1
|
Zhao L, Zhang J, He J, Guo M, Wu H, Ma X, Yu Z, Yong Y, Li Y, Ju X, Liu X. Network pharmacology analysis of the regulatory effects and mechanisms of ALAE on sow reproduction in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118525. [PMID: 38992402 DOI: 10.1016/j.jep.2024.118525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reproductive ability of sows is a primary element influencing the development of pig farming. Herbal extracts of Angelica sinensis (Oliv.) Diels, Astragalus mongholicus Bunge, Eucommia ulmoides Oliv., and Polypodium glycyrrhiza D.C.Eaton showed effects on improvement of reproduction in sows. AIMS OF THE STUDY To investigate the mechanism of the treatment effects by a compound of these four Chinese herbs in a 1:1:1:1 ratio (ALAE) on endometriosis, endometritis, uterine adhesion, intrauterine growth retardation, pre-eclampsia, and its enhancement of reproductive efficiency in sows. MATERIALS AND METHODS Active components of ALAE were identified by using ultra-performance liquid chromatography-mass spectrometry analysis and network pharmacology. Then we used the results to construct a visualization network. Key targets and pathways of ALAE involved in sow reproduction improvement were validated in sow animals and porcine endometrial epithelial cells (PEECs). RESULTS A total of 62 active compounds were found in ALAE (41 in Polypodium glycyrrhiza D.C.Eaton, 5 in Astragalus mongholicus Bunge, 11 in Eucommia ulmoides Oliv., 5 in Angelica sinensis (Oliv.) Diels) with 563 disease-related targets (e.g. caspase-3, EGFR, IL-6) involved in EGFR tyrosine kinase inhibitor resistance, PI3K-AKT, and other signaling pathways. Molecular docking results indicated GC41 (glabridin), GC18 (medicarpin), EGFR and CCND1 are possible key components and target proteins related to reproductive improvement in sows. In PEECs, EGFR expression decreased at the mRNA and protein levels by three doses (160, 320, and 640 μg/mL) of ALAE. The phosphorylation of downstream pathway PI3K-AKT1 was enhanced. The expression of inflammatory factors (IL-6, IL-1β), ESR1 and caspase-3 decreased through multiple pathways. Additionally, the expression levels of an anti-inflammatory factor (IL-10), angiogenesis-related factors (MMP9, PIGF, PPARγ, IgG), and placental junction-related factors (CTNNB1, occludin, and claudin1) increased. Furthermore, the total born number of piglets, the number of live and healthy litters were significantly increased. The number of stillbirths decreased by ALAE treatment in sow animals. CONCLUSIONS Dministration of ALAE significantly increased the total number of piglets born, the numbers of live and healthy litters and decreased the number of stillbirths through improving placental structure, attenuating inflammatory response, modulating placental angiogenesis and growth factor receptors in sows. The improvement of reproductive ability may be related to activation of the EGFR-PI3K-AKT1 pathway in PEECs. Moreover, ALAE maybe involved in modulation of estrogen receptors, apoptotic factors, and cell cycle proteins.
Collapse
Affiliation(s)
- Linlu Zhao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Jin Zhang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Jieyi He
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Mengru Guo
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Huining Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Xingbin Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Youquan Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
2
|
Li J, Yin X, Du M, Wang C, Zou F, Ma J, Song Y. Therapeutic effect of human umbilical cord mesenchymal stem cells and their conditioned medium on LPS-induced endometritis in mice. Tissue Cell 2024; 88:102346. [PMID: 38460354 DOI: 10.1016/j.tice.2024.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
AIM To explore the effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) and their conditioned medium (MSC-CM) in repairing the endometritis mouse model in vivo. METHODS Lipopolysaccharide (LPS) was used to induce acute inflammation in endometritis mouse model. Mice were treated in six groups: control group (PBS), model group (LPS), LPS+MSC-CM (6 h) group, LPS+MSC-CM (12 h) group, LPS+MSCs (6 h) group and LPS+MSCs (12 h) group. Morphological and histological changes of mouse uterus were observed, and mouse uterine inflammation index myeloperoxidase (MPO) and related immune index TNF-α, IL-6 and IL-1β levels were detected by ELISA. RESULTS There exist remarkable inflammatory response and an obvious increase in the value of MPO, TNF-α, IL-1β and IL-6 in the endometritis mouse model compared with the control group. Morphological and histological appearances were relieved after treated with hUC-MSCs and MSC-CM. Besides, the value of MPO, TNF-α, IL-1β and IL-6 showed different degrees of decline. In comparison with LPS+MSC-CM (12 h) and LPS+MSCs (12 h) group, there was significant decrease in inflammatory indicators in LPS+MSC-CM (6 h) and LPS+MSCs (6 h) group. CONCLUSIONS Intrauterine infusion of hUC-MSCs and MSC-CM can alleviate LPS induced endometritis.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhengzhou University, China
| | - Xiaodi Yin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhengzhou University, China
| | - Ming Du
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhengzhou University, China
| | - Caiyi Wang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, China
| | - Feng Zou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhengzhou University, China
| | - Jun Ma
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhengzhou University, China.
