1
|
Martoriati A, Molinaro C, Marchand G, Fliniaux I, Marin M, Bodart JF, Takeda-Uchimura Y, Lefebvre T, Dehennaut V, Cailliau K. Follicular cells protect Xenopus oocyte from abnormal maturation via integrin signaling downregulation and O-GlcNAcylation control. J Biol Chem 2023; 299:104950. [PMID: 37354972 PMCID: PMC10366548 DOI: 10.1016/j.jbc.2023.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Xenopus oocytes are encompassed by a layer of follicular cells that contribute to oocyte growth and meiosis in relation to oocyte maturation. However, the effects of the interaction between follicular cells and the oocyte surface on meiotic processes are unclear. Here, we investigated Xenopus follicular cell function using oocyte signaling and heterologous-expressing capabilities. We found that oocytes deprotected from their surrounding layer of follicular cells and expressing the epidermal growth factor (EGF) receptor (EGFR) and the Grb7 adaptor undergo accelerated prophase I to metaphase II meiosis progression upon stimulation by EGF. This unusual maturation unravels atypical spindle formation but is rescued by inhibiting integrin β1 or Grb7 binding to the EGFR. In addition, we determined that oocytes surrounded by their follicular cells expressing EGFR-Grb7 exhibit normal meiotic resumption. These oocytes are protected from abnormal meiotic spindle formation through the recruitment of O-GlcNAcylated Grb7, and OGT (O-GlcNAc transferase), the enzyme responsible for O-GlcNAcylation processes, in the integrin β1-EGFR complex. Folliculated oocytes can be forced to adopt an abnormal phenotype and exclusive Grb7 Y338 and Y188 phosphorylation instead of O-GlcNAcylation under integrin activation. Furthermore, an O-GlcNAcylation increase (by inhibition of O-GlcNAcase), the glycosidase that removes O-GlcNAc moieties, or decrease (by inhibition of OGT) amplifies oocyte spindle defects when follicular cells are absent highlighting a control of the meiotic spindle by the OGT-O-GlcNAcase duo. In summary, our study provides further insight into the role of the follicular cell layer in oocyte meiosis progression.
Collapse
Affiliation(s)
- Alain Martoriati
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Caroline Molinaro
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Guillaume Marchand
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Ingrid Fliniaux
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Matthieu Marin
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Jean-François Bodart
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yoshiko Takeda-Uchimura
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Tony Lefebvre
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Vanessa Dehennaut
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Katia Cailliau
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
| |
Collapse
|
2
|
Zhao W, Zhang Y, Jiang X, Cui C. Design, synthesis and evaluation of VEGF-siRNA/CRS as a novel vector for gene delivery. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3851-3865. [PMID: 27920500 PMCID: PMC5125806 DOI: 10.2147/dddt.s118461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Small interfering RNA (siRNA) delivery is a prospective method in gene therapy, but it has application limitations such as negative charge, water solubility and high molecular weight. In this study, a safe and efficient nano-vector, CRS, was designed and synthesized to facilitate siRNA delivery. Physical and chemical properties of VEGF-siRNA/CRS were characterized by methods including scanning electron microscopy (SEM), transmission electron microscopy, zeta potential (ζ) measurement, drug-releasing rate measurement, gel electrophoresis and confocal microscopy. The biological activities were evaluated using cell viability assay, gene-silencing efficacy assay in vitro, real-time polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA) and antitumor tests in vivo. The mean nanoparticle size of VEGF-siRNA/CRS was 121.4±0.3 nm with positive ζ potential of 7.69±4.47 mV. The release rate of VEGF-siRNA from VEGF-siRNA/CRS was 82.50% sustained for 48 h in Tris-ethylenediaminetetraacetic acid buffer (pH 8.0). Real-time polymerase chain reaction was used to analyze the efficiency of the transfection, and the result showed that VEGF mRNA expression had been knocked down by 82.36%. The expression of VEGF protein was also recorded to be downregulated to 14.83% using ELISA. The results of cytotoxicity measured by Cell Counting Kit-8 assay showed that VEGF-siRNA/CRS had significant inhibitory effect on HeLa cells. The results of antitumor assays indicated that VEGF-siRNA/CRS exhibited tumor cell growth inhibition in vivo. The results demonstrated that VEGF-siRNA could be delivered and transported by the designed carrier, while siRNA could be released constantly and led to an increasing gene-silencing effect against VEGF gene. In conclusion, VEGF-siRNA/CRS is a promising carrier for siRNA delivery, and further studies are warranted.
