1
|
Xing X, Peng J, Zhao J, Shi R, Wang C, Zhang Z, Wang Z, Li Z, Wu Z. Luteolin regulates the distribution and function of organelles by controlling SIRT1 activity during postovulatory oocyte aging. Front Nutr 2023; 10:1192758. [PMID: 37583461 PMCID: PMC10424794 DOI: 10.3389/fnut.2023.1192758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/04/2023] [Indexed: 08/17/2023] Open
Abstract
The quality of oocytes determines their development competence, which will be rapidly lost if the oocytes are not fertilized at the proper time after ovulation. SIRT1, one of the sirtuin family members, has been proven to protect the quality of oocytes during postovulatory oocyte aging. However, evidence of the effect of SIRT1 on the activity of organelles including the mitochondria, the endoplasmic reticulum (ER), the Golgi apparatus, and the lysosomes in postovulatory aging oocyte is lacking. In this study, we investigated the distribution and function of organelles in postovulatory aged oocytes and discovered abnormalities. Luteolin, which is a natural flavonoid contained in vegetables and fruits, is an activator of SIRT1. When the oocytes were treated with luteolin, the abnormal distribution of mitochondria, ER, and Golgi complex were restored during postovulatory oocyte aging. The ER stress protein GRP78 and the lysosome protein LAMP1 increased, while the mitochondrial membrane potential and the Golgi complex protein GOLPH3 decreased in aged oocytes, and these were restored by luteolin treatment. EX-527, an inhibitor of SIRT1, disrupted the luteolin-mediated normal distribution and function of mitochondria, ER, Golgi apparatus, and lysosomes. In conclusion, we demonstrate that luteolin regulates the distribution and function of mitochondria, ER, Golgi apparatus, and lysosomes during postovulatory oocyte aging by activating SIRT1.
Collapse
Affiliation(s)
- Xupeng Xing
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingfeng Peng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingyu Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Ruoxi Shi
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zihan Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zihan Wang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Takahashi N, Franciosi F, Daldello EM, Luong XG, Althoff P, Wang X, Conti M. CPEB1-dependent disruption of the mRNA translation program in oocytes during maternal aging. Nat Commun 2023; 14:416. [PMID: 36697412 PMCID: PMC9877008 DOI: 10.1038/s41467-023-35994-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
The molecular causes of deteriorating oocyte quality during aging are poorly defined. Since oocyte developmental competence relies on post-transcriptional regulations, we tested whether defective mRNA translation contributes to this decline in quality. Disruption in ribosome loading on maternal transcripts is present in old oocytes. Using a candidate approach, we detect altered translation of 3'-UTR-reporters and altered poly(A) length of the endogenous mRNAs. mRNA polyadenylation depends on the cytoplasmic polyadenylation binding protein 1 (CPEB1). Cpeb1 mRNA translation and protein levels are decreased in old oocytes. This decrease causes de-repression of Ccnb1 translation in quiescent oocytes, premature CDK1 activation, and accelerated reentry into meiosis. De-repression of Ccnb1 is corrected by Cpeb1 mRNA injection in old oocytes. Oocyte-specific Cpeb1 haploinsufficiency in young oocytes recapitulates all the translation phenotypes of old oocytes. These findings demonstrate that a dysfunction in the oocyte translation program is associated with the decline in oocyte quality during aging.
Collapse
Affiliation(s)
- Nozomi Takahashi
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Federica Franciosi
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,Reproductive and Developmental Biology Lab, Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 20133, Milan, Italy
| | - Enrico Maria Daldello
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Xuan G Luong
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Peter Althoff
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Xiaotian Wang
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA. .,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA. .,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
3
|
Molecular Cloning of Dynein Heavy Chain and the Effect of Dynein Inhibition on the Testicular Function of Portunus trituberculatus. Animals (Basel) 2021; 11:ani11123582. [PMID: 34944356 PMCID: PMC8697902 DOI: 10.3390/ani11123582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Portunus trituberculatus is a very important marine economic species. The study of its reproductive biology can provide a theoretical basis for its breeding. Dynein is a member of the motor protein family. It plays an important role in various life activities, such as cell division and intracellular material transport. In order to study the role of dynein in the testis of Portunus trituberculatus, we cloned the heavy chain of dynein and used the dynein inhibitor sodium orthovanadate to make the dynein lose its function. By detecting the localization of dynein, as well as the detection of various apoptosis indexes, antioxidant stress indexes and immune indexes, this study proved that dynein is essential in testis. Abstract Dynein is a motor protein with multiple transport functions. However, dynein’s role in crustacean testis is still unknown. We cloned the full-length cDNA of cytoplasmic dynein heavy chain (Pt-dhc) gene and its structure was analyzed. Its expression level was highest in testis. We injected the dynein inhibitor sodium orthovanadate (SOV) into the crab. The distribution of Portunus trituberculatus dynein heavy chain (Pt-DHC) in mature sperm was detected by immunofluorescence. The apoptosis of spermatids was detected using a TUNEL kit; gene expression in testis was detected by fluorescence quantitative PCR (qPCR). The expression of immune-related factors in the testis were detected by an enzyme activity kit. The results showed that the distribution of Pt-DHC was abnormal after SOV injection, indicating that the function of dynein was successfully inhibited. Apoptosis-related genes p53 and caspase-3, and antioxidant stress genes HSP70 and NOS were significantly decreased, and anti-apoptosis gene bcl-2 was significantly increased. The activities of superoxide dismutase (SOD) and alkaline phosphatase (AKP) were significantly decreased. The results showed that there was no apoptosis in testicular cells after dynein function was inhibited, but the cell function was disordered. This study laid a theoretical foundation for the further study of apoptosis in testis and the function of dynein in testis and breeding of P. trituberculatus.
