center, Weifang People's Hospital, Weifang, 261000, China
| | - Lin Xue
- Department of Gynaecology and Obstetrics, Weifang Brain Hospital, No. 553, Dongfeng West Street, Weicheng District, Weifang, 261000, China.
| |
Collapse
|
2
|
Armstrong DA, Soucy SM, Muse ME, Kolling FW, Trask HW, Howell AL, Laue HE, Hoen AG, Gui J, Christensen BC, Madan JC, Karagas MR, Howe CG. Optimizing Protocols for MicroRNA Profiling of Infant and Toddler Stool. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646630. [PMID: 40236248 PMCID: PMC11996525 DOI: 10.1101/2025.04.01.646630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background MicroRNAs (miRNAs) are increasingly being investigated as potential biomarkers for child development and disease. Although a growing number of studies are utilizing infant and toddler stool for transcriptomic analyses, no studies have compared protocols for preserving and extracting miRNAs from this specimen type, despite unique challenges, including abundant levels of RNAses and microbial RNA. Methods To address this, we first compared three commercially available kits and four preservation methods for their ability to yield high quality RNA from infant and toddler stool (Phase 1). RNA quality was determined by fragment analyzer. Results Of the three RNA extraction kits compared, Zymo BIOMICs yielded the highest overall RNA Quality Number (RQN) (median (range) RQN 9.4 (5.7-10.0)). Of the four preservation methods tested, stool collected in RNAlater and Zymo DNA/RNA Shield Fecal Collection Tubes yielded the highest two RQNs (median (range) RQN 9.8 (5.7-10.0) and 9.4 (5.4-10.0), respectively), which did not differ significantly from each other ( p = 0.47). Second, using miRNA-seq we directly compared miRNA profiles for RNA extracted using the Zymo BIOMICs kit from paired aliquots of the same stool sample from four infants collected into RNAlater and Zymo DNA/RNA Shield Fecal Collection Tubes (Phase 2). Given that microbial sequences greatly outnumber human miRNAs in stool, reads were first classified as human versus microbial prior to aligning human-classified reads to miRBase v22.1. The percentage of reads classified as human and the percentage of human reads aligning to miRBase did not differ for samples collected in RNAlater versus Zymo Shield ( p = 0.12 and p = 0.86, respectively). Furthermore, after multiple testing correction, normalized miRNA counts did not differ significantly between the two preservatives for any of the 42 human miRNAs detected across the eight samples. Conclusions Collecting infant and toddler stool in either RNAlater or Zymo DNA/RNA Shield Fecal Collection Tubes, when paired with RNA extraction using the Zymo BIOMICs extraction kit, yielded high-quality RNA with similar human miRNA profiles. Moreover, of the 42 miRNAs that were detected, several (i.e., miR-194a-3p, miR-200c-3p, miR-26a-5p) are thought to contribute to overall gut homeostasis. These findings may inform protocols for future studies that aim to profile miRNAs in infant and toddler stool to evaluate their potential utility as biomarkers for children's health.
Collapse
|
3
|
Lu Y, Liu C, Pang X, Chen X, Wang C, Huang H. Bioinformatic identification of signature miRNAs associated with fetoplacental vascular dysfunction in gestational diabetes mellitus. Biochem Biophys Rep 2025; 41:101888. [PMID: 39802395 PMCID: PMC11720096 DOI: 10.1016/j.bbrep.2024.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Background Intrauterine exposure to gestational diabetes mellitus (GDM) poses significant risks to fetal development and future metabolic health. Despite its clinical importance, the role of microRNAs (miRNAs) in fetoplacental vascular endothelial cell (VEC) programming in the context of GDM remains elusive. This study aims to identify signature miRNA genes involved in this process using bioinformatics analysis via multiple algorithms. Methods The dataset used in this study was acquired from Gene Expression Omnibus (GEO). Firstly, differentially expressed miRNA genes (DEMGs) were evaluated using limma package. Thereafter, an enrichment analysis of DEMGs was performed. Then, the least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM) were used as the other algorithms for screening candidate signature miRNA genes. Genes from the intersection of limma, LASSO, and SVM genes were used as the final signature miRNA genes. The receiver operator characteristic curve (ROC), the nomogram diagram, gene set enrichment analysis (GSEA), and signature miRNAs-target genes interaction network were implemented further to explore the features and functions of signature genes. Results A total of 32 DEMGs, with 21 upregulated and 11 downregulated miRNA genes, were obtained from limma analysis. LASSO and SVM analyses identified 15 and 12 candidate signature miRNA genes, respectively. After the intersection of genes from limma, LASSO, and SVM analyses, MIR34A and MIR186 were found as the final signature genes related to fetoplacental VEC programming. MIR34A and MIR186 were highly expressed and were associated with an increased risk of fetoplacental VEC programming in GDM mothers. The area under the curve (AUC) of ROC for MIR34A and MIR186 were 0.960 and 0.935, respectively. GSEA analysis revealed that these signature genes positively participate in cellular processes related to VEC migration, cell differentiation, angiogenesis, programmed cell death, and inflammatory response. Finally, miRNAs-target genes interaction network analysis provides the interaction of signature miRNAs and their critical target genes, which may help further studies for miR-34a and miR-186 in GDM. Conclusions MIR34A and MIR186 are novel signature miRNA genes related to fetoplacental VEC programming that may represent critical genes associated with placental function and fetal programming under GDM conditions.
