1
|
Tan Y, Huang Y, Xu C, Huang X, Li S, Yin Z. Long noncoding RNAs and mRNAs profiling in ovary during laying and broodiness in Taihe Black-Bone Silky Fowls (Gallus gallus Domesticus Brisson). BMC Genomics 2024; 25:357. [PMID: 38600449 PMCID: PMC11005167 DOI: 10.1186/s12864-024-10281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Broodiness significantly impacts poultry egg production, particularly notable in specific breeds such as the black-boned Silky, characterized by pronounced broodiness. An understanding of the alterations in ovarian signaling is essential for elucidating the mechanisms that influence broodiness. However, comparative research on the characteristics of long non-coding RNAs (lncRNAs) in the ovaries of broody chickens (BC) and high egg-laying chickens (GC) remains scant. In this investigation, we employed RNA sequencing to assess the ovarian transcriptomes, which include both lncRNAs and mRNAs, in eight Taihe Black-Bone Silky Fowls (TBsf), categorized into broody and high egg-laying groups. This study aims to provide a clearer understanding of the genetic underpinnings associated with broodiness and egg production. RESULTS We have identified a total of 16,444 mRNAs and 18,756 lncRNAs, of which 349 mRNAs and 651 lncRNAs exhibited significantly different expression (DE) between the BC and GC groups. Furthermore, we have identified the cis-regulated and trans-regulated target genes of differentially abundant lncRNA transcripts and have constructed an lncRNA-mRNA trans-regulated interaction network linked to ovarian follicle development. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses have revealed that DE mRNAs and the target genes of DE lncRNAs are associated with pathways including neuroactive ligand-receptor interaction, CCR6 chemokine receptor binding, G-protein coupled receptor binding, cytokine-cytokine receptor interaction, and ECM-receptor interaction. CONCLUSION Our research presents a comprehensive compilation of lncRNAs and mRNAs linked to ovarian development. Additionally, it establishes a predictive interaction network involving differentially abundant lncRNAs and differentially expressed genes (DEGs) within TBsf. This significantly contributes to our understanding of the intricate interactions between lncRNAs and genes governing brooding behavior.
Collapse
Affiliation(s)
- Yuting Tan
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou, 310058, China
| | - Yunyan Huang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou, 310058, China
| | - Chunhui Xu
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou, 310058, China
| | - Xuan Huang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou, 310058, China
| | - Shibao Li
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou, 310058, China
| | - Zhaozheng Yin
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Shadmanesh A, Nazari H. Alterations in the expression pattern of some epigenetic-related genes and microRNAs subsequent to oocyte cryopreservation. ZYGOTE 2023; 31:411-419. [PMID: 37337712 DOI: 10.1017/s0967199423000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
MicroRNAs (miRNAs) are small non-encoding RNAs that actively regulate biological and physiological processes, and play an important role in regulating gene expression in all cells, especially in most animal cells, including oocytes and embryos. The expression of miRNAs at the right time and place is crucial for the oocyte's maturation and the embryo's subsequent development. Although assisted reproductive techniques (ART) have helped to solve many infertility problems, they cause changes in the expression of miRNA and genes in oocytes and preimplantation embryos, and the effect of these changes on the future of offspring is unknown, and has caused concerns. The relevant genomic alterations commonly imposed on embryos during cryopreservation may have potential epigenetic risks. Understanding the biological functions of miRNAs in frozen maturated oocytes may provide a better understanding of embryonic development and a comparison of fertility conservation in female mammals. With the development of new techniques for genomic evaluation of preimplantation embryos, it has been possible to better understand the effects of ART. The results of various articles have shown that freezing of oocytes and the cryopreservation method are effective for the expression of miRNAs and, in some cases, cause changes in the expression of miRNAs and epigenetic changes in the resulting embryo. This literature review study aimed to investigate the effects of oocyte cryopreservation in both pre-maturation and post-maturation stages, the cryopreservation method and the type of cryoprotectants (CPA) used on the expression of some epigenetic-related genes and miRNAs.
Collapse
Affiliation(s)
- Ali Shadmanesh
- Reproductive Biotechnology in Veterinary, Islamic Azad University, Eqlid Branch, Iran
| | - Hassan Nazari
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
3
|
Zhao X, Wu Y, Li H, Li J, Yao Y, Cao Y, Mei Z. Comprehensive analysis of differentially expressed profiles of mRNA, lncRNA, and miRNA of Yili geese ovary at different egg-laying stages. BMC Genomics 2022; 23:607. [PMID: 35986230 PMCID: PMC9392330 DOI: 10.1186/s12864-022-08774-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Background The development of the ovaries is an important factor that affects egg production performance in geese. Ovarian development is regulated by genes that are expressed dynamically and stage-specifically. The transcriptome profile analysis on ovarian tissues of goose at different egg laying stages could provide an important basis for screening and identifying key genes regulating ovarian development. Results In this study, 4 ovary tissues at each breeding period of pre-laying (PP), laying (LP), and ceased-laying period (CP), respectively, with significant morphology difference, were used for RNA extraction and mRNAs, lncRNAs, and miRNAs comparison in Yili geese. CeRNA regulatory network was constructed for key genes screening. A total of 337, 1136, and 525 differentially expressed DE mRNAs, 466, 925, and 742 DE lncRNAs and 258, 1131 and 909 DE miRNAs were identified between PP and LP, between CP and LP, and between CP and PP groups, respectively. Functional enrichment analysis showed that the differentially expressed mRNAs and non-coding RNA target genes were mainly involved in the cell process, cytokine-cytokine receptor interaction, phagosome, calcium signaling pathway, steroid biosynthesis and ECM-receptor interaction. Differential genes and non-coding RNAs, PDGFRB, ERBB4, LHCGR, MSTRG.129094.34, MSTRG.3524.1 and gga-miR-145–5p, related to reproduction and ovarian development were highly enriched. Furthermore, lncRNA-miRNA-mRNA regulatory networks related to ovary development were constructed. Conclusions Our study found dramatic transcriptomic differences in ovaries of Yili geese at different egg-laying stages, and a differential lncRNA-miRNA-mRNA regulatory network related to cell proliferation, differentiation and apoptosis and involved in stromal follicle development were established and preliminarily validated, which could be regarded as a key regulatory pathway of ovarian development in Yili geese. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08774-4.