Collapse
|
4
|
Zou YJ, Shan MM, Pan ZN, Pan MH, Li XH, Sun SC. Loss of Arf Guanine Nucleotide Exchange Factor GBF1 Activity Disturbs Organelle Dynamics in Mouse Oocytes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:400-408. [PMID: 33478608 DOI: 10.1017/s1431927620024885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
GBF1 [Golgi brefeldin A (BFA) resistance factor 1] is a member of the guanine nucleotide exchange factors Arf family. GBF1 localizes at the cis-Golgi and endoplasmic reticulum (ER)-Golgi intermediate compartment where it participates in ER-Golgi traffic by assisting in the recruitment of the coat protein COPI. However, the roles of GBF1 in oocyte meiotic maturation are still unknown. In the present study, we investigated the regulatory functions of GBF1 in mouse oocyte organelle dynamics. In our results, GBF1 was stably expressed during oocyte maturation, and GBF1 localized at the spindle periphery during metaphase I. Inhibiting GBF1 activity led to aberrant accumulation of the Golgi apparatus around the spindle. This may be due to the effects of GBF1 on the localization of GM130, as GBF1 co-localized with GM130 and inhibiting GBF1 induced condensation of GM130. Moreover, the loss of GBF1 activity affected the ER distribution and induced ER stress, as shown by increased GRP78 expression. Mitochondrial localization and functions were affected, as the mitochondrial membrane potential was altered. Taken together, these results suggest that GBF1 has wide-ranging effects on the distribution and functions of Golgi apparatus, ER, and mitochondria as well as normal polar body formation in mouse oocytes.
Collapse
Affiliation(s)
- Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
5
|
Jiang Y, Liu Y, Han F, Zhou J, Zhang X, Xu J, Yu Z, Zhao S, Gao F, Zhao H. Loss of GM130 does not impair oocyte meiosis and embryo development in mice. Biochem Biophys Res Commun 2020; 532:336-340. [PMID: 32873390 DOI: 10.1016/j.bbrc.2020.08.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 01/23/2023]
Abstract
Golgi matrix protein 130 (GM130), encoded by GOLGA2, is the classical marker of the Golgi apparatus. It plays important roles in various mitotic events, such as interacting with importin-alpha and liberating spindle assembly factor TPX2 to regulate mitotic spindle formation. A previous study showed that in vitro knockdown of GM130 could regulate the meiotic spindle pole assembly. In the current study, we found that knockout (KO) mice progressively died, had a small body size and were completely infertile. Furthermore, we constructed an oocyte-specific GM130 knockout mouse model (GM130-ooKO) driven by Gdf9-Cre. Through breeding assays, we found that the GM130-ooKO mice showed similar fecundity as control mice. During superovulation assays, the KO and GM130-ooKO mice had comparable numbers of ovulated eggs, oocyte maturation rates and normal polar bodies, similar to the control groups. Thus, this study indicated that deletion of GM130 might have a limited impact on the maturation and morphology of oocytes. This might due to more than one golgin sharing the same function, with others compensating for the loss of GM130.
Collapse
Affiliation(s)
- Yonghui Jiang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Yue Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Han
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, 100101, China
| | - Jingjing Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, 100101, China
| | - Xinze Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Junting Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Zhiheng Yu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, 100101, China.
