1
|
Idrees M, Haider Z, Perera CD, Ullah S, Lee SH, Lee SE, Kang SS, Kim SW, Kong IK. PPARGC1A regulates transcriptional control of mitochondrial biogenesis in early bovine embryos. Front Cell Dev Biol 2025; 12:1531378. [PMID: 39897080 PMCID: PMC11782182 DOI: 10.3389/fcell.2024.1531378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
Extensive mitochondrial replication during oogenesis and its role in oocyte maturation and fertilization indicate that the amount of mitochondrial DNA (mtDNA) may play a significant role in early embryonic development. Early embryos express peroxisome proliferator-activated receptor gamma co-activator alpha (PPARGC1A/PGC-1a), a protein essential for mitochondrial biogenesis. This study investigated the role of PGC-1α from a single-cell zygotic stage to day-8 bovine blastocyst and the effect of PGC-1a knockdown (KD) on embryo mitochondria and development. PGC-1α KD via siRNA injection into single-cell zygotes does not substantially affect embryonic cleavage up to the morula stage but considerably reduces blastocyst development (18.42%) and hatching than the control (32.81%). PGC-1α regulates transcription of the gene encoding mitochondrial transcription factor A (TFAM), and immunofluorescence analysis indicated significantly lower TFAM expression in the 16-cell KD embryos and day-8 KD blastocysts. Reduction in NRF1 protein's nuclear localization in bovine blastomeres was also observed in PGC-1α-KD embryos. Furthermore, to understand the effect of PGC-1α-KD on the mitochondrial genome, we found a low mtDNA copy number in PGC-1α-KD day-8 bovine blastocysts. Several genes related to mitochondrial functioning, like ND1, ND3, ND5, ATPase8, COI, COII, and CYTB, were significantly downregulated in PGC-1α-KD embryos. Moreover, high mitochondrial depolarization (ΔΨm) and abnormal lipid depositions were observed in the PGC-1α KD blastocysts. SIRT1 is the upstream regulator of PGC-1α, but SIRT1 activation via Hesperetin does not affect PGC-1α-KD embryonic development considerably. In conclusion, PGC-1α plays a critical role in early embryo mitochondrial functioning, and any perturbation in its expression significantly disrupts early embryonic development.
Collapse
Affiliation(s)
- Muhammad Idrees
- Department of Animal Science, Division of Applied Life Science (BK21 Four Program), Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Zaheer Haider
- Department of Animal Science, Division of Applied Life Science (BK21 Four Program), Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Chalani Dilshani Perera
- Department of Animal Science, Division of Applied Life Science (BK21 Four Program), Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Safeer Ullah
- Department of Animal Science, Division of Applied Life Science (BK21 Four Program), Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Seo-Hyeon Lee
- Department of Animal Science, Division of Applied Life Science (BK21 Four Program), Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Seung Eun Lee
- Department of Animal Science, Division of Applied Life Science (BK21 Four Program), Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Sung-Sik Kang
- Hanwoo Research Institute, National Institute of Animal Science, Rural Development Administration, Gangwon, Republic of Korea
| | - Sung Woo Kim
- Hanwoo Research Institute, National Institute of Animal Science, Rural Development Administration, Gangwon, Republic of Korea
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four Program), Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea
| |
Collapse
|
2
|
Taguchi YH, Turki T. Tensor-Decomposition-Based Unsupervised Feature Extraction in Single-Cell Multiomics Data Analysis. Genes (Basel) 2021; 12:1442. [PMID: 34573424 PMCID: PMC8468466 DOI: 10.3390/genes12091442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023] Open
Abstract
Analysis of single-cell multiomics datasets is a novel topic and is considerably challenging because such datasets contain a large number of features with numerous missing values. In this study, we implemented a recently proposed tensor-decomposition (TD)-based unsupervised feature extraction (FE) technique to address this difficult problem. The technique can successfully integrate single-cell multiomics data composed of gene expression, DNA methylation, and accessibility. Although the last two have large dimensions, as many as ten million, containing only a few percentage of nonzero values, TD-based unsupervised FE can integrate three omics datasets without filling in missing values. Together with UMAP, which is used frequently when embedding single-cell measurements into two-dimensional space, TD-based unsupervised FE can produce two-dimensional embedding coincident with classification when integrating single-cell omics datasets. Genes selected based on TD-based unsupervised FE are also significantly related to reasonable biological roles.