Collapse
|
4
|
Implications of miRNA expression pattern in bovine oocytes and follicular fluids for developmental competence. Theriogenology 2020; 145:77-85. [PMID: 32004821 DOI: 10.1016/j.theriogenology.2020.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Developmental competence determines the oocyte capacity to support initial embryo growth, but the molecular mechanisms underlying this phenomenon are still ill-defined. Changes in microRNA (miRNA) expression pattern have been described during follicular growth in several species. Therefore, aim of this study was to investigate whether miRNA expression pattern in cow oocyte and follicular fluid (FF) is associated with the acquisition of developmental competence. Samples were collected from ovaries with more than, or fewer than, 10 mid-antral follicles (H- and L-ovaries) because previous studies demonstrated that this parameter is a reliable predictor of oocyte competence. After miRNA deep sequencing and bioinformatic data analysis, we identified 58 miRNAs in FF and 6 in the oocyte that were differentially expressed between H- and L-ovaries. Overall, our results indicate that miRNA levels both in FF and in the ooplasm must remain within specific thresholds and that changes in either direction compromising oocyte competence. Some of the miRNAs found in FF (miR-769, miR-1343, miR-450a, miR-204, miR-1271 and miR-451) where already known to regulate follicle growth and their expression pattern indicate that they are also involved in the acquisition of developmental competence. Some miRNAs were differentially expressed in both compartments but with opposite patterns, suggesting that miRNAs do not flow freely between FF and oocyte. Gene Ontology analysis showed that the predicted gene targets of most differentially expressed miRNAs are part of a few signalling pathways. Regulation of maternal mRNA storage and mitochondrial activity seem to be the processes more functionally relevant in determining oocyte quality. In conclusion, our data identified a few miRNAs in the follicular fluid and in the ooplasm that modulate the oocyte developmental competence. This provides new insights that could help with the management of cattle reproductive efficiency.
Collapse
|
5
|
Wang H, Cai H, Wang X, Zhang M, Liu B, Chen Z, Yang T, Fang J, Zhang Y, Liu W, Han J, Guo Q, Zhang H, Wang H, Xia G, Wang C. HDAC3 maintains oocyte meiosis arrest by repressing amphiregulin expression before the LH surge. Nat Commun 2019; 10:5719. [PMID: 31844300 PMCID: PMC6915726 DOI: 10.1038/s41467-019-13671-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
It is known that granulosa cells (GCs) mediate gonadotropin-induced oocyte meiosis resumption by releasing EGF-like factors in mammals, however, the detailed molecular mechanisms remain unclear. Here, we demonstrate that luteinizing hormone (LH) surge-induced histone deacetylase 3 (HDAC3) downregulation in GCs is essential for oocyte maturation. Before the LH surge, HDAC3 is highly expressed in GCs. Transcription factors, such as FOXO1, mediate recruitment of HDAC3 to the amphiregulin (Areg) promoter, which suppresses AREG expression. With the LH surge, decreased HDAC3 in GCs enables histone H3K14 acetylation and binding of the SP1 transcription factor to the Areg promoter to initiate AREG transcription and oocyte maturation. Conditional knockout of Hdac3 in granulosa cells in vivo or inhibition of HDAC3 activity in vitro promotes the maturation of oocytes independent of LH. Taking together, HDAC3 in GCs within ovarian follicles acts as a negative regulator of EGF-like growth factor expression before the LH surge. Before ovulation, a surge of luteinizing hormone (LH) triggers the resumption of meiosis in oocytes, which is mediated by EGF-like growth factors. Here, the authors show that HDAC3 inhibits mouse oocyte maturation by negatively regulating the expression of EGF-like factor before the LH surge.
Collapse
Affiliation(s)
- Huarong Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.,Medical College of Xiamen University, 361005, Xiamen, China
| | - Han Cai
- Medical College of Xiamen University, 361005, Xiamen, China
| | - Xiao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Meiling Zhang
- Shanghai Key Laboratory for Assistant Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Bingying Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Ziqi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Tingting Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Junshun Fang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.,Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Zhongshan Road 321, 210008, Nanjing, China
| | - Yanhao Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Wei Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jun Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qirui Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Haibin Wang
- Medical College of Xiamen University, 361005, Xiamen, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 750021, Yinchuan, Ningxia, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
6
|
Liu Y, Li M, Bo X, Li T, Ma L, Zhai T, Huang T. Systematic Analysis of Long Non-Coding RNAs and mRNAs in the Ovaries of Duroc Pigs During Different Follicular Stages Using RNA Sequencing. Int J Mol Sci 2018; 19:ijms19061722. [PMID: 29891752 PMCID: PMC6032137 DOI: 10.3390/ijms19061722] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/22/2023] Open
Abstract
The dynamic process involving the selection and maturation of follicles is regulated and controlled by a highly synchronized and exquisitely timed cascade of gene expression. Studies have shown that long non-coding RNA (lncRNA) is essential for the normal maintenance of animal reproductive function and has an important regulatory function in ovarian development and hormone secretion. In this study, a total of 2076 lncRNAs (1362 known lncRNAs and 714 new lncRNAs) and 25,491 mRNAs were identified in libraries constructed from Duroc ovaries on days 0, 2 and 4 of follicle development. lncRNAs were shorter, had fewer exons, exhibited a shorter ORF (Open Reading Frame) length and lower expression levels, and were less conserved than mRNAs. Furthermore, 1694 transcripts (140 lncRNAs and 1554 mRNAs) were found to be differentially expressed in pairwise comparisons. A total of 6945 co-localized mRNAs were detected in cis in 2076 lncRNAs. The most enriched GO (Gene Ontology) terms were related to developmental processes. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that the differentially expressed lncRNAs targeted mRNAs, and the differentially expressed mRNAs were related to the TGF-β signaling pathway, the PI3K-Akt signaling pathway, the Retinol metabolic pathway and the Wnt signaling pathway. This study deepened our understanding of the genetic basis and molecular mechanisms of follicular development in pigs.
