1
|
Liang W, Liu L, Chen D, Wang K, Lin S, Chen W, Li S, Deng B, Li Q, Han C. De Novo Assembly, Characterization and Comparative Transcriptome Analysis of the Mature Male and Female Gonads in Acrossocheilus parallens. Animals (Basel) 2025; 15:806. [PMID: 40150335 PMCID: PMC11939445 DOI: 10.3390/ani15060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Acrossocheilus parallens has become an important commercial aquaculture species in southern China due to its high nutritional content and ornamental value. However, at present, there is very little research on its gonad development and reproductive regulation, which has restricted the development of its aquaculture industry. In this research, the gonadal transcriptome sequencing data of female and male A. parallens were first analyzed and compared. A total of 67,251 unigenes were successfully assembled and a total of 34,069 unigenes were annotated. After the comparative transcriptome analysis, a sum of 14,514 differentially expressed genes (DEGs) were identified between the male and female gonads, with 9111 having significantly high expression in the testes and 5403 having high expression in the ovaries. Additionally, 82 DEGs related to reproduction, gonad development and differentiation in the gonads were identified and the differential expression profiles of partial genes were further validated using real-time fluorescence quantitative PCR. These results provide basic data for further research on the functions of the genes and pathways related to sex differentiation and gonad development in A. parallens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qiang Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (W.L.); (L.L.); (D.C.); (K.W.); (S.L.); (W.C.); (S.L.); (B.D.)
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (W.L.); (L.L.); (D.C.); (K.W.); (S.L.); (W.C.); (S.L.); (B.D.)
| |
Collapse
|
2
|
Yang G, Li S, Cai S, Zhou J, Ye Q, Zhang S, Chen F, Wang F, Zeng X. Dietary methionine supplementation during the estrous cycle improves follicular development and estrogen synthesis in rats. Food Funct 2024; 15:704-715. [PMID: 38109056 DOI: 10.1039/d3fo04106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The follicle is an important unit for the synthesis of steroid hormones and the oocyte development and maturation in mammals. However, the effect of methionine supply on follicle development and its regulatory mechanism are still unclear. In the present study, we found that dietary methionine supplementation during the estrous cycle significantly increased the number of embryo implantation sites, as well as serum contents of a variety of amino acids and methionine metabolic enzymes in rats. Additionally, methionine supplementation markedly enhanced the expression of rat ovarian neutral amino acid transporters, DNA methyltransferases (DNMTs), and cystathionine gamma-lyase (CSE); meanwhile, it significantly increased the ovarian concentrations of the metabolite S-adenosylmethionine (SAM) and glutathione (GSH). In vitro data showed that methionine supply promotes rat follicle development through enhancing the expression of critical gene growth differentiation factor 9 and bone morphogenetic protein 15. Furthermore, methionine enhanced the relative protein and mRNA expression of critical genes related to estrogen synthesis, ultimately increasing estrogen synthesis in primary ovarian granulosa cells. Taken together, our results suggested that methionine promoted follicular growth and estrogen synthesis in rats during the estrus cycle, which improved embryo implantation during early pregnancy. These findings provided a potential nutritional strategy to improve the reproductive performance of animals.
Collapse
Affiliation(s)
- Guangxin Yang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Junyan Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Qianhong Ye
- State Key Laboratory of Agricultural Microbiology, Hu Hubei Hongshan Laboratory. College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shihai Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fang Chen
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| |
Collapse
|
3
|
Swinerd GW, Alhussini AA, Sczelecki S, Heath D, Mueller TD, McNatty KP, Pitman JL. Molecular forms of BMP15 and GDF9 in mammalian species that differ in litter size. Sci Rep 2023; 13:22428. [PMID: 38104237 PMCID: PMC10725505 DOI: 10.1038/s41598-023-49852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Bone morphogenetic protein (BMP15) and growth differentiation factor (GDF9) are critical for ovarian follicular development and fertility and are associated with litter size in mammals. These proteins initially exist as pre-pro-mature proteins, that are subsequently cleaved into biologically active forms. Thus, the molecular forms of GDF9 and BMP15 may provide the key to understanding the differences in litter size determination in mammals. Herein, we compared GDF9 and BMP15 forms in mammals with high (pigs) and low to moderate (sheep) and low (red deer) ovulation-rate. In all species, oocyte lysates and secretions contained both promature and mature forms of BMP15 and GDF9. Whilst promature and mature GDF9 levels were similar between species, deer produced more BMP15 and exhibited, together with sheep, a higher promature:mature BMP15 ratio. N-linked glycosylation was prominant in proregion and mature GDF9 and in proregion BMP15 of pigs, and present in proregion GDF9 of sheep. There was no evidence of secreted native homo- or hetero-dimers although a GDF9 dimer in red deer oocyte lysate was detected. In summary, GDF9 appeared to be equally important in all species regardless of litter size, whilst BMP15 levels were highest in strict monovulatory species.