Collapse
Affiliation(s)
- Y-h. Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan
| | - Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
3
|
Du ZQ, Liang H, Liu XM, Liu YH, Wang C, Yang CX. Single cell RNA-seq reveals genes vital to in vitro fertilized embryos and parthenotes in pigs. Sci Rep 2021; 11:14393. [PMID: 34257377 PMCID: PMC8277874 DOI: 10.1038/s41598-021-93904-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Successful early embryo development requires the correct reprogramming and configuration of gene networks by the timely and faithful execution of zygotic genome activation (ZGA). However, the regulatory principle of molecular elements and circuits fundamental to embryo development remains largely obscure. Here, we profiled the transcriptomes of single zygotes and blastomeres, obtained from in vitro fertilized (IVF) or parthenogenetically activated (PA) porcine early embryos (1- to 8-cell), focusing on the gene expression dynamics and regulatory networks associated with maternal-to-zygote transition (MZT) (mainly maternal RNA clearance and ZGA). We found that minor and major ZGAs occur at 1-cell and 4-cell stages for both IVF and PA embryos, respectively. Maternal RNAs gradually decay from 1- to 8-cell embryos. Top abundantly expressed genes (CDV3, PCNA, CDR1, YWHAE, DNMT1, IGF2BP3, ARMC1, BTG4, UHRF2 and gametocyte-specific factor 1-like) in both IVF and PA early embryos identified are of vital roles for embryo development. Differentially expressed genes within IVF groups are different from that within PA groups, indicating bi-parental and maternal-only embryos have specific sets of mRNAs distinctly decayed and activated. Pathways enriched from DEGs showed that RNA associated pathways (RNA binding, processing, transport and degradation) could be important. Moreover, mitochondrial RNAs are found to be actively transcribed, showing dynamic expression patterns, and for DNA/H3K4 methylation and transcription factors as well. Taken together, our findings provide an important resource to investigate further the epigenetic and genome regulation of MZT events in early embryos of pigs.
Collapse
Affiliation(s)
- Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hao Liang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiao-Man Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
4
|
Yu B, Doni Jayavelu N, Battle SL, Mar JC, Schimmel T, Cohen J, Hawkins RD. Single-cell analysis of transcriptome and DNA methylome in human oocyte maturation. PLoS One 2020; 15:e0241698. [PMID: 33152014 PMCID: PMC7643955 DOI: 10.1371/journal.pone.0241698] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Oocyte maturation is a coordinated process that is tightly linked to reproductive potential. A better understanding of gene regulation during human oocyte maturation will not only answer an important question in biology, but also facilitate the development of in vitro maturation technology as a fertility treatment. We generated single-cell transcriptome and used our previously published single-cell methylome data from human oocytes at different maturation stages to investigate how genes are regulated during oocyte maturation, focusing on the potential regulatory role of non-CpG methylation. DNMT3B, a gene encoding a key non-CpG methylation enzyme, is one of the 1,077 genes upregulated in mature oocytes, which may be at least partially responsible for the increased non-CpG methylation as oocytes mature. Non-CpG differentially methylated regions (DMRs) between mature and immature oocytes have multiple binding motifs for transcription factors, some of which bind with DNMT3B and may be important regulators of oocyte maturation through non-CpG methylation. Over 98% of non-CpG DMRs locate in transposable elements, and these DMRs are correlated with expression changes of the nearby genes. Taken together, this data indicates that global non-CpG hypermethylation during oocyte maturation may play an active role in gene expression regulation, potentially through the interaction with transcription factors.