| | - Yuxia Song
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
3
|
BinMowyna MN. Zingerone attenuates intestinal injury and colitis caused by a high-fat diet through Nrf2 signaling regulation. Saudi J Biol Sci 2023; 30:103775. [PMID: 37766888 PMCID: PMC10519856 DOI: 10.1016/j.sjbs.2023.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
This study examined the protective effect of Zingerone against a high-fat diet (HFD)-induced intestinal damage. Control and HFD rats were treated with the vehicle or Zingerone (100 mg/kg, orally) (n = 8 rats/groups). An extra group, HFD + Zingerone + brusatol (an Nrf2 inhibitor). This study treatment lasted four weeks. Zingerone reduced the nuclear levels of NF-B p65 in control and HFD-fed rats while increasing SOD, CAT, GSH, levels of mRNA, cytoplasmic levels, and Nrf2 nuclear levels. Zingerone treatment attenuated the duodenal epithelial damage and maintained the mucosal barrier by reducing plasma FITC-DX and serum LPS in rats fed with HFD. Concomitantly, it lowered the duodenal MDA, TNF-α, IL-6, and IL-1β levels. These impacts included changes in body weight, duodenal lipid levels, and Keap-1 expression, a natural Nrf2 inhibitor. We concluded that Zingerone reduces HFD-induced duodenal injury. These findings support Zingerone's clinical applicability against various inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Mona N. BinMowyna
- College of Science and Humanities-Dawadmi, Shaqra University, Saudi Arabia
| |
Collapse
|
4
|
Xie K, Li Y, He G, Zhao X, Chen D, Yu B, Luo Y, Mao X, Huang Z, Yu J, Luo J, Zheng P, Yan H, Li H, He J. Daidzein supplementation improved fecundity in sows via modulation of ovarian oxidative stress and inflammation. J Nutr Biochem 2022; 110:109145. [PMID: 36049671 DOI: 10.1016/j.jnutbio.2022.109145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/15/2021] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Adequate ovarian hormones secretion is essential for pregnancy success. Oxidative damage and following inflammation can destroy the ovarian normal function in mammals. Daidzein (DAI) is a classical isoflavonic phytoestrogen with specific oestrogenic activity. This study aimed to explore the effects of daidzein supplementation on fertility and ovarian characteristics of sows through biochemical analysis and RNA-seq technology. Twelve multiparous Yorkshire × Landrace sows were randomly divided into CON and DAI groups. We found that DAI increased total number of embryos as well as P4 and E2 levels of serum. DAI not only elevated the activities of T-AOC and GSH-Px, but also tended to decrease the content of MDA and IL-6 in the serum. In ovary, RNA-Seq identified 237 differentially expressed genes (DEGs), and GO analysis showed that these DEGs were linked to functions associated with immune dysfunction. Moreover, STRING analysis demonstrated that most interacting nodes were TLR-4, LCP2, and CD86. Furthermore, DAI decreased the content of MDA, IL-1β, IL-6, and TNF-α, and increased the activities of T-AOC and CAT in ovarian tissue. Interestingly, a partial mantel correlation showed that T-AOC was the strongest correlation between the ovarian dataset and selected DEGs. Additionally, DAI supplementation not only increased the protein expressions of Nrf2, HO-1, and NQO1, but also decreased the protein expressions of TLR-4, p-NFκB, p-AKT, and p-IκBα. Altogether, our results indicated that DAI could ameliorate ovarian oxidative stress and inflammation in sows, which might be mediated by suppressing the TLR4/NF-κB signaling pathway and activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Kunhong Xie
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, P. R. China
| | - Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, P. R. China
| | - Guoru He
- New Hope Liuhe Co., Ltd. Sichuan Province, Chengdu, Sichuan, P. R. China
| | - Xuefeng Zhao
- Shandong Animal Product Quality and Safety Center, Jinan, Shangdong, P. R. China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, P. R. China.