Collapse
Affiliation(s)
- Gene W Swinerd
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Abdulaziz A Alhussini
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sarah Sczelecki
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Derek Heath
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas D Mueller
- Department of Plant Physiology and Biophysics, Julius-Von-Sachs Institute of the University Würzburg, Würzburg, Germany
| | - Kenneth P McNatty
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
4
|
Activin B and Activin C Have Opposing Effects on Prostate Cancer Progression and Cell Growth. Cancers (Basel) 2022; 15:cancers15010147. [PMID: 36612143 PMCID: PMC9817897 DOI: 10.3390/cancers15010147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Current prognostic and diagnostic tests for prostate cancer are not able to accurately distinguish between aggressive and latent cancer. Members of the transforming growth factor-β (TGFB) family are known to be important in regulating prostate cell growth and some have been shown to be dysregulated in prostate cancer. Therefore, the aims of this study were to examine expression of TGFB family members in primary prostate tumour tissue and the phenotypic effect of activins on prostate cell growth. Tissue cores of prostate adenocarcinoma and normal prostate were immuno-stained and protein expression was compared between samples with different Gleason grades. The effect of exogenous treatment with, or overexpression of, activins on prostate cell line growth and migration was examined. Activin B expression was increased in cores containing higher Gleason patterns and overexpression of activin B inhibited growth of PNT1A cells but increased growth and migration of the metastatic PC3 cells compared to empty vector controls. In contrast, activin C expression decreased in higher Gleason grades and overexpression increased growth of PNT1A cells and decreased growth of PC3 cells. In conclusion, increased activin B and decreased activin C expression is associated with increasing prostate tumor grade and therefore have potential as prognostic markers of aggressive prostate cancer.
Collapse
|
5
|
Kaune H, Montiel JF, Fenwick M, Williams SA. Rapid ovarian transcript changes during the onset of premature ovarian insufficiency. REPRODUCTION AND FERTILITY 2022; 3:RAF-22-0036. [PMID: 35972313 PMCID: PMC9513667 DOI: 10.1530/raf-22-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
The manuscript has been submitted without altering abstract in line with Reproduction's Flexible Submission Process. The abstract is extended and thus does not fit this space.
Collapse
Affiliation(s)
- Heidy Kaune
- Laboratory of Reproduction, Centre for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, Santiago, Chile
- Program of Ethics and Public Policies in Human Reproduction, Universidad Diego Portales, Santiago, Chile
| | - Juan F Montiel
- Laboratory of Integrative Neuroscience, Centre for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, Santiago, Chile
| | - Mark Fenwick
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK
| | - Suzannah A Williams
- Nuffield Department of Women’s and Reproductive Health, Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Haas CS, Oliveira FC, Rovani MT, Ferst JG, Vargas SF, Vieira AD, Mondadori RG, Pegoraro LM, Gonçalves PB, Bordignon V, Ferreira R, Gasperin BG. Bone morphogenetic protein 15 intrafollicular injection inhibits ovulation in cattle. Theriogenology 2022; 182:148-154. [DOI: 10.1016/j.theriogenology.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
7
|
Choi H, Chun J, Park M, Kim S, Kim N, Lee HJ, Kim M, Shin HY, Oh YK, Kim YB. The Safe Baculovirus-Based PrM/E DNA Vaccine Protected Fetuses Against Zika Virus in A129 Mice. Vaccines (Basel) 2021; 9:vaccines9050438. [PMID: 33946611 PMCID: PMC8147223 DOI: 10.3390/vaccines9050438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
The Zika virus (ZIKV) is a mosquito-borne member of the Flaviviridae family of enveloped RNA viruses. The correlation between viral infection and fetal microcephaly was revealed in 2015, yet we still lack a vaccine against ZIKV. Here, we present a genetic vaccine that delivers the premembrane (prM) and envelope (E) genes of ZIKV using a recombinant baculovirus vector that expresses a human endogenous retrovirus (HERV) envelope on its surface to enhance gene delivery. We observed that baculoviruses with HERV envelopes (AcHERV) exhibited specifically higher gene transfer efficiency in human cells compared to the wild-type baculovirus vector. Using the AcHERV baculovirus vector, we constructed a recombinant baculovirus vaccine encoding ZIKV prM/E genes (AcHERV-ZIKV), which are major targets of neutralizing antibodies. Mice immunized twice with AcHERV-ZIKV exhibited high levels of IgG, neutralizing antibodies, and IFN-γ. In challenge tests in IFN knock-out mice (A129), AcHERV-ZIKV showed complete protection in both challenge and pregnancy tests. These results suggest that AcHERV-ZIKV could be a potential vaccine candidate for human application.