Collapse
Affiliation(s)
- Bo Yu
- Department of OBGYN, University of Washington School of Medicine, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Naresh Doni Jayavelu
- Departments of Medicine and Genome Sciences, University of Washington, School of Medicine, Seattle, Washington, United States of America
| | - Stephanie L. Battle
- Department of OBGYN, University of Washington School of Medicine, Seattle, Washington, United States of America
- Departments of Medicine and Genome Sciences, University of Washington, School of Medicine, Seattle, Washington, United States of America
| | - Jessica C. Mar
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Timothy Schimmel
- Reprogenetics LLC, Livingston, New Jersey, United States of America
| | - Jacques Cohen
- Reprogenetics LLC, Livingston, New Jersey, United States of America
| | - R. David Hawkins
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Departments of Medicine and Genome Sciences, University of Washington, School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Lau LY, Nguyen LT, Reverter A, Moore SS, Lynn A, McBride‐Kelly L, Phillips‐Rose L, Plath M, Macfarlane R, Vasudivan V, Morton L, Ardley R, Ye Y, Fortes MRS. Gene regulation could be attributed to TCF3 and other key transcription factors in the muscle of pubertal heifers. Vet Med Sci 2020; 6:695-710. [PMID: 32432381 PMCID: PMC7738712 DOI: 10.1002/vms3.278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/13/2020] [Accepted: 04/09/2020] [Indexed: 01/17/2023] Open
Abstract
Puberty is a whole-body event, driven by the hypothalamic integration of peripheral signals such as leptin or IGF-1. In the process of puberty, reproductive development is simultaneous to growth, including muscle growth. To enhance our understanding of muscle function related to puberty, we performed transcriptome analyses of muscle samples from six pre- and six post-pubertal Brahman heifers (Bos indicus). Our aims were to perform differential expression analyses and co-expression analyses to derive a regulatory gene network associate with puberty. As a result, we identified 431 differentially expressed (DEx) transcripts (genes and non-coding RNAs) when comparing pre- to post-pubertal average gene expression. The DEx transcripts were compared with all expressed transcripts in our samples (over 14,000 transcripts) for functional enrichment analyses. The DEx transcripts were associated with "extracellular region," "inflammatory response" and "hormone activity" (adjusted p < .05). Inflammatory response for muscle regeneration is a necessary aspect of muscle growth, which is accelerated during puberty. The term "hormone activity" may signal genes that respond to progesterone signalling in the muscle, as the presence of this hormone is an important difference between pre- and post-pubertal heifers in our experimental design. The DEx transcript with the highest average expression difference was a mitochondrial gene, ENSBTAG00000043574 that might be another important link between energy metabolism and puberty. In the derived co-expression gene network, we identified six hub genes: CDC5L, MYC, TCF3, RUNX2, ATF2 and CREB1. In the same network, 48 key regulators of DEx transcripts were identified, using a regulatory impact factor metric. The hub gene TCF3 was also a key regulator. The majority of the key regulators (22 genes) are members of the zinc finger family, which has been implicated in bovine puberty in other tissues. In conclusion, we described how puberty may affect muscle gene expression in cattle.
Collapse
Affiliation(s)
- Li Yieng Lau
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Loan T. Nguyen
- Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandBrisbaneQLDAustralia
| | - Antonio Reverter
- CSIRO Agriculture and FoodQueensland Biosciences PrecinctBrisbaneQLDAustralia
| | - Stephen S. Moore
- Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandBrisbaneQLDAustralia
| | - Aaron Lynn
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Liam McBride‐Kelly
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Louis Phillips‐Rose
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Mackenzie Plath
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Rhys Macfarlane
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Vanisha Vasudivan
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Lachlan Morton
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Ryan Ardley
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Yunan Ye
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Marina R. S. Fortes
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
- Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
6
|
Gegenfurtner K, Flenkenthaler F, Fröhlich T, Wolf E, Arnold GJ. The impact of transcription inhibition during in vitro maturation on the proteome of bovine oocytes†. Biol Reprod 2020; 103:1000-1011. [PMID: 32856698 DOI: 10.1093/biolre/ioaa149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/21/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022] Open
Abstract
Proper oocyte maturation is a prerequisite for successful reproduction and requires the resumption of meiosis to the metaphase II stage (MII). In bovine oocytes, nuclear maturation has been shown to occur in in vitro maturing cumulus-enclosed oocytes (COCs) in the absence of transcription, but their developmental capacity is reduced compared to transcriptionally competent COCs. To assess the impact of transcription during in vitro maturation of bovine COCs on the quantitative oocyte proteome, a holistic nano-LC-MS/MS analysis of germinal vesicle oocytes and MII oocytes matured with or without addition of the transcription inhibitor actinomycin D (ActD) was carried out. Analyzing eight biological replicates for each of the three groups, a total of 2018 proteins was identified. These could be clearly classified into proteins depending or not depending on transcription during oocyte maturation. Proteins whose abundance increased after maturation irrespective of transcription inhibition - and hence independent of transcription - were related to the cell cycle, reflecting the progression of meiosis, and to cellular component organization, which is crucial for cytoplasmic maturation. In contrast, transcription-dependent proteins were associated with cell-cell adhesion and translation. Since a high rate of protein synthesis in oocytes has been shown to correlate with their developmental competence, oocyte maturation in transcriptionally impaired COCs is apparently disturbed. Our experiments reveal that impaired transcription during in vitro maturation of COCs has a substantial effect on specific components of the oocyte proteome, and that transcription is required for specific classes of oocyte proteins predominantly involved in translation.