Collapse
Affiliation(s)
- Yi Liu
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, 221 Wu Yi Road, Shihezi 832000, China.
| | - Mengxun Li
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000, China.
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, 221 Wu Yi Road, Shihezi 832000, China.
| | - Tao Li
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000, China.
| | - Lipeng Ma
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000, China.
| | - Tenjiao Zhai
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000, China.
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000, China.
| |
Collapse
|
7
|
Viudes-de-Castro MP, Marco-Jiménez F, Cedano-Castro JI, Vicente JS. Effect of corifollitropin alfa supplemented with or without LH on ovarian stimulation and embryo viability in rabbit. Theriogenology 2017; 98:68-74. [DOI: 10.1016/j.theriogenology.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 11/25/2022]
|
8
|
Sirard MA. Somatic environment and germinal differentiation in antral follicle: The effect of FSH withdrawal and basal LH on oocyte competence acquisition in cattle. Theriogenology 2016; 86:54-61. [DOI: 10.1016/j.theriogenology.2016.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/10/2015] [Accepted: 03/14/2016] [Indexed: 01/12/2023]
|
9
|
Gebremedhn S, Salilew-Wondim D, Ahmad I, Sahadevan S, Hossain MM, Hoelker M, Rings F, Neuhoff C, Tholen E, Looft C, Schellander K, Tesfaye D. MicroRNA Expression Profile in Bovine Granulosa Cells of Preovulatory Dominant and Subordinate Follicles during the Late Follicular Phase of the Estrous Cycle. PLoS One 2015; 10:e0125912. [PMID: 25993098 PMCID: PMC4438052 DOI: 10.1371/journal.pone.0125912] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/23/2015] [Indexed: 12/12/2022] Open
Abstract
In bovine, ovarian follicles grow in a wave-like fashion with commonly 2 or 3 follicular waves emerging per estrous cycle. The dominant follicle of the follicular wave which coincides with the LH-surge becomes ovulatory, leaving the subordinate follicles to undergo atresia. These physiological processes are controlled by timely and spatially expressed genes and gene products, which in turn are regulated by post-transcriptional regulators. MicroRNAs, a class of short non-coding RNA molecules, are one of the important posttranscriptional regulators of genes associated with various cellular processes. Here we investigated the expression pattern of miRNAs in granulosa cells of bovine preovulatory dominant and subordinate follicles during the late follicular phase of bovine estrous cycle using Illumina miRNA deep sequencing. In addition to 11 putative novel miRNAs, a total of 315 and 323 known miRNAs were detected in preovulatory dominant and subordinate follicles, respectively. Moreover, in comparison with the subordinate follicles, a total of 64 miRNAs were found to be differentially expressed in preovulatory dominant follicles, of which 34 miRNAs including the miR-132 and miR-183 clusters were significantly enriched, and 30 miRNAs including the miR-17-92 cluster, bta-miR-409a and bta-miR-378 were significantly down regulated in preovulatory dominant follicles. In-silico pathway analysis revealed that canonical pathways related to oncogenesis, cell adhesion, cell proliferation, apoptosis and metabolism were significantly enriched by the predicted target genes of differentially expressed miRNAs. Furthermore, Luciferase reporter assay analysis showed that one of the differentially regulated miRNAs, the miR-183 cluster miRNAs, were validated to target the 3'-UTR of FOXO1 gene. Moreover FOXO1 was highly enriched in granulosa cells of subordinate follicles in comparison with the preovulatory dominant follicles demonstrating reciprocal expression pattern with miR-183 cluster miRNAs. In conclusion, the presence of distinct sets of miRNAs in granulosa cells of preovulatory dominant and subordinate follicles supports the potential role of miRNAs in post-transcriptional regulation of genes involved in bovine follicular development during the late follicular phase of the estrous cycle.