Collapse
Affiliation(s)
- Hanul Choi
- Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Korea;
| | - Jungmin Chun
- Center for Glocal Disease Control, KR BioTech, Seoul 05029, Korea;
| | - Mina Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea; (M.P.); (S.K.); (N.K.); (H.-J.L.); (M.K.); (H.Y.S.)
| | - Suyeon Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea; (M.P.); (S.K.); (N.K.); (H.-J.L.); (M.K.); (H.Y.S.)
| | - Nahyun Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea; (M.P.); (S.K.); (N.K.); (H.-J.L.); (M.K.); (H.Y.S.)
| | - Hee-Jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea; (M.P.); (S.K.); (N.K.); (H.-J.L.); (M.K.); (H.Y.S.)
| | - Minjee Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea; (M.P.); (S.K.); (N.K.); (H.-J.L.); (M.K.); (H.Y.S.)
| | - Ha Youn Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea; (M.P.); (S.K.); (N.K.); (H.-J.L.); (M.K.); (H.Y.S.)
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Korea;
| | - Young Bong Kim
- Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Korea;
- Center for Glocal Disease Control, KR BioTech, Seoul 05029, Korea;
- Correspondence: ; Tel.: +82-2-450-4208
| |
Collapse
|
8
|
Kleppe L, Edvardsen RB, Furmanek T, Andersson E, Skaftnesmo KO, Thyri Segafredo F, Wargelius A. Transcriptomic analysis of dead end knockout testis reveals germ cell and gonadal somatic factors in Atlantic salmon. BMC Genomics 2020; 21:99. [PMID: 32000659 PMCID: PMC6993523 DOI: 10.1186/s12864-020-6513-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Sustainability challenges are currently hampering an increase in salmon production. Using sterile salmon can solve problems with precocious puberty and genetic introgression from farmed escapees to wild populations. Recently sterile salmon was produced by knocking out the germ cell-specific dead end (dnd). Several approaches may be applied to inhibit Dnd function, including gene knockout, knockdown or immunization. Since it is challenging to develop a successful treatment against a gene product already existing in the body, alternative targets are being explored. Germ cells are surrounded by, and dependent on, gonadal somatic cells. Targeting genes essential for the survival of gonadal somatic cells may be good alternative targets for sterility treatments. Our aim was to identify and characterize novel germ cell and gonadal somatic factors in Atlantic salmon. Results We have for the first time analysed RNA-sequencing data from germ cell-free (GCF)/dnd knockout and wild type (WT) salmon testis and searched for genes preferentially expressed in either germ cells or gonadal somatic cells. To exclude genes with extra-gonadal expression, our dataset was merged with available multi-tissue transcriptome data. We identified 389 gonad specific genes, of which 194 were preferentially expressed within germ cells, and 11 were confined to gonadal somatic cells. Interestingly, 5 of the 11 gonadal somatic transcripts represented genes encoding secreted TGF-β factors; gsdf, inha, nodal and two bmp6-like genes, all representative vaccine targets. Of these, gsdf and inha had the highest transcript levels. Expression of gsdf and inha was further confirmed to be gonad specific, and their spatial expression was restricted to granulosa and Sertoli cells of the ovary and testis, respectively. Finally, we show that inha expression increases with puberty in both ovary and testis tissue, while gsdf expression does not change or decreases during puberty in ovary and testis tissue, respectively. Conclusions This study contributes with transcriptome data on salmon testis tissue with and without germ cells. We provide a list of novel and known germ cell- and gonad somatic specific transcripts, and show that the expression of two highly active gonadal somatic secreted TGF-β factors, gsdf and inha, are located within granulosa and Sertoli cells.
Collapse
Affiliation(s)
- Lene Kleppe
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.
| | | | - Tomasz Furmanek
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Eva Andersson
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Kai Ove Skaftnesmo
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | | | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| |
Collapse
|
9
|
Trus I, Udenze D, Berube N, Wheler C, Martel MJ, Gerdts V, Karniychuk U. CpG-Recoding in Zika Virus Genome Causes Host-Age-Dependent Attenuation of Infection With Protection Against Lethal Heterologous Challenge in Mice. Front Immunol 2020; 10:3077. [PMID: 32038625 PMCID: PMC6993062 DOI: 10.3389/fimmu.2019.03077] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Experimental increase of CpG dinucleotides in an RNA virus genome impairs infection providing a promising approach for vaccine development. While CpG recoding is an emerging and promising vaccine approach, little is known about infection phenotypes caused by recoded viruses in vivo. For example, infection phenotypes, immunogenicity, and protective efficacy induced by CpG-recoded viruses in different age groups were not studied yet. This is important, because attenuation of infection phenotypes caused by recoded viruses may depend on the population-based expression of cellular components targeting viral CpG dinucleotides. In the present study, we generated several Zika virus (ZIKV) variants with the increasing CpG content and compared infection in neonatal and adult mice. Increasing the CpG content caused host-age-dependent attenuation of infection with considerable attenuation in neonates and high attenuation in adults. Expression of the zinc-finger antiviral protein (ZAP)—the host protein targeting viral CpG dinucleotides—was also age-dependent. Similar to the wild-type virus, ZIKV variants with the increased CpG content evoked robust cellular and humoral immune responses and protection against lethal challenge. Collectively, the host age should be accounted for in future studies on mechanisms targeting viral CpG dinucleotides, development of safe dinucleotide recoding strategies, and applications of CpG-recoded vaccines.