Collapse
Affiliation(s)
- Katrin Gegenfurtner
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany.,Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany
| |
Collapse
|
7
|
Orozco-Lucero E, Dufort I, Sirard MA. Regulation of ATF1 and ATF2 transcripts by sequences in their 3' untranslated region in cleavage-stage cattle embryos. Mol Reprod Dev 2017; 84:296-309. [PMID: 28198054 DOI: 10.1002/mrd.22785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/06/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
The sequence of a 3' untranslated region (3'UTR) of mRNA governs the timing of its polyadenylation and translation in mammalian oocytes and early embryos. The objective of this study was to assess the influence of cis-elements in the 3'UTR of the developmentally important ATF1 and ATF2 transcripts on their timely translation during first cleavages in bovine embryos. Eight different reporter mRNAs (coding sequence of green fluorescent protein [GFP] fused to the 3'UTR of short or long isoforms of cattle ATF1 or -2, with or without polyadenylation) or a control GFP mRNA were microinjected separately into presumptive bovine zygotes at 18 hr post-insemination (hpi), followed by epifluorescence assessment for GFP translation between 24 and 80 hpi (expressed as percentage of GFP-positive embryos calculated from the total number of individuals). The presence of either polyadenine or 3'UTR sequence in deadenylated constructs is required for GFP translation (implying the need for polyadenylation), and all exogenous mRNAs that met either criteria were translated as soon as 24 hpi-except for long-deadenylated ATF2-UTR, whose translation began at 36 hpi. Overall, GFP was more visibly translated in competent (cleaving) embryos, particularly in long ATF1/2 constructs. The current data shows a timely GFP translation in bovine embryos depending on sequences in the 3'UTR of ATF1/2, and indicates a difference between short and long isoforms. In addition, cleaving embryos displayed increased translational capacity of the tested constructs. Functional confirmation of the identification cis-sequences in the 3'UTR of ATF1/2 will contribute to the understanding of maternal mRNA translation regulation during early cattle development.
Collapse
Affiliation(s)
- Ernesto Orozco-Lucero
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Pavillon INAF, Université Laval, Québec, Quebec, Canada
| | - Isabelle Dufort
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Pavillon INAF, Université Laval, Québec, Quebec, Canada
| | - Marc-André Sirard
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Pavillon INAF, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
8
|
Lima PF, Ormond CM, Caixeta ES, Barros RG, Price CA, Buratini J. Effect of kit ligand on natriuretic peptide precursor C and oocyte maturation in cattle. Reproduction 2016; 152:481-9. [DOI: 10.1530/rep-16-0155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/04/2016] [Indexed: 01/03/2023]
Abstract
In vitro maturation (IVM) of oocytes in cattle is inefficient, and there is great interest in the development of approaches to improve maturation and fertilization rates. Intraovarian signalling molecules are being explored as potential additives to IVM media. One such factor is kit ligand (KITL), which stimulates the growth of oocytes. We determined if KITL enhances oocyte maturation in cattle. The two main isoforms of KITL (KITL1 and KITL2) were expressed in bovine cumulus–oocyte complexes (COC), and levels of mRNA increased during FSH-stimulated IVM. The addition of KITL to the culture medium increased the percentage of oocytes that reached meiosis II but did not affect cumulus expansion after 22 h of IVM. Addition of KITL reduced the levels of mRNA encoding natriuretic peptide precursor C (NPPC), a protein that holds oocytes in meiotic arrest, and increased the levels of mRNA encoding YBX2, an oocyte-specific factor involved in meiosis. Removal of the oocyte from the COC resulted in increased KITL mRNA levels and decreased NPPC mRNA levels in cumulus cells, and addition of denuded oocytes reversed these effects. Taken together, our results suggest that KITL enhances bovine oocyte nuclear maturation through a mechanism that involves NPPC, and that the oocyte regulates cumulus expression of KITL mRNA.