Collapse
Affiliation(s)
- Samuel Gebremedhn
- Institute of Animal Science, Dept. Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Dept. Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Ijaz Ahmad
- Institute of Animal Science, Dept. Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Sudeep Sahadevan
- Institute of Animal Science, Dept. Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Md Munir Hossain
- Department of Animal Breeding & Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Michael Hoelker
- Institute of Animal Science, Dept. Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Franca Rings
- Institute of Animal Science, Dept. Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Christiane Neuhoff
- Institute of Animal Science, Dept. Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, Dept. Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Christian Looft
- Institute of Animal Science, Dept. Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Dept. Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, Dept. Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| |
Collapse
|
10
|
Schoen K, Plendl J, Gabler C, Kaessmeyer S. Identification of stably expressed reference genes for RT-qPCR data normalization in defined localizations of cyclic bovine ovaries. Anat Histol Embryol 2014; 44:200-11. [PMID: 25092559 DOI: 10.1111/ahe.12128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/27/2014] [Indexed: 01/22/2023]
Abstract
Ovaries are highly complex organs displaying morphological, molecular and functional differences between their cortical zona parenchymatosa and medullary zona vasculosa, and also between the different cyclic luteal stages. Objective of the present study was to validate expression stability of twelve putative reference genes (RGs) in bovine ovaries, considering the intrinsic heterogeneity of bovine ovarian tissue with regard to different luteal stages and intra-ovarian localizations. The focus was on identifying RGs, which are suitable to normalize RT-qPCR results of ovaries collected from clinical healthy cattle, irrespective of localization and the hormonal stage. Expression profiles of twelve potential reference genes (GAPDH, ACTB, YWHAZ, HPRT1, SDHA, UBA52, POLR2C, RPS9, ACTG2, H3F3B, RPS18 and RPL19) were analysed. Evaluation of gene expression differences was performed using genorm, normfinder, and bestkeeper software. The most stably expressed genes according to genorm, normfinder and bestkeeper approaches contained the candidates H3F3B, RPS9, YWHAZ, RPS18, POLR2C and UBA52. Of this group, the genes YWHAZ, H3F3B and RPS9 could be recommended as best-suited RGs for normalization purposes on healthy bovine ovaries irrespective of the luteal stage or intra-ovarian localization.
Collapse
Affiliation(s)
- K Schoen
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| | - J Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| | - C Gabler
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - S Kaessmeyer
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| |
Collapse
|
11
|
Arashiro EKN, Palhao MP, Wohlres-Viana S, Siqueira LGB, Camargo LSA, Henry M, Viana JHM. In vivo collection of follicular fluid and granulosa cells from individual follicles of different diameters in cattle by an adapted ovum pick-up system. Reprod Biol Endocrinol 2013; 11:73. [PMID: 23915143 PMCID: PMC3733959 DOI: 10.1186/1477-7827-11-73] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/29/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Most studies on granulosa cell (GC) function in cattle have been performed using GC and follicular fluid (FF) samples collected from slaughterhouse ovaries. Using this approach, the follicular developmental stage and functional status are unknown and indirectly inferred, limiting data interpretation. Ultrasound-guided follicle aspiration has previously been used to recover GC or FF samples, but this was mostly carried out in large follicles or pools of small follicles, without recording the efficiency of recovery. The present study was aimed at adapting and evaluating an ovum pick-up (OPU) system for the in vivo recovery of FF and GC from individual follicles of different diameters. METHODS In the first trial, the losses of fluid inside the tubing system were calculated using a conventional or an adapted-OPU system. Blood plasma volumes equivalent to the amount of FF in follicles of different diameters were aspirated using a conventional OPU Teflon circuit. The OPU system was then adapted by connecting 0.25 mL straws to the circuit. A second trial evaluated the efficiency of FF recovery in vivo. Follicles ranging from 4.0 to 16.8 mm in diameter were aspirated individually using the conventional or adapted-OPU systems. A third trial assessed the in vivo recovery of GC and the subsequent amount of RNA obtained from the follicles of different diameters from Holstein and Gir cattle. RESULTS In Trial I, the plasma recovery efficiency was similar (P > 0.05) for the volumes expected for 12 and 10 mm follicles, but decreased (P < 0.05) for smaller follicles (45.7+/-4.0%, 12.4+/-4.3% and 0.0+/-0.0% for 8, 6, and 4 mm follicles, respectively). Using the adaptation, the losses intrinsic to the aspiration system were similar for all follicle diameters. In Trial II, the expected and recovered volumes of FF were correlated (r = 0.89) and the efficiency of recovery was similar among follicles <12 mm, while larger follicles had a progressive increase in FF losses that was not related to the tubing system. In Trial III, the number of GC and amount of RNA obtained were not affected (P > 0.05) by follicle size, but differed according to breed (615,054+/-58,122 vs 458,095+/-36,407 for Holstein and Gir, respectively; P < 0.05). CONCLUSIONS The adapted-OPU system can be successfully used for the in vivo collection of FF and GC from follicles of different diameters. This will enable further endocrine, cellular, and gene expression analyses.
Collapse
Affiliation(s)
| | - Miller P Palhao
- University Jose do Rosario Vellano, Alfenas, MG 37130-000, Brazil
| | | | | | | | - Marc Henry
- Federal University of Minas Gerais, Belo Horizonte, MG 30123-970, Brazil
| | | |
Collapse
|
12
|
Expression levels of mRNA for insulin-like growth factors 1 and 2, IGF receptors and IGF binding proteins in in vivo and in vitro grown bovine follicles. ZYGOTE 2013; 22:521-32. [PMID: 23659735 DOI: 10.1017/s0967199413000166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study investigated mRNA levels for insulin-like growth factors (IGFs) IGF1 (IGF-I) and IGF2 (IGF-II), IGF receptors (IGF1R and IGF2R), and binding proteins (IGFBP-1, IGFBP-2. IGFBP-3, IGFBP-4, IGFBP-5 and IGFBP-6) in bovine follicles of 0.2, 0.5 or 1.0 mm in diameter. mRNA expression levels in in vitro cultured follicles that reached approximately 0.5 mm were compared with that of in vivo grown follicles. IGF1R and IGF2R expression levels in 0.5 mm in vivo follicles were higher than in 1.0 or 0.2 mm follicles, respectively. IGFBP-1, IGFBP-2. IGFBP-3, IGFBP-4, IGFBP-5 and IGFBP-6 showed variable expression in the follicular size classes analyzed. In vitro grown follicles had significantly reduced expression levels for IGF1, IGF1R, IGFBP-3, IGFBP-5 and IGFBP-6 mRNA when compared with 0.2 mm follicles, but, when compared with in vivo grown follicles (0.5 mm), only IGFBP-1, IGFBP-2, IGFBP-3 and IGFBP-6 showed a reduction in their expression. In conclusion, IGFs, their receptors and IGFBPs showed variable expression of mRNA levels in the follicular size classes analyzed.