Collapse
Affiliation(s)
- Ivan Trus
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Udenze
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nathalie Berube
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Colette Wheler
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Marie-Jocelyne Martel
- Department of Obstetrics and Gynecology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Yadav H, Lal B. Cellular localization and seasonal variation in BMP15 expression in ovary of the catfish Clarias batrachus and its role in ovarian steroidogenesis. Theriogenology 2019; 129:14-22. [DOI: 10.1016/j.theriogenology.2019.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
|
11
|
Lou Q, Li T, Wu P, Qiu C, Zhang G, Wang J. Polymorphism identification in GDF9 gene and its association analysis with reproduction traits in Jinghai Yellow chicken. Anim Biotechnol 2018; 30:332-341. [PMID: 30394177 DOI: 10.1080/10495398.2018.1516222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
GDF9 (growth differentiation factor 9) belongs to the transforming growth factor-β (TGF-β) superfamily and plays an irreplaceable role in female fertility. To reveal its genetic effects on productivity performance in chickens, 373 Jinghai Yellow chickens were chosen randomly to detect SNPs in GDF9 by PCR-SSCP and DNA sequencing methods. Eventually, four SNPs (g.2053G > A, g.2275T > C, g.2338C > T, g.2420T > C) in total had been detected. Amongst them, g.2420T > C was first found significantly associated with reproduction trait in chickens and heterozygous type C2T2 had higher average egg weight at 300 days of age (AEWD300) than T2T2 (p < 0.01). Least squares analysis showed that age at first laying (AFE) of H1 and H1H1 chickens were significantly earlier than that of H7 and H7H7 ones, respectively (p < 0.05). H1H5 hens showed higher AEWD300 than H4H7 ones (p < 0.05). For total egg number at 300 days of age (END300), mean of H5H5 was significantly higher than that of H4H4 (p < 0.05). Hence, the study suggested that hybrid vigor at g.2420T > C could be utilized in practice. H1H1, H1H5 and H5H5 could be the dominant diplotypes for chicken breeding. The study may contribute to the breeding progress of productive chickens and supply reference for oviparous animal production practice.
Collapse
Affiliation(s)
- Qiuhong Lou
- College of Animal Science and Technology, Yangzhou University , Yangzhou , Jiangsu , China
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University , Yangzhou , Jiangsu , China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University , Yangzhou , Jiangsu , China
| | - Cong Qiu
- Jiangsu Jinghai Poultry Group Co., Ltd. , Nantong , Jiangsu , China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University , Yangzhou , Jiangsu , China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University , Yangzhou , Jiangsu , China
| |
Collapse
|
12
|
Juengel JL. How the quest to improve sheep reproduction provided insight into oocyte control of follicular development. J R Soc N Z 2018. [DOI: 10.1080/03036758.2017.1421238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jennifer L. Juengel
- Reproduction, Animal Science, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
| |
Collapse
|
13
|
Yadav H, Lal B. BMP15 in catfish testis: Cellular distribution, seasonal variation, and its role in steroidogenesis. Steroids 2017; 125:114-123. [PMID: 28711705 DOI: 10.1016/j.steroids.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022]
Abstract
Considering the absence of information on testicular growth factors in fishes, present study was aimed to elucidate the existence of BMP15, an important member of TGF-β superfamily, in the testis of a seasonally breeding freshwater catfish, Clarias batrachus and its role in regulation of testicular activities. The study demonstrated the expression of BMP15 in the somatic cells (Sertoli and interstitial cells) in fish testis. The expression varied with changing testicular activity; the expression was very high in the quiescent and early recrudescing testis coinciding with the renewal of spermatogonial cells. Expression then declined gradually with progression of spermatogenesis and steroidogenesis. Expression of BMP15 showed positive correlation with seasonally changing testicular 17β-estradiol but negatively with testicular testosterone and 11-ketotestosterone. In vitro treatment of testis with recombinant human BMP15 enhanced the production of estradiol-17β but concurrently suppressed the production of testosterone and 11-ketotestosterone in testis. Though BMP15 did not alter the expression of StAR protein in the testis, it promoted the expression of 3β-hydroxysteroid dehydrogenase and aromatase in fish testis. Thus the present study for the first time demonstrates that fish testis is capable of producing BMP15 and is expressed by the somatic cells unlike mammals wherein it is produced exclusively by germ cells. Study also suggests that BMP15 may modulate the testicular steroidogenesis by altering the expression of steroidogenic enzymes. BMP15 also appears to play crucial role in renewal of spermatogial cells by augmenting the testicular production of 17β-estradiol.