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, P. R. China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, P. R. China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, P. R. China
| | - Hua Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
5
|
Yang D, Yin R, Lei Q, Zhu J, Nan S, Ma N, Zhu H, Chen J, Han L, Ding M, Ding Y. Baicalin alleviates endometrial inflammatory injury through regulation of tight junction proteins. Food Funct 2022; 13:6522-6533. [PMID: 35640273 DOI: 10.1039/d2fo00594h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endometritis is the foremost reason for reduced reproductive performance, which impedes the establishment of pregnancy in ruminants. Baicalin is extensively acknowledged as a tocolytic drug. However, the preventive effect of baicalin on endometrial inflammatory injury remains unclear. The present study aimed to determine the potential benefits of baicalin on endometrial inflammatory injury in animal and cellular models. The results showed that baicalin alleviated the impairment of tight junctions (TJs) and inflammation in the endometrium induced by LPS treatment. Baicalin increased claudin 3 (CLDN3) and tight junction protein 1 (TJP1) levels in a dose-dependent manner in endometrial epithelial cells (EECs) accompanied by autophagy activation with or without LPS treatment. Immunofluorescence staining revealed that baicalin pretreatment prompted MAP1LC3B-positive structures to surround TJ proteins in the cytoplasm and decreased the abnormal aggregation of CLDN3 and TJP1 in the cytosol of EECs. Activation or blockage of autophagy using pharmacologic methods affected the redistribution of TJ proteins by baicalin pretreatment with LPS treatment. The role of autophagy in the modulation of TJ proteins was also confirmed by ATG7 and TFEB overexpression, as evidenced by accelerated redistribution of CLDN3 and TJP1 from the EEC cytosol to the membrane and a loss of membranous CLDN2 in EECs. These data demonstrate that baicalin influences the redistribution of TJ proteins to maintain the barrier function during LPS-induced endometrial inflammatory injury by regulating autophagy and provides a new therapeutic to potentially prevent embryo loss and endometritis.
Collapse
Affiliation(s)
- Diqi Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ruiling Yin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qianghui Lei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiandi Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sha Nan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ning Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongmei Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianguo Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Li Han
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Yahya MA, Alshammari GM, Osman MA, Al-Harbi LN, Yagoub AEA, AlSedairy SA. Isoliquiritigenin attenuates high-fat diet-induced intestinal damage by suppressing inflammation and oxidative stress and through activating Nrf2. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Rukarcheep D, Lothong M, Wattanaphansak S, Deachapunya C, Poonyachoti S. Porcine reproductive and respiratory syndrome virus induces tight junction barrier dysfunction and cell death in porcine glandular endometrial epithelial cells. Theriogenology 2022; 185:34-42. [DOI: 10.1016/j.theriogenology.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
|
8
|
Wang Y, Liu Z, Shen P, Zhao C, Liu B, Shu C, Hu X, Fu Y. Kynurenic acid ameliorates lipopolysaccharide-induced endometritis by regulating the GRP35/NF-κB signaling pathway. Toxicol Appl Pharmacol 2022; 438:115907. [DOI: 10.1016/j.taap.2022.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
|
9
|
Hydroxyxanthone ameliorates IL1β-induced epithelial barrier disruption in colonic-like cells by down-regulation of p-MLC expression. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Wan FC, Zhang C, Jin Q, Wei C, Zhao HB, Zhang XL, You W, Liu XM, Liu GF, Liu YF, Tan XW. Protective effects of astaxanthin on lipopolysaccharide-induced inflammation in bovine endometrial epithelial cells†. Biol Reprod 2021; 102:339-347. [PMID: 31566218 DOI: 10.1093/biolre/ioz187] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/21/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023] Open
Abstract