Collapse
Affiliation(s)
- Yulan Lu
- Center of Reproduction Medical, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Chunhong Liu
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
- Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Guangxi, 533000, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Guangxi, 533000, China
| | - Xiaoxia Pang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
- Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Guangxi, 533000, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Guangxi, 533000, China
| | - Xinghong Chen
- Center of Reproduction Medical, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Chunfang Wang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
- Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Guangxi, 533000, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Guangxi, 533000, China
| | - Huatuo Huang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
- Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Guangxi, 533000, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Guangxi, 533000, China
| |
Collapse
|
4
|
Song Q, Liu J, Li C, Liu R, Zhang N, Shi H. Prognostic value of miR-223 for pregnancy outcomes in patients with in vitro fertilisation and intracytoplasmic sperm injection. J OBSTET GYNAECOL 2024; 44:2368773. [PMID: 38934480 DOI: 10.1080/01443615.2024.2368773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND This study aimed to analyse the expression of microRNA-223 (miR-223) in embryo culture medium and its correlation with pregnancy outcomes. METHODS Two hundred and two patients undergoing in vitro fertilisation/intracytoplasmic sperm injection (IVF/ICSI) were divided into clinical pregnancy group (n = 101) and non-pregnant group (n = 101). The baseline data, clinical indicators, and the expression level of miR-223 in the embryo medium were compared between the two groups. Logistic regression analysis was used to analyse the relationship between each index and the pregnancy outcome. Receiver operator characteristic curve was carried out to evaluate the differential ability of miR-223 in pregnancy status. Bioinformatics methods were used to identify the target genes of miR-223 and elucidate their functions. RESULTS Compared with pregnancy group, the non-pregnancy group exhibited a reduction in miR-223 expression (p < 0.001). Multivariate analysis revealed that miR-223 reduction was an independent factor for pregnancy failure (p < 0.05). The ROC curve demonstrated the discriminative capability of miR-223 in distinguishing pregnancy and non-pregnancy. In addition, bioinformatics analysis indicated that the target genes of miR-223 were predominantly located in the endocytic vesicle membrane and were primarily enriched in adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathways. CONCLUSION In this study, levels of miR-223 in the embryo culture medium predicted pregnancy outcomes in subjects undergoing IVF/ICSI. Low expression of miR-223 was a risk factor for adverse pregnancy outcomes in subjects.