Collapse
Affiliation(s)
- Himanshu Yadav
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bechan Lal
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
14
|
Heath DA, Pitman JL, McNatty KP. Molecular forms of ruminant BMP15 and GDF9 and putative interactions with receptors. Reproduction 2017; 154:521-534. [PMID: 28733348 DOI: 10.1530/rep-17-0188] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
Bone morphogenetic factor 15 (BMP15) and growth differentiation factor 9 (GDF9) are oocyte-secreted factors with demonstrable effects on ovarian follicular development and ovulation rate. However, the molecular forms of BMP15 and GDF9 produced by oocytes remain unclear. The aims herein, using Western blotting (WB) procedures with specific monoclonal antibodies (mabs), were to identify the molecular forms of BMP15 and GDF9 synthesised and secreted by isolated ovine (o) and bovine (b) oocytes in vitro The mabs were known to recognise the biological forms of BMP15 or GDF9 since they had previously been shown to inhibit their bioactivities in vitro and in vivo Using recombinant variants of oBMP15 and oGDF9, including a cysteine mutant form of oBMP15 (S356C) and a human (h) BMP15:GDF9 heterodimer (cumulin), it was established that the mabs were able to identify monomeric, dimeric, promature and higher-molecular-weight forms of BMP15 and GDF9 and cumulin (GDF9 mab only). After using non-reducing, reducing and reducing + cross-linking conditions, the major oocyte-secreted forms of o and b BMP15 and GDF9 were the cleaved and uncleaved monomeric forms of the promature proteins. There was no evidence for dimeric or heterodimeric forms of either mature BMP15 or GDF9. From in silico modelling studies using transforming growth factor beta (TGFB), activin or BMP crystal templates, and both present and previously published data, a model is proposed to illustrate how the monomeric forms of BMP15 and GDF9 may interact with their type II and type I cell-surface receptors to initiate the synergistic actions of these growth factors.
Collapse
Affiliation(s)
- Derek A Heath
- School of Biological SciencesVictoria University of Wellington, Wellington, New Zealand
| | - Janet L Pitman
- School of Biological SciencesVictoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
15
|
BMP-15 m-RNA expression of mouse oocytes in vitro maturation in different droplet medium volume. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2015. [DOI: 10.1016/j.apjr.2015.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Abstract
The bone morphogenetic protein (BMP) family consists of several growth factor proteins that belong to the transforming growth factor-β (TGF-β) superfamily. BMPs bind to type I and type II serine-threonine kinase receptors, and transduce signals through the Smad signalling pathway. BMPs have been identified in mammalian ovaries, and functional studies have shown that they are involved in the regulation of oogenesis and folliculogenesis. This review summarizes the role of the BMP system during formation, growth and maturation of ovarian follicles in mammals.
Collapse
|
17
|
Mester B, Ritter LJ, Pitman JL, Bibby AH, Gilchrist RB, McNatty KP, Juengel JL, McIntosh CJ. Oocyte expression, secretion and somatic cell interaction of mouse bone morphogenetic protein 15 during the peri-ovulatory period. Reprod Fertil Dev 2015; 27:801-11. [DOI: 10.1071/rd13336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/23/2014] [Indexed: 12/16/2022] Open
Abstract
Bone morphogenetic protein 15 (BMP15) is a key intraovarian growth factor regulating mammalian fertility, yet expression and localisation of different BMP15 protein forms within ovarian follicles around the time of the preovulatory LH surge remains unclear. Using immunoblotting and immunocytochemistry, the present study identified that post-translationally processed BMP15 proregion and mature proteins are increasingly expressed and localised with cumulus and granulosa cells from mice treated with pregnant mare’s serum gonadotropin (PMSG) + human chorionic gonadotrophin (hCG). However, this increased expression was absent in cumulus–oocyte complexes matured in vitro. Pull-down assays further revealed that the recombinant BMP15 proregion is capable of specific interaction with isolated granulosa cells. To verify an oocyte, and not somatic cell, origin of Bmp15 mRNA and coregulated growth differentiation factor 9 (Gdf9), in situ hybridisation and quantitative polymerase chain reaction results confirmed the exclusive oocyte localisation of Bmp15 and Gdf9, regardless of treatment or assay method. Relative oocyte expression levels of Bmp15 and Gdf9 decreased significantly after PMSG + hCG treatment; nevertheless, throughout all treatments, the Bmp15 : Gdf9 mRNA expression ratio remained unchanged. Together, these data provide evidence that the preovulatory LH surge leads to upregulation of several forms of BMP15 protein secreted by the oocyte for putative sequestration and/or interaction with ovarian follicular somatic cells.