Collapse
|
13
|
Costa JJN, Passos MJ, Leitão CCF, Vasconcelos GL, Saraiva MVA, Figueiredo JR, van den Hurk R, Silva JRV. Levels of mRNA for bone morphogenetic proteins, their receptors and SMADs in goat ovarian follicles grown in vivo and in vitro. Reprod Fertil Dev 2012; 24:723-32. [PMID: 22697122 DOI: 10.1071/rd11195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/31/2011] [Indexed: 12/15/2022] Open
Abstract
This study investigated the stability of housekeeping genes (glyceraldehyde-3-phosphate dehydrogenase, β-tubulin, β-actin, phosphoglycerate kinase (PGK), 18S rRNA, ubiquitin and ribosomal protein 19) and the levels of mRNA for bone morphogenetic protein-2 (BMP-2), -4 (BMP-4), -6 (BMP-6), -7 (BMP-7) and -15 (BMP-15), their receptors (BMPR-IA, -IB and -II) and Similar to Mothers Against Decapentaplegic (SMADs) (-1, -5 and -8) in goat follicles of 0.2, 0.5 and 1.0mm, as well as in secondary follicles before and after culture for 18 days. β-tubulin and PGK were the most stable housekeeping genes and the levels of mRNA for BMP-2 in follicles of 0.2mm were higher than in follicles of 0.5 and 1.0mm. For BMP-4, -6 and -7, the highest levels of mRNA were found in follicles of 1.0mm. The expression of BMPR-IB was higher in follicles of 0.2mm, whereas the levels of BMPR-II were higher in follicles of 0.5mm. The levels of mRNA for SMAD-5 were higher in follicles of 0.2mm, whereas SMAD-8 had higher levels in 0.5-mm follicles. After culture, follicles showed increased levels of mRNA for BMP-2 and reduced mRNA for BMP-4, BMP-7, BMPR-IA and SMAD-5. In conclusion, β-tubulin and PGK are the most stable reference genes, and BMPs, their receptors and SMADs have variable levels of mRNA in the follicular size classes analysed.
Collapse
Affiliation(s)
- J J N Costa
- Biotechnology Nucleus of Sobral - NUBIS, Federal University of Ceara, CEP 62042-280, Sobral, CE, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tomek W, Wollenhaupt K. The "closed loop model" in controlling mRNA translation during development. Anim Reprod Sci 2012; 134:2-8. [PMID: 22917874 DOI: 10.1016/j.anireprosci.2012.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Translational control is particularly important in situations where the correlation of a distinct mRNA and the abundance of the corresponding protein might be low. This is the case for instance during oocyte maturation, shortly before the GVBD when the chromatin is condensed, until the embryonic genome is activated. In these situations, gene expression relies on the activation of maternal mRNAs which were stored stably in a dormant form. The most sophisticated model for translational initiation at present is the so-called "closed loop" model, where a circularization of the mRNA is mediated by associated 5'-cap- and 3'-poly(A) binding proteins. Depending on differential interactions, this event can result in translational stimulation or repression. Several studies describe correlated regulation mechanisms in model organisms like mouse or Xenopus, but data addressing translational regulation in farm animals are rare. Cytoplasmic mRNA activating or repressing factors, however, might contribute to achieve developmental competence in bovine or porcine oocytes. Recently we showed that, in the pig, embryonic signals can modify essential components of the mRNA-5'-translation initiation complex in the uterine luminal epithelium at the time of implantation. In accordance with the closed loop model of translational initiation, this review focuses on the regulatory impact of 5'-mRNA end associated proteins (components of the mRNA-cap binding complex) and 3'-end associated proteins (components of the poly(A) binding complex) during in vitro maturation of cattle and pig oocytes, early embryonic development and in the pig uterine epithelia.
Collapse
Affiliation(s)
- Wolfgang Tomek
- Leibniz Institute for Farm Animal Biology, Dep. of Reproductive Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | | |
Collapse
|
15
|
Hossain MM, Salilew-Wondim D, Schellander K, Tesfaye D. The role of microRNAs in mammalian oocytes and embryos. Anim Reprod Sci 2012; 134:36-44. [PMID: 22921265 DOI: 10.1016/j.anireprosci.2012.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advanced genomic analysis has revealed an enormous inventory of non-coding RNAs (ncRNAs), which are functionally important at transcriptional and post-transcriptional level for different cellular processes. Among the ncRNAs, microRNAs (miRNAs) have recently been highlighted extensively for their pivotal role in disease, fertility and development through post-transcriptional regulation of gene expression. The presence and spatio-temporal expression of miRNAs and miRNA processing machinery genes in oocytes and preimplantation embryos has evidenced the involvement of miRNAs for growth and maturation of mammalian oocytes, early embryonic development, stem cell lineage differentiation and implantation. Therefore, this article aims to highlight primary evidences on the importance of miRNAs and their mediated translational reprogramming in the physiology and development of mammalian oocytes and embryos.