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
6
|
Yu BY, Subudeng G, Du CG, Liu ZH, Zhao YF, Namei E, Bai Y, Yang BX, Li HJ. Plasminogen activator, tissue type regulates germinal vesicle breakdown and cumulus expansion of bovine cumulus-oocyte complex in vitro†. Biol Reprod 2020; 100:1473-1481. [PMID: 30939202 DOI: 10.1093/biolre/ioz049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/02/2019] [Accepted: 03/30/2019] [Indexed: 12/13/2022] Open
Abstract
Plasminogen activator, tissue type (PLAT) and its inhibitor serpin family E member 1 (SERPINE1) cooperatively regulate PLAT activity in various reproductive processes. However, it is unknown whether this includes bovine oocyte maturation. We addressed this question in the present study by evaluating PLAT and SERPINE1 protein localization in immature cumulus-oocyte complexes (COCs), as well as PLAT mRNA and protein expression in cultured COCs after 0, 8, 16, and 24 h of in vitro maturation (IVM). We also examined the effects of PLAT and SERPINE1 on germinal vesicle breakdown (GVBD) and oocyte cyclic 3' 5' adenosine monophosphate (cAMP) levels, cumulus expansion index, and expansion-related gene expression in oocytes derived from bovine COCs cultured for 4, 8, and 12 h and in COCs cultured for 16 h. Both PLAT and SERPINE1 localized in cumulus cells but only the latter was detected in oocytes. PLAT and SERPINE1 transcript levels increased during IVM; however, from 8 to 16 h, the levels of PLAT remained stable whereas those of SERPINE1 increased, resulting in a decline in PLAT concentration. Additionally, PLAT delayed GVBD, increased oocyte cAMP levels, and blocked cumulus expansion and associated gene expression, which was reversed by SERPINE1 supplemented. Thus, PLAT delays bovine oocyte GVBD by enhancing oocyte cAMP levels during the first 8 h of IVM; suppression of PLAT activity via accumulation of SERPINE1 in COCs results in cumulus expansion from 8 to 16 h of IVM. These findings provide novel insights into the molecular mechanisms underlying in vitro bovine oocyte maturation.
Collapse
Affiliation(s)
- Bo-Yang Yu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.,Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Gerile Subudeng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chen-Guang Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhi-Hong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Fen Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Erge Namei
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yue Bai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Bing-Xue Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Hai-Jun Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
7
|
Fontana J, Martínková S, Petr J, Žalmanová T, Trnka J. Metabolic cooperation in the ovarian follicle. Physiol Res 2019; 69:33-48. [PMID: 31854191 DOI: 10.33549/physiolres.934233] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Granulosa cells (GCs) are somatic cells essential for establishing and maintaining bi-directional communication with the oocytes. This connection has a profound importance for the delivery of energy substrates, structural components and ions to the maturing oocyte through gap junctions. Cumulus cells, group of closely associated GCs, surround the oocyte and can diminished the effect of harmful environmental insults. Both GCs and oocytes prefer different energy substrates in their cellular metabolism: GCs are more glycolytic, whereas oocytes rely more on oxidative phosphorylation pathway. The interconnection of these cells is emphasized by the fact that GCs supply oocytes with intermediates produced in glycolysis. The number of GCs surrounding the oocyte and their age affect the energy status of oocytes. This review summarises available studies collaboration of cellular types in the ovarian follicle from the point of view of energy metabolism, signaling and protection of toxic insults. A deeper knowledge of the underlying mechanisms is crucial for better methods to prevent and treat infertility and to improve the technology of in vitro fertilization.
Collapse
Affiliation(s)
- J Fontana
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
8
|
Dadarwal D, Adams GP, Hyttel P, Brogliatti GM, Caldwell S, Singh J. Organelle reorganization in bovine oocytes during dominant follicle growth and regression. Reprod Biol Endocrinol 2015; 13:124. [PMID: 26577904 PMCID: PMC4650271 DOI: 10.1186/s12958-015-0122-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We tested the hypothesis that organelles in bovine oocytes undergo changes in number and spatial distribution in a manner specific for phase of follicle development. METHODS Cumulus-oocyte-complexes were collected from Hereford heifers by ultrasound-guided follicle aspiration from dominant follicles in the growing phase (n = 5; Day 0 = ovulation), static phase (n = 5), regressing phase (n = 7) of Wave 1 and from preovulatory follicles (n = 5). Oocytes were processed and transmission electron micrographs of ooplasm representing peripheral, perinuclear and central regions were evaluated using standard stereological methods. RESULTS The number of mitochondria and volume occupied by lipid droplets was higher (P < 0.03) in oocytes from regressing follicles (193.0 ± 10.4/1000 μm(3) and 3.5 ± 0.7 %) than growing and preovulatory stages (118.7 ± 14.4/1000 μm(3) and 1.1 ± 0.3 %; 150.5 ± 28.7/1000 μm(3) and 1.6 ± 0.2 %, respectively). Oocytes from growing, static and preovulatory follicles had >70 % mitochondria in the peripheral regions whereas oocytes from regressing follicles had an even distribution. Oocytes from growing follicles had more lipid droplets in peripheral region than in central region (86.9 vs. 13.1 %). Percent surface area of mitochondria in contact with lipid droplets increased from growing (2.3 %) to static, regressing or preovulatory follicle stage (8.9, 6.1 and 6.2 %). The amount, size and distribution of other organelles did not differ among phases (P > 0.11). CONCLUSIONS Our hypothesis was supported in that mitochondrial number increased and translocation occurred from a peripheral to an even distribution as follicles entered the regressing phase. In addition, lipid droplets underwent spatial reorganization from a peripheral to an even distribution during the growing phase and mitochondria-lipid contact area increased with follicle maturation.