Collapse
Affiliation(s)
- Qi Song
- Department of Reproductive Medicine, Maternity & Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Jiajia Liu
- Department of Reproductive Medicine, Maternity & Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Chen Li
- Department of Reproductive Medicine, Maternity & Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Rongrong Liu
- Department of Child Health, Maternity & Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Nan Zhang
- Department of Reproductive Medicine, Maternity & Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Hongzhi Shi
- Department of Reproductive Medicine, Maternity & Child Care Center of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
5
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
6
|
van Wendel de Joode B, Peñaloza-Castañeda J, Mora AM, Corrales-Vargas A, Eskenazi B, Hoppin JA, Lindh CH. Pesticide exposure, birth size, and gestational age in the ISA birth cohort, Costa Rica. Environ Epidemiol 2024; 8:e290. [PMID: 38617432 PMCID: PMC11008631 DOI: 10.1097/ee9.0000000000000290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/18/2023] [Indexed: 04/16/2024] Open
Abstract
Purpose To examine associations of prenatal biomarkers of pesticide exposure with birth size measures and length of gestation among newborns from the Infants' Environmental Health (ISA) birth cohort, Costa Rica. Methods We included 386 singleton liveborn newborns with data on birth size measures, length of gestation, and maternal urinary biomarkers of chlorpyrifos, synthetic pyrethroids, mancozeb, pyrimethanil, and 2, 4-D during pregnancy. We associated biomarkers of exposure with birth outcomes using multivariate linear regression and generalized additive models. Results Concentrations were highest for ethylene thiourea (ETU, metabolite of mancozeb), median = 3.40; p10-90 = 1.90-6.79 µg/L, followed by 3,5,6-trichloro-2-pyridinol (TCP, metabolite of chlorpyrifos) p50 = 1.76 p10-90 = 0.97-4.36 µg/L, and lowest for 2,4-D (p50 = 0.33 p10-90 = 0.18-1.07 µg/L). Among term newborns (≥37 weeks), higher prenatal TCP was associated with lower birth weight and smaller head circumference (e.g., β per 10-fold-increase) during the second half of pregnancy = -129.6 (95% confidence interval [CI] = -255.8, -3.5) grams, and -0.61 (95% CI = -1.05, -0.17) centimeters, respectively. Also, among term newborns, prenatal 2,4-D was associated with lower birth weight (β per 10-fold-increase = -125.1; 95% CI = -228.8, -21.5), smaller head circumference (β = -0.41; 95% CI = -0.78, -0.03), and, during the second half of pregnancy, with shorter body length (β = -0.58; 95% CI = -1.09, -0.07). Furthermore, ETU was nonlinearly associated with head circumference during the second half of pregnancy. Biomarkers of pyrethroids and pyrimethanil were not associated with birth size, and none of the biomarkers explained the length of gestation. Conclusions Prenatal exposure to chlorpyrifos and 2,4-D, and, possibly, mancozeb/ETU, may impair fetal growth.
Collapse
Affiliation(s)
- Berna van Wendel de Joode
- Infants’ Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Jorge Peñaloza-Castañeda
- Infants’ Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Ana M. Mora
- Infants’ Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
- Center for Environmental Research and Community Health (CERCH), University of California at Berkeley
| | - Andrea Corrales-Vargas
- Infants’ Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), University of California at Berkeley
| | - Jane A. Hoppin
- Center for Human Health and the Environment, North Carolina State University, North Carolina
- Department of Biological Sciences, North Carolina State University, North Carolina
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Lund University, Sweden
| |
Collapse
|
7
|
Vedika R, Sharma P, Reddy A. Signature precursor and mature microRNAs in cervical ripening during gestational diabetes mellitus lead to pre-term labor and other impediments in future. J Diabetes Metab Disord 2023; 22:945-965. [PMID: 37975145 PMCID: PMC10638342 DOI: 10.1007/s40200-023-01232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/29/2023] [Indexed: 11/19/2023]
Abstract
Gestational diabetes mellitus (GDM) is a pathological condition in which the placenta releases a hormone called human placental lactogen that prevents maternal insulin uptake. GDM is characterised by varying degrees of carbohydrate intolerance and is first identified during pregnancy. Around 5-17% of pregnancies are GDM pregnancies. Older or obese women have a higher risk of developing GDM during gestation. Hyperglycemia is a classic manifestation of GDM and leads to alterations in eNOS and iNOS expression and subsequently causes ROS and RNS overproduction. ROS and RNS play an important role in maintaining normal physiology, when present in low concentrations. Increased concentrations of ROS is harmful and can cause cellular and tissue damage. Oxidative stress is defined as an imbalance between pro-oxidant and antioxidant molecules