Collapse
Affiliation(s)
- M M Hossain
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | | | | | | |
Collapse
|
16
|
Characterization and importance of microRNAs in mammalian gonadal functions. Cell Tissue Res 2012; 349:679-90. [DOI: 10.1007/s00441-012-1469-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/21/2012] [Indexed: 12/27/2022]
|
17
|
Current advances in epigenetic modification and alteration during mammalian ovarian folliculogenesis. J Genet Genomics 2012; 39:111-23. [PMID: 22464470 DOI: 10.1016/j.jgg.2012.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/07/2012] [Accepted: 02/10/2012] [Indexed: 11/23/2022]
Abstract
During the growth and development of mammalian ovarian follicles, the activation and deactivation of mass genes are under the synergistic control of diverse modifiers through genetic and epigenetic events. Many factors regulate gene activity and functions through epigenetic modification without altering the DNA sequence, and the common mechanisms may include but are not limited to: DNA methylation, histone modifications (e.g., acetylation, deacetylation, phosphorylation, methylation, and ubiquitination), and RNA-associated silencing of gene expression by noncoding RNA. Over the past decade, substantial progress has been achieved in studies involving the epigenetic alterations during mammalian germ cell development. A number of candidate regulatory factors have been identified. This review focuses on the current available information of epigenetic alterations (e.g., DNA methylation, histone modification, noncoding-RNA-mediated regulation) during mammalian folliculogenesis and recounts when and how epigenetic patterns are differentially established, maintained, or altered in this process. Based on different types of epigenetic regulation, our review follows the temporal progression of events during ovarian folliculogenesis and describes the epigenetic changes and their contributions to germ cell-specific functions at each stage (i.e., primordial folliculogenesis (follicle formation), follicle maturation, and follicular atresia).
Collapse
|
18
|
Leroy JLMR, Rizos D, Sturmey R, Bossaert P, Gutierrez-Adan A, Van Hoeck V, Valckx S, Bols PEJ. Intrafollicular conditions as a major link between maternal metabolism and oocyte quality: a focus on dairy cow fertility. Reprod Fertil Dev 2012; 24:1-12. [DOI: 10.1071/rd11901] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Reduced oocyte and embryo quality are recognised as major factors in the problem of disappointing fertility in high producing dairy cows. This review aims to shed more light on the importance of the intrafollicular environment in the subfertility problem in dairy cows. Metabolic disturbances associated with negative energy balance (NEB) early postpartum are associated with ovarian dysfunction. Changes in the growth pattern of the ovarian follicle during a period of NEB can indirectly affect oocyte quality. Furthermore, a maternal metabolic disorder (linked with NEB or nutritionally induced) may alter the endocrine and biochemical composition of the follicular fluid, the micro-environment of the growing and maturing female gamete. The maturing oocyte is very sensitive to any perturbation in its direct environment and in vitro maturation models revealed that some of these metabolic changes reduce the oocyte’s developmental competence. Also, embryo quality is significantly reduced due to maturation in adverse conditions. Well balanced and timed oocyte metabolism and gene expression are crucial to safeguard an optimal oocyte development. In that perspective, metabolome and transcriptome parameters of the oocyte may serve to predict reproductive success rates. Finally, there is growing evidence that adverse conditions for oocyte growth and maturation may also jeopardise the health and performance of the offspring.
Collapse
|
19
|
Pereira AF, Alcântara Neto AS, Albuquerque ES, Luciano MCS, Teixeira DIA, Freitas VJF, Melo LM. Goat oocyte production by standard or one-shot FSH treatments and quantitative analysis of transcripts for EGF ligands and its receptor after in vitro maturation. Reprod Domest Anim 2011; 47:244-51. [PMID: 21923881 DOI: 10.1111/j.1439-0531.2011.01845.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hormonal ovarian stimulation may affect the success of embryo production by regulating transcripts in recovered cumulus-oocyte complexes (COCs). Here, in parallel to morphological classification and in vitro maturation (IVM) rate analysis, we investigated the expression of epidermal growth factor (EGF) and its receptor (EGFR) in oocytes and cumulus cells from goat COCs recovered by laparoscopy after standard [multi-dose follicle-stimulating hormone (FSH)] or one-shot (single dose FSH plus eCG) treatments. No differences were observed among the number of recovered and morphologically graded COCs or the IVM rates for both gonadotropic treatments. However, the standard protocol produced COCs with higher EGFR expression in the cumulus cells than the one-shot treatment. Additionally, EGF mRNA levels were less than EGFR mRNA levels, and they did not differ among COCs from both treatments. However, during maturation, the EGF transcripts increased in oocytes derived only from the standard protocol. Interestingly, IVM strikingly increased EGFR expression in oocytes and cumulus cells but not in oocytes that fail in first polar body extrusion, irrespective of hormonal treatment. These results appear to be related to the resumption of meiosis and suggest that EGF may act through the cumulus cells or directly on the oocyte receptor.