Astaxanthin (AST), a natural antioxidant carotenoid, has been shown to exert anti-inflammatory effects. However, to our knowledge, no study has specifically addressed the potential protective effects of AST against bovine endometritis. The purpose of this study was to examine whether treatment with AST could protect endometrial epithelial cells against lipopolysaccharide (LPS)-induced inflammatory injury. Treatment of bovine endometrial (BEND) epithelial cell line with AST reduced LPS-induced production of interleukin-6 and tumor necrosis factor-alpha, increased the cellular activity of superoxide dismutase and catalase, decreased the proportion of apoptotic cells, and promoted the production of insulin-like growth factor and epithelial growth factor. The effects of AST were mediated through the downregulation of B-cell lymphoma 2 (Bcl-2) associated X, apoptosis regulator (Bax), and cleaved caspase-3 and through the upregulation of Bcl-2. Moreover, AST significantly increased the expression of the tight junction proteins (TJP) claudin, cadherin-1, and TJP1, which play an essential role in the maintenance of host endometrial defense barrier against pathogen infection. Collectively, these results demonstrated that treatment with AST protected against oxidative stress, prevented cell apoptosis, promoted BEND cells viability, and increased the production of growth factors, in addition to activating the endometrial defense barrier. Therefore, AST is a promising therapeutic agent for the prevention and treatment of endometritis. This finding is of utmost importance in the present times when the excessive use of antibiotics has resulted in the development of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Fa-Chun Wan
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China.,College of Life Sciences, Shandong Normal University, Ji'nan City, China
| | - Chen Zhang
- College of Life Sciences, Shandong Normal University, Ji'nan City, China
| | - Qing Jin
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Chen Wei
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Hong-Bo Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Xiang-Lun Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Wei You
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Xiao-Mu Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Gui-Fen Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Yi-Fan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Xiu-Wen Tan
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| |
Collapse
|
11
|
Yuan WY, Li LQ, Chen YY, Zhou YJ, Bao KF, Zheng J, Hua YQ, Jiang GR, Hong M. Frontline Science: Two flavonoid compounds attenuate allergic asthma by regulating epithelial barrier via G protein-coupled estrogen receptor: Probing a possible target for allergic inflammation. J Leukoc Biol 2020; 108:59-71. [PMID: 32303124 DOI: 10.1002/jlb.3hi0220-342rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/29/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic asthma is a common chronic lung inflammatory disease and seriously influences public health. We aim to investigate the effects of formononetin (FMN) and calycosin (CAL), 2 flavonoids in Radix Astragali, on allergic asthma and elucidate possible therapeutic targets. A house dust mite (HDM)-induced allergic asthma mouse model and TNF-α and Poly(I:C) co-stimulated human bronchial epithelial cell line (16HBE) were performed respectively in vivo and in vitro. The role of G protein-coupled estrogen receptor (GPER) was explored by its agonist, antagonist, or GPER small interfering RNA (siGPER). E-cadherin, occludin, and GPER were detected by western blotting, immunohistochemistry, or immunofluorescence. The epithelial barrier integrity was assessed by trans-epithelial electric resistance (TEER). Cytokines were examined by enzyme-linked immunosorbent assay (ELISA). The results showed that flavonoids attenuated pulmonary inflammation and hyperresponsiveness in asthmatic mice. These flavonoids significantly inhibited thymic stromal lymphopoietin (TSLP), increased occludin and restored E-cadherin in vivo and in vitro. The effects of flavonoids on occludin and TSLP were not interfered by ICI182780 (estrogen receptor antagonist), while blocked by G15 (GPER antagonist). Furthermore, compared with PPT (ERα agonist) and DPN (ERβ agonist), G1 (GPER agonist) significantly inhibited TSLP, up-regulated occludin, and restored E-cadherin. siGPER and TEER assays suggested that GPER was pivotal for the flavonoids on the epithelial barrier integrity. Finally, G1 attenuated allergic lung inflammation, which could be abolished by G15. Our data demonstrated that 2 flavonoids in Radix Astragali could alleviate allergic asthma by protecting epithelial integrity via regulating GPER, and activating GPER might be a possible therapeutic strategy against allergic inflammation.