that manifests due to hyperglycemia. miRNAs are short, non-coding RNAs that play a critical role in regulating gene expression. Studies have shown that the placenta expresses more than 500 miRNAs, which play a crucial role in trophoblast division, movement, and apoptosis. Latest research has revealed that hyperglycemic conditions and increased oxidative stress, characteristic of GDM, can lead to the dysregulation of miRNAs. The placenta also releases miRNAs into the maternal circulation. The secreted miRNAs are encapsulated in exosomes or vesicles. These exosomes interact with tissues and organs at distant sites, releasing their cargo intracellularly. This crosstalk between hyperglycemia, ROS and miRNA expression in GDM has detrimental effects on both foetal and maternal health. One of the complications of GDM is preterm labour. GDM induced iNOS expression has been implicated in cervical ripening, which in turn causes preterm birth. This article focuses on the speculations of oxidative and nitrative stress markers that lead to detrimental effects in GDM. We have also envisaged the role of non-coding miRNA interactions in regulating gene expression for oxidative damage. Graphical Abstract Holistic view of miRNA in GDM. I)(A) Placenta as a metabolic organ that provides the foetus with nutrients, oxygen and hormones to maintain pregnancy. Human placental lactogen (hPL) is one such hormone that is released into maternal circulation. hPL is known to induce insulin resistance. (B) ß-cell dysfunction leads to reduced glucose sensing and insulin production. Insulin resistance, a characteristic of GDM, exacerbates insulin ß cell dysfunction leading to maternal hyperglycemia. Hyperglycemia leads to increased ROS and RNS production through several mechanisms. Consequently, GDM is characterised by increased oxidative and nitrative stress.II)Exposure to maternal hyperglycemia causes increased ROS and RNS production in trophoblast cells. Oxidative stress caused by hyperglycemia may lead to eNOS uncoupling, causing eNOS to behave as a superoxide producing enzyme. iNOS expression in trophoblast cells leads to increased NO production. iNOS-derived NO reacts with ROS to produce RNS, thereby increasing nitrosative stress. Expression of antioxidant defences are reduced. Hyperglycemia and oxidative stress may alter the expression of some miRNAs. Some miRNAs are upregulated while others are downregulated. Some miRNAs are secreted into maternal circulation in the form of exosomes. Oxidative stress markers, nitrative stress markers and circulating miRNAs are found to be increased in maternal circulation.
Collapse
Affiliation(s)
- R. Vedika
- Animal cell culture laboratory, Department of Biotechnology, SRMIST, Kattankulathur, Tamil Nadu India
| | - Priyanshy Sharma
- Animal cell culture laboratory, Department of Biotechnology, SRMIST, Kattankulathur, Tamil Nadu India
| | - Amala Reddy
- Animal cell culture laboratory, Department of Biotechnology, SRMIST, Kattankulathur, Tamil Nadu India
- Department of Biotechnology, SRMIST, Kattankulathur, Kancheepuram 603203 India
| |
Collapse
|
8
|
Veie CHB, Nielsen IMT, Frisk NLS, Dalgaard LT. Extracellular microRNAs in Relation to Weight Loss-A Systematic Review and Meta-Analysis. Noncoding RNA 2023; 9:53. [PMID: 37736899 PMCID: PMC10514795 DOI: 10.3390/ncrna9050053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Obesity is an important risk factor for cardiovascular disease and type 2 diabetes mellitus. Even a modest weight loss of 5-15% improves metabolic health, but circulating markers to indicate weight loss efficiency are lacking. MicroRNAs, small non-coding post-transcriptional regulators of gene expression, are secreted from tissues into the circulation and may be potential biomarkers for metabolic health. However, it is not known which specific microRNA species are reproducibly changed in levels by weight loss. In this study, we performed a systematic review and meta-analysis to investigate the microRNAs associated with weight loss by comparing baseline to follow-up levels following intervention-driven weight loss. This systematic review was performed according to the PRISMA guidelines with searches in PubMed and SCOPUS. The primary search resulted in a total of 697 articles, which were screened according to the prior established inclusion and exclusion criteria. Following the screening of articles, the review was based on the inclusion of 27 full-text articles, which were evaluated for quality and the risk of bias. We performed systematic data extraction, whereafter the relative values for miRNAs were calculated. A meta-analysis was performed for the miRNA species investigated in three or more studies: miR-26a, miR-126, and miR-223 were overall significantly increased following weight loss, while miR-142 was significantly decreased after weight loss. miR-221, miR-140, miR-122, and miR-146 were not significantly changed by intervention-driven weight loss. These results indicate that few miRNAs are significantly changed during weight loss.