Collapse
|
18
|
Grasa P, Ploutarchou P, Williams SA. Oocytes lacking O-glycans alter follicle development and increase fertility by increasing follicle FSH sensitivity, decreasing apoptosis, and modifying GDF9:BMP15 expression. FASEB J 2014; 29:525-39. [PMID: 25416550 DOI: 10.1096/fj.14-253757] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The number of eggs ovulated varies within and between species and is influenced by many variables. However, the regulatory mechanisms remain poorly understood. We previously demonstrated a key role for the oocyte because mice generating oocytes deficient in core 1-derived O-glycans ovulate ∼40-50% more eggs than Controls. Here we analyze the basis of this phenotype using Mutant [core 1 β1,3-galactosyltransferase 1 (C1galt1)(FF):zona pellucida glycoprotein 3 Cre (ZP3Cre)] and Control (C1galt1(FF)) female mice. In culture, Mutant follicles exhibited delayed antrum formation [indicative of follicle stimulant hormone (FSH) dependence] and increased sensitivity to FSH. Although the Mutant estrous cycle was extended, comprehensive endocrine changes were not observed; rather FSH, LH, inhibin B, and anti-Mullerian hormone were temporally altered, revealing estrous cycle stage-specific modifications to the hypothalamic-pituitary-gonadal axis. At proestrus, when FSH levels were decreased in Mutants, ovaries contained more, smaller, preantral follicles. Mutant follicles exhibited reduced levels of apoptosis, and both B-cell lymphoma 2 (Bcl-2) and BCL-2-associated X protein (Bax) were altered compared with Controls. Mutant ovaries also had an increase in the expression ratio of growth differentiation factor 9 (GDF9):bone morphogenetic protein 15 (BMP15) at diestrus. On the basis of these data, we propose that modified oocyte glycoproteins alter GDF9:BMP15 expression modifying follicle development resulting in the generation of more follicles. Thus, the oocyte is a key regulator of follicle development and has a crucial role in determining ovulation rate.
Collapse
Affiliation(s)
- Patricia Grasa
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Panayiota Ploutarchou
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Suzannah A Williams
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
19
|
Persani L, Rossetti R, Di Pasquale E, Cacciatore C, Fabre S. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum Reprod Update 2014; 20:869-83. [PMID: 24980253 DOI: 10.1093/humupd/dmu036] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A large number of studies have contributed to understanding the general mechanisms driving ovarian folliculogenesis in humans and show a complex endocrine dialog between the central nervous system, the pituitary and the ovary, integrated by various intraovarian paracrine messages. The role of intraovarian paracrine regulation has acquired more relevance in the recent years owing to the discovery of previously unknown factors, such as the oocyte-derived bone morphogenetic protein (BMP)15. METHODS A thorough literature search was carried out in order to summarize what has been reported so far on the role of BMP15, and the BMP15 paralog, growth and differentiation factor 9 (GDF9), in ovarian function and female fertility. Research articles published in English until March 2014 were included. RESULTS The biological actions of BMP15 include: (i) the promotion of follicle growth and maturation starting from the primary gonadotrophin-independent phases of folliculogenesis; (ii) the regulation of follicular granulosa cell (GC) sensitivity to FSH action and the determination of ovulation quota; (iii) the prevention of GC apoptosis and (iv) the promotion of oocyte developmental competence. The existence of biologically active heterodimers with GDF9, and/or the synergistic co-operation of BMP15 and GDF9 homodimers are indeed relevant in this context. Experimental disruption of the bmp15 gene in mice resulted in a mild fertility defect limited to females, whereas natural missense mutations in ewes cause variable phenotypes (ranging from hyperprolificacy to complete sterility) depending on a fine gene dosage mechanism also involving GDF9. Strong evidence supports the concept that such a mechanism plays an important role in the regulation of ovulation rate across mammalian and non-mammalian species. Following the discovery of sheep fecundity genes, several research groups have focused on alterations in human BMP15 associated with primary ovarian insufficiency (POI) or polycystic ovary syndrome. Several variants of BMP15 are significantly associated with POI supporting their pathogenic role, but the underlying biological mechanism is still under investigation and of great interest in medicine. BMP15 maps to the Xp locus involved in the determination of the ovarian defect in Turner syndrome and significantly contributes to the determination of ovarian reserve. Pioneering studies in women undergoing controlled ovarian stimulation indicate that BMP15 may represent a marker of ovarian response or oocyte quality. CONCLUSIONS BMP15, an oocyte-derived growth and differentiation factor, is a critical regulator of folliculogenesis and GC activities. Variations in BMP15 gene dosage have a relevant influence on ovarian function and can account for several defects of female fertility. The modulation of BMP15 action may have interesting pharmacological perspectives and the analysis of BMP15 may become a useful marker in IVF procedures. Recent outcomes indicate that the close interactions of BMP15/GDF9 have a critical biological impact that should be taken into account in future studies.