Collapse
|
9
|
HosseinNia P, Hajian M, Tahmoorespur M, Hosseini SM, Ostadhosseini S, Nasiri MR, Nasr-Esfahani MH. Expression Profile of Developmentally Important Genes in preand peri-Implantation Goat Embryos Produced In Vitro. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2016; 10:310-319. [PMID: 27695614 PMCID: PMC5023042 DOI: 10.22074/ijfs.2016.4659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/01/2016] [Indexed: 12/03/2022]
Abstract
Background: Little is understood about the regulation of gene expression during early
goat embryo development. This study investigated the expression profile of 19 genes,
known to be critical for early embryo development in mouse and human, at five different
stages of goat in vitro embryo development (oocyte, 8-16 cell, morula, day-7 blastocyst,
and day 14 blastocyst). Materials and Methods: In this experimental study, stage-specific profiling using real
time-quantitative polymerase chain reaction (RT-qPCR) revealed robust and dynamic
patterns of stage-specific gene activity that fall into four major clusters depending on
their respective mRNA profiles. Results: The gradual pattern of reduction in the maternally stored transcripts without renewal thereafter (cluster-1: Lifr1, Bmpr1, Alk4, Id3, Ctnnb, Akt, Oct4, Rex1, Erk1, Smad1
and 5) implies that their protein products are essential during early cleavages when the
goat embryo is silent and reliant to the maternal legacy of mRNA. The potential importance of transcription augment at day-3 (cluster-2: Fzd, c-Myc, Cdc25a, Sox2) or day-
14 (cluster-3: Fgfr4, Nanog) suggests that they are nascent embryonic mRNAs which
intimately involved in the overriding of MET or regulation of blastocyst formation, respectively. The observation of two expression peaks at both day-3 and day-14 (cluster-4:
Gata4, Cdx2) would imply their potential importance during these two critical stages of
preand periimplantation development. Conclusion: Evolutionary comparison revealed that the selected subset of genes has been
rewired in goat and human/goat similarity is greater than the mouse/goat or bovine/goat
similarities. The developed profiles provide a resource for comprehensive understanding
of goat preimplantation development and pluripotent stem cell engineering as well.
Collapse
Affiliation(s)
- Pouria HosseinNia
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mojtaba Tahmoorespur
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sayyed Morteza Hosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Somayyeh Ostadhosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Reza Nasiri
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
10
|
Abstract
SummaryGene expression profiling of in vivo- and in vitro-matured bovine oocytes can identify transcripts related to the developmental potential of oocytes. Nonetheless, the effects of in vitro culturing oocytes are yet to be fully understood. We tested the effects of in vitro maturation on the transcript profile of oocytes collected from Bos taurus indicus cows. We quantified the expression of 1488 genes in in vivo- and in vitro-matured oocytes. Of these, 51 genes were up-regulated, whereas 56 were down-regulated (≥2-fold) in in vivo-matured oocytes in comparison with in vitro-matured oocytes. Quantitative real-time polymerase chain reaction (PCR) of nine genes confirmed the microarray results of differential expression between in vivo- and in vitro-matured oocytes (EZR, EPN1, PSEN2, FST, IGFBP3, RBBP4, STAT3, FDPS and IRS1). We interrogated the results for enrichment of Gene Ontology categories and overlap with protein–protein interactions. The results revealed that the genes altered by in vitro maturation are mostly related to the regulation of oocyte metabolism. Additionally, analysis of protein–protein interactions uncovered two regulatory networks affected by the in vitro culture system. We propose that the differentially expressed genes are candidates for biomarkers of oocyte competence. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence.