Collapse
Affiliation(s)
- D Dadarwal
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| | - G P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| | - P Hyttel
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegaardsvej 7, DK-1870, Frederiksberg C, Denmark.
| | - G M Brogliatti
- Universidad Católica de Córdoba, Reproduccion animal, Cordoba, X5000IYG, Argentina.
| | - S Caldwell
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
9
|
Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, Novara PV, Fadini R. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update 2015; 21:427-54. [PMID: 25744083 DOI: 10.1093/humupd/dmv011] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/11/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In a growth phase occurring during most of folliculogenesis, the oocyte produces and accumulates molecules and organelles that are fundamental for the development of the preimplantation embryo. At ovulation, growth is followed by a phase of maturation that, although confined within a short temporal window, encompasses modifications of the oocyte chromosome complement and rearrangements of cytoplasmic components that are crucial for the achievement of developmental competence. Cumulus cells (CCs) are central to the process of maturation, providing the oocyte with metabolic support and regulatory cues. METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews concerning oocyte maturation in mammals. Searches were performed adopting 'oocyte' and 'maturation' as main terms, in association with other keywords expressing concepts relevant to the subject. The most relevant publications, i.e. those concerning major phenomena occurring during oocyte maturation in established experimental models and the human species, were assessed and discussed critically to offer a comprehensive description of the process of oocyte maturation. RESULTS By applying the above described search criteria, 6165 publications were identified, of which 543 were review articles. The number of publications increased steadily from 1974 (n = 7) to 2013 (n = 293). In 2014, from January to the time of submission of this manuscript, 140 original manuscripts and reviews were published. The studies selected for this review extend previous knowledge and shed new and astounding knowledge on oocyte maturation. It has long been known that resumption of meiosis and progression to the metaphase II stage is intrinsic to oocyte maturation, but novel findings have revealed that specific chromatin configurations are indicative of a propensity of the oocyte to resume the meiotic process and acquire developmental competence. Recently, genetic integrity has also been characterized as a factor with important implications for oocyte maturation and quality. Changes occurring in the cytoplasmic compartment are equally fundamental. Microtubules, actin filaments and chromatin not only interact to finalize chromosome segregation, but also crucially co-operate to establish cell asymmetry. This allows polar body extrusion to be accomplished with minimal loss of cytoplasm. The cytoskeleton also orchestrates the rearrangement of organelles in preparation for fertilization. For example, during maturation the distribution of the endoplasmic reticulum undergoes major modifications guided by microtubules and microfilaments to make the oocyte more competent in the generation of intracellular Ca(2+) oscillations that are pivotal for triggering egg activation. Cumulus cells are inherent to the process of oocyte maturation, emitting regulatory signals via direct cell-to-cell contacts and paracrine factors. In addition to nurturing the oocyte with key metabolites, CCs regulate meiotic resumption and modulate the function of the oocyte cytoskeleton. CONCLUSIONS Although the importance of oocyte maturation for the achievement of female meiosis has long been recognized, until recently much less was known of the significance of this process in relation to other fundamental developmental events. Studies on chromatin dynamics and integrity have extended our understanding of female meiosis. Concomitantly, cytoskeletal and organelle changes and the ancillary role of CCs have been better appreciated. This is expected to inspire novel concepts and advances in assisted reproduction technologies, such as the development of novel in vitro maturation systems and the identification of biomarkers of oocyte quality.