Collapse
Affiliation(s)
- A F Pereira
- Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza-CE, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Bonnet A, Bevilacqua C, Benne F, Bodin L, Cotinot C, Liaubet L, Sancristobal M, Sarry J, Terenina E, Martin P, Tosser-Klopp G, Mandon-Pepin B. Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by laser capture microdissection. BMC Genomics 2011; 12:417. [PMID: 21851638 PMCID: PMC3166951 DOI: 10.1186/1471-2164-12-417] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 08/18/2011] [Indexed: 12/31/2022] Open
Abstract
Background Successful achievement of early folliculogenesis is crucial for female reproductive function. The process is finely regulated by cell-cell interactions and by the coordinated expression of genes in both the oocyte and in granulosa cells. Despite many studies, little is known about the cell-specific gene expression driving early folliculogenesis. The very small size of these follicles and the mixture of types of follicles within the developing ovary make the experimental study of isolated follicular components very difficult. The recently developed laser capture microdissection (LCM) technique coupled with microarray experiments is a promising way to address the molecular profile of pure cell populations. However, one main challenge was to preserve the RNA quality during the isolation of single cells or groups of cells and also to obtain sufficient amounts of RNA. Using a new LCM method, we describe here the separate expression profiles of oocytes and follicular cells during the first stages of sheep folliculogenesis. Results We developed a new tissue fixation protocol ensuring efficient single cell capture and RNA integrity during the microdissection procedure. Enrichment in specific cell types was controlled by qRT-PCR analysis of known genes: six oocyte-specific genes (SOHLH2, MAEL, MATER, VASA, GDF9, BMP15) and three granulosa cell-specific genes (KL, GATA4, AMH). A global gene expression profile for each follicular compartment during early developmental stages was identified here for the first time, using a bovine Affymetrix chip. Most notably, the granulosa cell dataset is unique to date. The comparison of oocyte vs. follicular cell transcriptomes revealed 1050 transcripts specific to the granulosa cell and 759 specific to the oocyte. Functional analyses allowed the characterization of the three main cellular events involved in early folliculogenesis and confirmed the relevance and potential of LCM-derived RNA. Conclusions The ovary is a complex mixture of different cell types. Distinct cell populations need therefore to be analyzed for a better understanding of their potential interactions. LCM and microarray analysis allowed us to identify novel gene expression patterns in follicular cells at different stages and in oocyte populations.
Collapse
Affiliation(s)
- Agnes Bonnet
- INRA, UMR444 Génétique Cellulaire, Auzeville, Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Romar R, De Santis T, Papillier P, Perreau C, Thélie A, Dell'Aquila ME, Mermillod P, Dalbiès-Tran R. Expression of maternal transcripts during bovine oocyte in vitro maturation is affected by donor age. Reprod Domest Anim 2011; 46:e23-30. [PMID: 20403124 DOI: 10.1111/j.1439-0531.2010.01617.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The primary objective of this study was to compare expression of maternal transcripts in bovine oocyte populations with differential developmental competence: oocytes from prepubertal and pubertal animals; and oocytes from small (3-4 mm) and large (6-10 mm) follicles from pubertal animals. All transcripts were examined in oocytes prior to and after in vitro maturation (IVM). Genes were selected based on their known maternal effect in mouse (ZAR1, STELLA, HSF1, MATER/NLRP5 and its paralogue NLRP9), or their identification as markers of oocyte maturation, either involved in redox metabolism (PRDX1, PRDX2) or meiotic progression (AURKA). Total or polyadenylated forms of the transcripts were followed by reverse transcription coupled to real-time PCR. Six polyadenylated transcripts were found significantly reduced after maturation irrespective of donor age or follicle diameter (p<0.05). Within these six polyadenylated transcripts, ZAR1, NLRP9, HSF1, PRDX1 and PRDX2 were significantly reduced in oocytes from prepubertal animals compared to adult animals (p<0.05). A younger age was also associated with lower abundance (total form) of PRDX2/PRDX1 irrespective of maturation. Total HSF1, PRDX1 and polyadenylated NLRP9 showed a tendency (p values from 0.053 to 0.08) for a higher detection in oocytes from small follicles, thus encouraging further investigation of the follicle diameter model. However, at the present time, follicle size did not significantly affect expression of transcripts examined. In conclusion, this study demonstrates differences in the maternal store of RNA and its regulation during IVM which is dependent on donor age.
Collapse
Affiliation(s)
- R Romar
- Faculty of Veterinary Science, Department of Physiology, University of Murcia, Murcia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Assisted Reproductive Technology-Related Multiple Births: Canada in an International Context. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2011; 33:159-167. [DOI: 10.1016/s1701-2163(16)34803-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Abstract
RNA interference, a recently discovered new mechanism controlling gene expression via small RNAs, was shown to be involved in characterization and control of basic ovarian cell functions. The main classes of small RNAs, as well as their expression in ovaries have been described. Furthermore, the successful application of RNA interference for study and control of basic ovarian functions (proliferation, apoptosis, secretory activity, luteogenesis, oocyte maturation, and related ovarian cell malignant transformation) and production of recombinant proteins have been demonstrated. Application of RNA interference in reproductive biology and medicine can be successful in two main areas: (1) characterization and prediction of physiological and pathological state (association between particular small RNA and physiological or pathological processes), (2) application of small RNAs for regulation of reproductive processes and treatment of reproductive disorders or their particular indexes. Problems of improvement of small RNA delivery to target ovarian cells and potent RNA interference-related approaches for treatment of ovarian disorders (especially of ovarian cancer) have been discussed.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Institute of Animal Genetics and Reproduction, Animal Production Research Centre Nitra, Luzianky near Nitra, Slovakia.