Collapse
Affiliation(s)
- Wen Zhao
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yifan Zhang
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Xueyun Jiang
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Chunying Cui
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Lindsay LA, Dowland SN, Murphy CR. Uterine focal adhesions are retained at implantation after rat ovarian hyperstimulation. Reproduction 2016; 152:753-763. [PMID: 27651522 DOI: 10.1530/rep-16-0331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/19/2016] [Indexed: 11/08/2022]
Abstract
Controlled ovarian hyperstimulation is an essential component of IVF techniques to ensure proliferation and development of multiple ovarian follicles, but the effects of these hormones on the endometrium are largely unknown. During normal pregnancy in rats, there are significant changes in the basal plasma membrane of uterine epithelial cells (UECs) at the time of receptivity, including loss of focal adhesions. This enables the UECs to be removed from the implantation chamber surrounding the blastocyst, thus allowing invasion into the underlying stroma. This study investigated the influence of ovarian hyperstimulation (OH) on the basal plasma membrane of UECs during early pregnancy in the rat. Immunofluorescence results demonstrate the presence of paxillin, talin, integrin β1 and phosphorylated FAK (Y397FAK) in the basal portion of UECs at the time of implantation in OH pregnancy. TEM analysis demonstrated a flattened basal lamina and the presence of focal adhesions on the basal surface at this time in OH pregnancy. Significantly low full-length paxillin, high paxillin δ and integrin β1 were seen at the time of implantation in OH compared with those in normal pregnancy. The increase in paxillin δ suggests that these cells are less mobile, whereas the increase in integrin β1 and Y397FAK suggests the retention of a stable FA complex. Taken together with the increase in morphological focal adhesions, this represents a cell type that is stable and less easily removed for blastocyst implantation. This may be one mechanism explaining lower implantation rates after fresh embryo transfers compared with frozen cycles.
Collapse
Affiliation(s)
- Laura A Lindsay
- School of Medical Sciences (Anatomy and Histology)The University of Sydney, Sydney, New South Wales, Australia
| | - Samson N Dowland
- School of Medical Sciences (Anatomy and Histology)The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher R Murphy
- School of Medical Sciences (Anatomy and Histology)The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Lin F, Huang CJ, Liu CS, Guo LL, Liu G, Liu HJ. Laminin-111 Inhibits Bovine Fertilization but Improves Embryonic Development in vitro, and Receptor Integrin-β1 is Involved in Sperm-Oocyte Binding. Reprod Domest Anim 2016; 51:638-48. [PMID: 27491353 DOI: 10.1111/rda.12716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 05/17/2016] [Indexed: 11/29/2022]
Abstract
This study detected the distribution of laminin during embryonic formation by immunofluorescence. To determine the possible function of laminin on developmental ability of in vitro fertilized embryos, the presumptive zygotes were divided and transferred to CR1aa medium supplemented with different concentrations (0 μg/ml, 5 μg/ml, 10 μg/ml and 20 μg/ml) of laminin. To explore the association with sperm-oocyte fusion, oocytes and/or sperm were pre-incubated with laminin or anti-β1 antibody before insemination. Laminin was absent in mature oocytes and could be detected first at the 8-cell stage and then displayed an increasing tendency. Adding 10 μg/ml laminin to the culture medium improved embryonic development including cleavage rate, blastocyst rate, total cell numbers in the blastocyst and cell numbers in the inner cell mass. Laminin inhibited sperm-oocyte fusion when incubated with oocytes and/or sperm before in vitro fertilization, and only integrin-β1 of sperm was involved in sperm-oocyte binding. Inhibition may be caused by blocking β1, but why laminin inhibits fertilization is still unknown. The results suggest that laminin plays an important role during embryonic formation and has a negative function in sperm-oocyte fusion, but improves embryonic development. However, only integrin-β1 is involved in sperm-oocyte binding.
Collapse
Affiliation(s)
- F Lin
- Tianjin Institute of Animal Sciences and Veterinary Medicine, Tianjin, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - C-J Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - C-S Liu
- National Animal Husbandry Service, Beijing, China
| | - L-L Guo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - G Liu
- National Animal Husbandry Service, Beijing, China
| | - H-J Liu
- Tianjin Institute of Animal Sciences and Veterinary Medicine, Tianjin, China.
| |
Collapse
|
5
|
Mouguelar VS, Coux G. Amphibian oocytes release heat shock protein A during spawning: evidence for a role in fertilization. Biol Reprod 2012; 87:33. [PMID: 22623622 DOI: 10.1095/biolreprod.112.100982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Heat shock proteins A (HSPAs, previously known as HSP70s) are widely distributed proteins originally linked with heat shock but now associated with several normal cellular functions. We recently found indirect evidence suggesting a role for HSPAs in sperm-oocyte interaction in the amphibian Bufo arenarum. In the present study our aim was to study its expression, subcellular distribution, and role during fertilization. By Western blot analysis using two different antibodies we detected HSPAs present in B. arenarum oocytes in the absence of any stress. We performed two-dimensional electrophoresis and detected two isoforms with isoelectric points of 5.25 and 5.45. We studied its subcellular distribution isolating total membranes, cytosol, and plasma membranes. HSPAs were present in all of these fractions. We confirmed these results by immunofluorescence microscopy and also found that the HSPA signal was present in the vitelline envelope. To further test this, we performed Western blot analysis in isolated vitelline envelopes and in egg water (diffusible material from deposited oocytes). HSPAs were present in these two fractions. Moreover, human recombinant his-tagged HSPA (HSPA1A) was able to specifically bind to sperm in vitro (midpiece) and enhance sperm membrane integrity. In vitro fertilization assays in the presence of anti-HSPA polyclonal antibodies showed diminished fertilization scores at low sperm concentrations (10(5) cells per milliliter). Our results suggest that HSPAs are present in intracellular and extracellular structures of nonstressed B. arenarum oocytes and participates in fertilization by and that their release during spawning plays a role in sperm membrane integrity.
Collapse
Affiliation(s)
- Valeria S Mouguelar
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Área Biología, Departamento de Ciencias Biológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | | |
Collapse
|