Collapse
Affiliation(s)
| | | | | | - Louise T. Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark (N.L.S.F.)
| |
Collapse
|
9
|
Barbagallo C, Stella M, Di Mauro S, Scamporrino A, Filippello A, Scionti F, Di Martino MT, Purrello M, Ragusa M, Purrello F, Piro S. An Uncharacterised lncRNA Coded by the ASAP1 Locus Is Downregulated in Serum of Type 2 Diabetes Mellitus Patients. Int J Mol Sci 2023; 24:13485. [PMID: 37686290 PMCID: PMC10488254 DOI: 10.3390/ijms241713485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetes mellitus (DM) is a complex and multifactorial disease characterised by high blood glucose. Type 2 Diabetes (T2D), the most frequent clinical condition accounting for about 90% of all DM cases worldwide, is a chronic disease with slow development usually affecting middle-aged or elderly individuals. T2D represents a significant problem of public health today because its incidence is constantly growing among both children and adults. It is also estimated that underdiagnosis prevalence would strongly further increase the real incidence of the disease, with about half of T2D patients being undiagnosed. Therefore, it is important to increase diagnosis accuracy. The current interest in RNA molecules (both protein- and non-protein-coding) as potential biomarkers for diagnosis, prognosis, and treatment lies in the ease and low cost of isolation and quantification with basic molecular biology techniques. In the present study, we analysed the transcriptome in serum samples collected from T2D patients and unaffected individuals to identify potential RNA-based biomarkers. Microarray-based profiling and subsequent validation using Real-Time PCR identified an uncharacterised long non-coding RNA (lncRNA) transcribed from the ASAP1 locus as a potential diagnostic biomarker. ROC curve analysis showed that a molecular signature including the lncRNA and the clinicopathological parameters of T2D patients as well as unaffected individuals showed a better diagnostic performance compared with the glycated haemoglobin test (HbA1c). This result suggests that the application of this biomarker in clinical practice would help to improve the diagnosis, and therefore the clinical management, of T2D patients. The proposed biomarker would be useful in the context of predictive, preventive, and personalised medicine (3PM/PPPM).
Collapse
Affiliation(s)
- Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.P.)
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.P.)
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.S.); (M.T.D.M.)
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.S.); (M.T.D.M.)
| | - Michele Purrello
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.P.)
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.P.)
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| |
Collapse
|
10
|
Dinesen S, El-Faitarouni A, Frisk NLS, Sørensen AE, Dalgaard LT. Circulating microRNA as Biomarkers for Gestational Diabetes Mellitus-A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:6186. [PMID: 37047159 PMCID: PMC10094234 DOI: 10.3390/ijms24076186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a severe pregnancy complication for both the woman and the child. Women who suffer from GDM have a greater risk of developing Type 2 diabetes mellitus (T2DM) later in life. Identification of any potential biomarkers for the early prediction of gestational diabetes can help prevent the disease in women with a high risk. Studies show microRNA (miRNA) as a potential biomarker for the early discovery of GDM, but there is a lack of clarity as to which miRNAs are consistently altered in GDM. This study aimed to perform a systematic review and meta-analysis to investigate miRNAs associated with GDM by comparing GDM cases with normoglycemic controls. The systematic review was performed according to PRISMA guidelines with searches in PubMed, Web of Science, and ScienceDirect. The primary search resulted in a total of 849 articles, which were screened according to the prior established inclusion and exclusion criteria. Following the screening of articles, the review was based on the inclusion of 35 full-text articles, which were evaluated for risk of bias and estimates of quality, after which data were extracted and relative values for miRNAs were calculated. A meta-analysis was performed for the miRNA species investigated in three or more studies: MiR-29a, miR-330, miR-134, miR-132, miR-16, miR-223, miR-155, miR-122, miR-17, miR-103, miR-125, miR-210, and miR-222. While some miRNAs showed considerable between-study variability, miR-29a, miR-330, miR-134, miR-16, miR-223, and miR-17 showed significant overall upregulation in GDM, while circulating levels of miR-132 and miR-155 were decreased among GDM patients, suggesting further studies of these as biomarkers for early GDM discovery.
Collapse
Affiliation(s)
- Sofie Dinesen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Alisar El-Faitarouni
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | | | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Roskilde Hospital, Region Zealand, 4000 Roskilde, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| |
Collapse
|