| |
Collapse
|
24
|
Grøndahl ML, Yding Andersen C, Bogstad J, Nielsen FC, Meinertz H, Borup R. Gene expression profiles of single human mature oocytes in relation to age. Hum Reprod 2010; 25:957-68. [PMID: 20147335 DOI: 10.1093/humrep/deq014] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The development competence of human oocytes declines with increasing age. The objective of this study was to investigate the effect of age on gene expression profile in mature human oocytes. METHODS mRNA was isolated for whole genome gene expression microarray analysis from metaphase II (MII) oocytes donated by IVF or ICSI patients [10 women aged <36 years (younger) and five women aged 37-39 years (both inclusive) (older)] undergoing controlled ovarian stimulation. The oocytes were donated and prepared immediately after recovery from the follicle. RT-PCR on additional four younger and two older oocytes confirmed the array analysis. RESULTS On the basis of 15 independent replicates of single MII oocytes, 7470 genes (10 428 transcripts) were identified as present in the MII oocytes. Of these, 342 genes showed a significantly different expression level between the two age groups; notably, genes annotated to be involved in cell cycle regulation, chromosome alignment (e.g. MAD2L1 binding protein), sister chromatid separation (e.g. separase), oxidative stress and ubiquitination. The top signaling network affected by age was 'cell cycle and organism development' (e.g. SMAD2 and activin B1 receptor). CONCLUSION There is a substantial difference between younger and older oocytes in the transcriptional level of genes involved in central biological functions of the oocytes, thus providing information on processes that may be associated with the ageing phenomenon and possibly contributing to decreased fertility.
Collapse
Affiliation(s)
- M L Grøndahl
- University Hospital Copenhagen, Rigshospitalet, Fertility Clinic, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
25
|
Hossain MM, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E, Schellander K, Tesfaye D. Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics 2009; 10:443. [PMID: 19765282 PMCID: PMC2762473 DOI: 10.1186/1471-2164-10-443] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 09/18/2009] [Indexed: 01/04/2023] Open
Abstract
Background MicroRNAs are the major class of gene-regulating molecules playing diverse roles through sequence complementarity to target mRNAs at post-transcriptional level. Tightly regulated expression and interaction of a multitude of genes for ovarian folliculogenesis could be regulated by these miRNAs. Identification of them is the first step towards understanding miRNA-guided gene regulation in different biological functions. Despite increasing efforts in miRNAs identification across various species and diverse tissue types, little is known about bovine ovarian miRNAs. Here, we report the identification and characterization of miRNAs expressed in the bovine ovary through cloning, expression analysis and target prediction. Results The miRNA library (5'-independent ligation cloning method), which was constructed from bovine ovary in this study, revealed cloning of 50 known and 24 novel miRNAs. Among all identified miRNAs, 38 were found to be new for bovine and were derived from 43 distinct loci showing characteristic secondary structure. While 22 miRNAs precursor loci were found to be well conserved in more than one species, 16 were found to be bovine specific. Most of the miRNAs were cloned multiple times, in which let-7a, let-7b, let-7c, miR-21, miR-23b, miR-24, miR-27a, miR-126 and miR-143 were cloned 10, 28, 13, 4, 11, 7, 6, 4 and 11 times, respectively. Expression analysis of all new and some annotated miRNAs in different intra-ovarian structures and in other multiple tissues showed that some were present ubiquitously while others were differentially expressed among different tissue types. Bta-miR-29a was localized in the follicular cells at different developmental stages in the cyclic ovary. Bio-informatics prediction, screening and Gene Ontology analysis of miRNAs targets identified several biological processes and pathways underlying the ovarian function. Conclusion Results of this study suggest the presence of miRNAs in the bovine ovary, thereby elucidate their potential role in regulating diverse molecular and physiological pathways underlying the ovarian functionality. This information will give insights into bovine ovarian miRNAs, which can be further characterized for their role in follicular development and female fertility as well.
Collapse
Affiliation(s)
- Md Munir Hossain
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Thelie A, Papillier P, Perreau C, Uzbekova S, Hennequet-Antier C, Dalbies-Tran R. Regulation of bovine oocyte-specific transcripts during in vitro oocyte maturation and after maternal-embryonic transition analyzed using a transcriptomic approach. Mol Reprod Dev 2009; 76:773-82. [PMID: 19343788 DOI: 10.1002/mrd.21031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oocyte/embryo genomics in mammals faces specific challenges due to limited biological material, to the comparison of models with different total RNA contents, and to expression of a specific set of genes often absent from commercially available microarrays. Here, we report experimental validation of a RNA amplification protocol for bovine oocytes and blastocysts. Using real-time PCR, we have confirmed that the profile of both abundant and scarce polyadenylated transcripts was conserved after RNA amplification. Next, amplified probes generated from immature oocytes, in vitro matured oocytes, and in vitro produced hatched blastocysts were hybridized onto a macroarray that included oocyte-specific genes. Following an original approach, we have compared two normalization procedures, based on the median signal or an exogenous standard. We have evidenced the expected difference in sets of differential genes depending on the normalization procedure. Using a 1.5-fold threshold, no transcript was found to be upregulated when data were normalized to an exogenous standard, which reflects the absence of transcription during in vitro oocyte maturation. In blastocysts, the majority of oocyte-preferentially expressed genes were not activated, as previously observed in mouse. Finally, microarray data were validated by real-time PCR on a random subset of genes. Our study sheds new light on and complements previous transcriptomic analyses of bovine oocyte to embryo transition using commercial platforms.
Collapse
Affiliation(s)
- Aurore Thelie
- INRA UMR Physiologie de la Reproduction et des Comportements, CNRS UMR, Université de Tours, Haras Nationaux, Nouzilly, France
| | | | | | | | | | | |
Collapse
|
27
|
Evans ACO, Forde N, OGorman GM, Zielak AE, Lonergan P, Fair T. Use of Microarray Technology to Profile Gene Expression Patterns Important for Reproduction in Cattle. Reprod Domest Anim 2008; 43 Suppl 2:359-67. [DOI: 10.1111/j.1439-0531.2008.01185.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Hue I, Renard JP. Focus on mammalian embryogenomics. Reproduction 2008; 135:117-8. [PMID: 18239042 DOI: 10.1530/rep-08-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|