Collapse
Affiliation(s)
- Giovanni Coticchio
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Mariabeatrice Dal Canto
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Mario Mignini Renzini
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Maria Cristina Guglielmo
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Fausta Brambillasca
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Diana Turchi
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Paola Vittoria Novara
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Rubens Fadini
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| |
Collapse
|
10
|
Toms D, Tsoi S, Dobrinsky J, Dyck MK, Li J. The effects of glial cell line-derived neurotrophic factor on the in vitro matured porcine oocyte transcriptome. Mol Reprod Dev 2014; 81:217-29. [DOI: 10.1002/mrd.22288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Derek Toms
- Department of Animal and Poultry Science; University of Guelph; Guelph Canada
| | - Stephen Tsoi
- Department of Agricultural; Food and Nutritional Science; University of Alberta; Edmonton Canada
| | - John Dobrinsky
- International Center of Biotechnology; Minitube of America; Mt. Horeb Wisconsin
| | - Michael K. Dyck
- Department of Agricultural; Food and Nutritional Science; University of Alberta; Edmonton Canada
| | - Julang Li
- Department of Animal and Poultry Science; University of Guelph; Guelph Canada
| |
Collapse
|
11
|
Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reprod Biomed Online 2013; 28:284-99. [PMID: 24444815 DOI: 10.1016/j.rbmo.2013.10.016] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 11/21/2022]
Abstract
Assisted reproduction technology (ART) has become an attractive option for infertility treatment and holds tremendous promise. However, at present, there is still room for improvement in its success rates. Oocyte maturation is a process by which the oocyte becomes competent for fertilization and subsequent embryo development. To better understand the mechanism underlying oocyte maturation and for the future improvement of assisted reproduction technology, this review focuses on the complex processes of cytoplasmic organelles and the dynamic alterations of the cytoskeleton that occur during oocyte maturation. Ovarian stimulation and in-vitro maturation are the major techniques used in assisted reproduction technology and their influence on the organelles of oocytes is also discussed. Since the first birth by assisted reproduction treatment was achieved in 1978, numerous techniques involved in assisted reproduction have been developed and have become attractive options for infertility treatment. However, the unsatisfactory success rate remains as a main challenge. Oocyte maturation is a process by which the oocyte becomes competent for fertilization and subsequent embryo development. Oocyte maturation includes both nuclear and cytoplasmic maturation. Nuclear maturation primarily involves chromosomal segregation, which has been well studied, whereas cytoplasmic maturation involves a series of complicated processes, and there are still many parts of this process that remain controversial. Ovarian stimulation and in-vitro maturation (IVM) are the major techniques of assisted reproduction. The effect of ovarian stimulation or IVM on the behaviour of cell organelles of the oocyte has been postulated as the reason for the reduced developmental potential of in-vitro-produced embryos. To further understanding of the mechanism of oocyte maturation and future improvement of assisted reproduction treatment, the complex events of cytoplasmic organelles and the cytoskeleton that occur during oocyte maturation and the influence of ovarian stimulation and IVM on these organelles are described in this review.
Collapse
|
12
|
De los Reyes M, Palomino J, Jofré S, Villarroel A, Moreno R. Golgi apparatus and endoplasmic reticulum dynamic during meiotic development in canine oocytes. Reprod Domest Anim 2013; 47 Suppl 6:93-7. [PMID: 23279474 DOI: 10.1111/rda.12014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/20/2012] [Indexed: 11/29/2022]
Abstract
The Golgi apparatus (GA) and endoplasmic reticulum (ER) play a central role in the events related to intracellular trafficking distribution. This work evaluated the dynamics and localization of the GA and ER in canine oocytes during meiotic development in vitro. Cumulus-oocytes complexes (COCs) from ovaries of adult bitches were incubated for IVM for 0, 48, 72 and 96 h. At each time, the nuclear status was determined using DAPI staining, and the GA was evaluated by immunofluorescence using two antibodies against Golgi proteins: GM130 and Giantin. ER was analysed with fluorescent lipid probes (ER-Tracker), for living cells. Golgi structures were homogeneous in the cytoplasm in non-matured oocytes, mainly in those GV-arrested oocytes. In contrast, at 48 h and from GVBD stage, the immunolocalization began to be subcortical, increasing at 72 h and 96 h. Meiotic development increased with time and the majority of oocytes at MI-MII stages showed cortical distribution of Golgi structure. Living ZP intact non-matured oocytes showed a reticular pattern of ER that covered oocyte cortex. Confocal microscopy showed that, in all levels cuts the fluorescence marks were located in the cortical region, irrespective of culture time. The changes and localization in these organelles during IVM might be related to meiotic development, but in a non-synchronous manner.
Collapse
Affiliation(s)
- M De los Reyes
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|