Collapse
Affiliation(s)
- Luca Persani
- Department of Clinical Sciences & Community Health, University of Milan, 20100 Milan, Italy Laboratory of Endocrine & Metabolic Research and Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy
| | - Raffaella Rossetti
- Department of Clinical Sciences & Community Health, University of Milan, 20100 Milan, Italy
| | - Elisa Di Pasquale
- Institute of Genetic and Biomedical Research - UOS of Milan, National Research Council (CNR) and Istituto Clinico Humanitas, Via Manzoni 59, Rozzano, 20089 Milan, Italy
| | - Chiara Cacciatore
- Department of Clinical Sciences & Community Health, University of Milan, 20100 Milan, Italy Laboratory of Endocrine & Metabolic Research and Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy
| | - Stéphane Fabre
- INRA, Université de Toulouse INPT, UMR1388, Génétique, Physiologie et Systèmes D'Elevage, F-31326 Castanet-Tolosan, France
| |
Collapse
|
20
|
Sudiman J, Ritter LJ, Feil DK, Wang X, Chan K, Mottershead DG, Robertson DM, Thompson JG, Gilchrist RB. Effects of differing oocyte-secreted factors during mouse in vitro maturation on subsequent embryo and fetal development. J Assist Reprod Genet 2014; 31:295-306. [PMID: 24408183 DOI: 10.1007/s10815-013-0152-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/05/2013] [Indexed: 11/27/2022] Open
Abstract
PURPOSE We hypothesised that varying native oocyte-secreted factor (OSF) exposure or using different recombinant OSF peptides would have differential effects on post-in vitro maturation (IVM) embryo and fetal development. METHODS Mouse cumulus oocyte complexes (COCs) were treated with the purified mature domain of GDF9 and/or BMP15 or were co-cultured with denuded oocytes (DOs) from 0 h or 3 h of IVM. DOs were matured for 3 h as either intact COCs+/-FSH before denuding, or as DOs + FSH. COCs were fertilised and blastocyst development was assessed on days 5 and 6, and either differentially stained for ICM numbers or vitrified/warmed embryos were transferred to recipients to assess implantation and fetal rates. RESULTS No improvement in embryo development was observed with the addition of GDF9 and/or BMP15 to IVM. In contrast, embryos derived from COCs co-cultured with DOs had significantly improved blastocyst rates and ICM numbers compared to controls (P < 0.05). The highest response was obtained when DOs were first added to COCs at 3 h of IVM, after being pre-treated (0-3 h) as COCs + FSH. Compared to control, co-culture with DOs from 3 h did not affect implantation rates but more than doubled fetal yield (21% vs 48%; P < 0.05). GDF9 Western blot analysis was unable to detect any differences in quantity or form of GDF9 (17 and 65 kDa) in extracts of DO at 0 h or 3 h. CONCLUSIONS This study provides new knowledge on means to improve oocyte quality in vitro which has the potential to significantly aid human infertility treatment and animal embryo production technologies.
Collapse
Affiliation(s)
- J Sudiman
- Robinson Institute, Research Centre for Reproductive Health, and School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Field SL, Dasgupta T, Cummings M, Orsi NM. Cytokines in ovarian folliculogenesis, oocyte maturation and luteinisation. Mol Reprod Dev 2013; 81:284-314. [DOI: 10.1002/mrd.22285] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/18/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Sarah L Field
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| | - Tathagata Dasgupta
- Department of Systems Biology; Harvard Medical School; 200 Longwood Avenue Boston Massachusetts
| | - Michele Cummings
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| | - Nicolas M. Orsi
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| |
Collapse
|
22
|
Juengel JL, Davis GH, McNatty KP. Using sheep lines with mutations in single genes to better understand ovarian function. Reproduction 2013; 146:R111-23. [DOI: 10.1530/rep-12-0509] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Livestock populations have been subjected to strong selection pressure to improve reproductive success, and this has led to the identification of lines of animals with increased fecundity. These animals provide a rich biological resource for discovery of genes and regulatory mechanisms that underpin improved reproductive success. To date, three genes, all related to the transforming growth factor β pathway, have been identified as having mutations that lead to alterations in ovulation in sheep. In addition, several other sheep lines have been identified with putative mutations in single genes with major effects on ovulation rate. This review is focused on the identification of the mutations affecting ovulation rate and how these discoveries have provided new insights into control of ovarian function.