Collapse
|
11
|
Biase FH, Cao X, Zhong S. Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing. Genome Res 2014; 24:1787-96. [PMID: 25096407 PMCID: PMC4216920 DOI: 10.1101/gr.177725.114] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It remains an open question when and how the first cell fate decision is made in mammals. Using deep single-cell RNA-seq of matched sister blastomeres, we report highly reproducible inter-blastomere differences among 10 2-cell and five 4-cell mouse embryos. Inter-blastomere gene expression differences dominated between-embryo differences and noise, and were sufficient to cluster sister blastomeres into distinct groups. Dozens of protein-coding genes exhibited reproducible bimodal expression in sister blastomeres, which cannot be explained by random fluctuations. The protein expression of one gene out of four of these bimodal genes tested, Gadd45a, exhibited clear inter-blastomeric contrasts. We traced some of the bimodal mRNA expressions to embryonic genome activation, and others to blastomere-specific RNA depletion. Inter-blastomere differences created coexpression gene networks that were much stronger and larger than those that can possibly be created by random noise. The highly correlated gene pairs at the 4-cell stage overlapped with those showing the same directions of differential expression between inner cell mass (ICM) and trophectoderm (TE). These data substantiate the hypothesis of inter-blastomere differences in 2- and 4-cell mouse embryos, and associate these differences with ICM/TE differences.
Collapse
Affiliation(s)
- Fernando H Biase
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Xiaoyi Cao
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
12
|
Hoelker M, Held E, Salilew-Wondim D, Schellander K, Tesfaye D. Molecular signatures of bovine embryo developmental competence. Reprod Fertil Dev 2014; 26:22-36. [PMID: 24305174 DOI: 10.1071/rd13255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Assessment of the developmental capacity of early bovine embryos is still an obstacle. Therefore, the present paper reviews all current knowledge with respect to morphological criteria and environmental factors that affect embryo quality. The molecular signature of an oocyte or embryo is considered to reflect its quality and to predict its subsequent developmental capacity. Therefore, the primary aim of the present review is to provide an overview of reported correlations between molecular signatures and developmental competence. A secondary aim of this paper is to present some new strategies to enable concomitant evaluation of the molecular signatures of specific embryos and individual developmental capacity.
Collapse
Affiliation(s)
- M Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Alle 15, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
13
|
Gohin M, Fournier E, Dufort I, Sirard MA. Discovery, identification and sequence analysis of RNAs selected for very short or long poly A tail in immature bovine oocytes. Mol Hum Reprod 2013; 20:127-38. [PMID: 24233545 DOI: 10.1093/molehr/gat080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A major challenge in applying genomics to oocyte physiology is that many RNAs are present but will not be translated into proteins, making it difficult to draw conclusions from RNAseq and array data. Oocyte maturation and early embryo development rely on maternal storage of specific RNAs with a short poly(A) tail, which must be elongated for translation. To resolve the role of key genes during that period, we aimed to characterize both extremes of mRNA: deadenylated RNA and long polyA tails mRNA population in immature bovine oocytes. Using magnetic beads coupled to oligodT, we isolated deadenylated (A-, 20-50 adenosines) from polyadenylated (A+, up to 200 adenosines) RNAs. After transcriptomic analysis, we observed that A+ candidates are associated with short-term processes required for immediate cell survival (translation or protein transport) or meiotic resumption, while several A- candidates are involved in processes (chromatin modification, gene transcription and post-transcriptional modifications) that will be extremely important in the development of the early embryo. In addition to a list of candidates probably translated early or late, sequence analysis revealed that cytoplasmic polyadenylation element (CPE) and U(3)GU(3) were enriched in A- sequences. Moreover, a motif associated with polyadenylation signals (MAPS, U(5)CU(2)) appeared to be enriched in 3'untranslated regions (UTR) with CPE or U(3)GU(3) sequences in bovine but also in zebrafish and Xenopus tropicalis. To further validate our methodology, we measured specific tail length of known candidates (AURKA, PTTG1, H2A1) but also determined the poly(A) tail length of other candidate RNAs (H3F3A, H1FOO, DAZAP2, ATF1, ATF2, KAT5, DAZL, ELAVL2). In conclusion, we have reported a methodology to isolate deadenylated from polyadenylated RNAs in samples with small total RNA quantities such as mammals. Moreover, we identified deadenylated RNAs in bovine oocytes that may be stored for the long-term process of early embryo development and described a conserved motif enriched in the 3'UTR of deadenylated RNAs.
Collapse
Affiliation(s)
- Maella Gohin
- Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de L'Agriculture et de L'Alimentation, Département des Sciences Animales, 2440 Bl. Hochelaga, Pavillon INAF, Université Laval, Québec, QC, Canada G1V 0A6
| | | | | | | |
Collapse
|
14
|
Paciolla M, Boni R, Fusco F, Pescatore A, Poeta L, Ursini MV, Lioi MB, Miano MG. Nuclear factor-kappa-B-inhibitor alpha (NFKBIA) is a developmental marker of NF-κB/p65 activation during in vitro oocyte maturation and early embryogenesis. Hum Reprod 2011; 26:1191-201. [PMID: 21357606 DOI: 10.1093/humrep/der040] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND The oocyte-to-embryo transition (OET) requires a co-ordinated transcriptional programme acting through evolutionarily conserved events, and transcription factors (TFs) are known to control these processes. Here, we focus on nuclear factor (NF)-κB, a TF involved in several cellular processes, studying NFκB-inhibitor (NFKBIA) mRNA and its protein product, IκBα, during OET. NFKBIA and IκBα are part of a regulatory loop, as IκBα is the major down-regulator of NF-κB activation while NFKBIA transcription is activated by NF-κB. METHODS AND RESULTS We found a dynamic correlation between NFKBIA transcript, expression of IκBα-protein and activation of NF-κB/p65 in bovine oocyte and embryo. During the transition from immature to in vitro matured bovine oocyte, we observed a decrease in maternal NFKBIA mRNA and a parallel increase of the IκBα-protein (both P < 0.05). In the embryo, NFKBIA neo-synthesis is activated as a consequence of embryo genome activation (EGA), and IκBα decreases. NF-κB/p65-binding activity was detectable at low levels in immature oocyte, disappeared in dormant metaphase II oocyte and was strong in the embryo, during embryonic NFKBIA synthesis. The level of NF-κB/p65 DNA binding correlates with the timing of meiotic silencing during bovine oocyte maturation and embryonic transcription reprogramming. CONCLUSIONS The IκBα/NF-κB circuit appears to be a tightly stage-controlled mechanism that could govern OET, being activated at EGA. Our findings represent the first characterization of NFKBIA and IκBα as maternal effectors in both the bovine oocyte and embryo. We suggest a role for NFKBIA as a marker of NF-κB/p65 activation in the human oocyte and early embryo.
Collapse
Affiliation(s)
- M Paciolla
- Institute of Genetics and Biophysics 'Adriano Buzzati Traverso' CNR, Via Pietro Castellino, 111, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Robert C. Microarray analysis of gene expression during early development: a cautionary overview. Reproduction 2010; 140:787-801. [PMID: 20833752 DOI: 10.1530/rep-10-0191] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rise of the 'omics' technologies started nearly a decade ago and, among them, transcriptomics has been used successfully to contrast gene expression in mammalian oocytes and early embryos. The scarcity of biological material that early developmental stages provide is the prime reason why the field of transcriptomics is becoming more and more popular with reproductive biologists. The potential to amplify scarce mRNA samples and generate the necessary amounts of starting material enables the relative measurement of RNA abundance of thousands of candidates simultaneously. So far, microarrays have been the most commonly used high-throughput method in this field. Microarray platforms can be found in a wide variety of formats, from cDNA collections to long or short oligo probe sets. These platforms generate large amounts of data that require the integration of comparative RNA abundance values in the physiological context of early development for their full benefit to be appreciated. Unfortunately, significant discrepancies between datasets suggest that direct comparison between studies is difficult and often not possible. We have investigated the sample-handling steps leading to the generation of microarray data produced from prehatching embryo samples and have identified key steps that significantly impact the downstream results. This review provides a discussion on the best methods for the preparation of samples from early embryos for microarray analysis and focuses on the challenges that impede dataset comparisons from different platforms and the reasons why methodological benchmarking performed using somatic cells may not apply to the atypical nature of prehatching development.
Collapse
Affiliation(s)
- Claude Robert
- Laboratory of Functional Genomics of Early Embryonic Development, Laval University, Pavillon Comtois, Local 4221 Université Laval, Québec, Québec, Canada.
| |
Collapse
|