Collapse
|
23
|
Qiu P, Bai Y, Pan S, Li W, Liu W, Hua J. Gender depended potentiality of differentiation of human umbilical cord mesenchymal stem cells into oocyte-Like cells in vitro. Cell Biochem Funct 2013; 31:365-73. [DOI: 10.1002/cbf.2981] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Pubin Qiu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling; Shaanxi; China
| | - Yaofu Bai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling; Shaanxi; China
| | - Shaohui Pan
- North Branch Bio-Technology Co.; Ltd of Anhui Province; Wuhu; Anhui; China
| | - Wei Li
- North Branch Bio-Technology Co.; Ltd of Anhui Province; Wuhu; Anhui; China
| | - Weishuai Liu
- Yangling Demonstration Zone Hospital Pathology Department; Yangling; China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling; Shaanxi; China
| |
Collapse
|
24
|
Lin JY, Pitman-Crawford JL, Bibby AH, Hudson NL, McIntosh CJ, Juengel JL, McNatty KP. Effects of species differences on oocyte regulation of granulosa cell function. Reproduction 2012; 144:557-67. [DOI: 10.1530/rep-12-0267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aims were to investigate whether oocyte-secreted growth factors from a high (i.e. rat) and low (i.e. sheep) ovulation rate species could stimulate 3H-thymidine incorporation in granulosa cells (GC) from antral follicles from the same or across species. Denuded oocytes (DO) were co-incubated with GC with or without specific antibodies to growth differentiating factor 9 (GDF9) or bone morphogenetic protein 15 (BMP15). Co-incubations of DO-GC from the same or across species significantly increased thymidine incorporation in GC with increasing numbers of DO. GDF9 immuno-neutralisation reduced thymidine incorporation in rat GC co-incubated with either rat or ovine DO and in ovine GC co-incubated with ovine or rat DO. BMP15 immuno-neutralisation only reduced thymidine incorporation when ovine DO were co-incubated with either ovine or rat GC. Western blotting of oocytes co-incubated with GC identified GDF9 and BMP15 proteins for sheep and GDF9 protein for rats in oocyte lysates and incubation media. With respect to rat BMP15, a promature protein was identified in the oocyte lysate but not in media. Expression levels of GDF9 relative to BMP15 mRNA in DO co-incubated with GC were highly correlated (R
2=0.99) within both species. However, the expression ratios were markedly different for the rat and sheep (4.3 vs 1.0 respectively). We conclude that during follicular development, rat oocytes secrete little, if any, BMP15 and that GDF9 without BMP15 can stimulate proliferation of rat and ovine GC. In contrast, ovine oocytes secrete both BMP15 and GDF9, and both were found to stimulate proliferation in ovine and rat GC.
Collapse
|
25
|
Li C, Yang X, He Y, Ye G, Li X, Zhang X, Zhou L, Deng F. Bone morphogenetic protein-9 induces osteogenic differentiation of rat dental follicle stem cells in P38 and ERK1/2 MAPK dependent manner. Int J Med Sci 2012; 9:862-71. [PMID: 23155360 PMCID: PMC3498751 DOI: 10.7150/ijms.5027] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/17/2012] [Indexed: 11/28/2022] Open
Abstract
Dental follicle stem cells are a group of cells possessing osteogenic, adipogenetic and neurogenic differentiations, but the specific mechanism underlying the multilineage differentiation remains still unclear. Great attention has been paid to bone morphogenetic protein-9 (BMP-9) due to its potent osteogenic activity. In the present study, rat dental follicle stem cells were isolated and purified, and cells of passage 3 underwent adenovirus mediated BMP-9 gene transfection to prepare dental follicle stem cells with stable BMP-9 expression. Detection of alkaline phosphatase (ALP) and calcium deposition showed dental follicle stem cells transfected with BMP-9 gene could significantly promote the osteogenesis. In addition, SB203580 and PD98059 were employed to block the p38 mitogen-activated protein kinase (p38MAPK) and extracellular signal-regulated kinase (ERK1/2), respectively. Detection of ALP and calcium deposition revealed the BMP-9 induced osteogenic differentiation of dental follicle stem cells depended on MAPK signaling pathway.
Collapse
Affiliation(s)
- Conghua Li
- Department of Stomatology, Research Center for Oral Diseases and Biomedicine in Chongqing, Affiliated Stomatological Hospital, Chongqing Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|