Collapse
Affiliation(s)
- Wei-Yuan Yuan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Lian-Qu Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan-Yan Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi-Jing Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kai-Fan Bao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong-Qing Hua
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guo-Rong Jiang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Hu X, Guo J, Xu M, Jiang P, Yuan X, Zhao C, Maimai T, Cao Y, Zhang N, Fu Y. Clostridium tyrobutyricum alleviates Staphylococcus aureus-induced endometritis in mice by inhibiting endometrial barrier disruption and inflammatory response. Food Funct 2020; 10:6699-6710. [PMID: 31559977 DOI: 10.1039/c9fo00654k] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Endometritis is an inflammatory disease of the uterus caused by bacterial infection, and it affects both human and animal health. This study aims to investigate the protective effects and molecular mechanisms of probiotics such as Clostridium tyrobutyricum (C. tyrobutyricum) on Staphylococcus aureus (S. aureus)-induced endometritis. The results showed that S. aureus infection significantly induced the pathological damage of the uterus, increased the production of pro-inflammatory cytokines, such as TNF-α and IL-1β, and attenuated the expression of tight junction proteins of uterine tissues. However, C. tyrobutyricum pretreatment obviously reduced the inflammatory response and reversed the changes of tight junction proteins of the uterus induced by S. aureus. Together, the data showed that C. tyrobutyricum also inhibited the expression of the TLR2/NF-κB signaling pathway and HDAC induced by S. aureus. In addition, the treatment of mice with live C. tyrobutyricum, spent culture supernatants (SCS) from C. tyrobutyricum, rather than inactive C. tyrobutyricum, inhibited the inflammatory response induced by S. aureus. Through further research, we found that the levels of butyrate in both blood and uterine tissues of mice treated with C. tyrobutyricum were significantly increased. These findings underscore the protective effect of C. tyrobutyricum on endometritis by enhancing the uterus barrier integrity and inhibiting the inflammatory response. The anti-inflammatory mechanism may occur through the regulation of the expression of TLR2/NF-κB and HDAC, and C. tyrobutyricum can be a potentially therapeutic candidate for the treatment of endometritis.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tsugami Y, Matsunaga K, Suzuki T, Nishimura T, Kobayashi K. Phytoestrogens Weaken the Blood-Milk Barrier in Lactating Mammary Epithelial Cells by Affecting Tight Junctions and Cell Viability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11118-11124. [PMID: 29189005 DOI: 10.1021/acs.jafc.7b04786] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During lactation, mammary epithelial cells (MECs) form the blood-milk barrier by less-permeable tight junctions (TJs) to prevent the leakage of milk components. Phytoestrogens affect the proliferation, differentiation, and apoptosis of MECs. However, it remains unclear whether phytoestrogens are involved in the blood-milk barrier. Therefore, we investigated the influence of phytoestrogens (coumestrol, genistein, and daidzein) by using an in vitro mouse-MEC-culture model. The results showed that coumestrol and genistein changed the expression of TJ proteins (claudins-3 and -4 and occludin), weakened barrier function, and reduced β-casein production. Daidzein also weakened barrier function without inhibiting β-casein production. Additionally, coumestrol and genistein induced apoptosis in MECs. These results indicate that phytoestrogens weaken the blood-milk barrier by directly affecting TJs and the cellular viability of lactating MECs in different ways.
Collapse
Affiliation(s)
- Yusaku Tsugami
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University , North 9, West 9, 060-8589 Sapporo, Japan
| | - Kota Matsunaga
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University , North 9, West 9, 060-8589 Sapporo, Japan
| | - Takahiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University , North 9, West 9, 060-8589 Sapporo, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University , North 9, West 9, 060-8589 Sapporo, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University , North 9, West 9, 060-8589 Sapporo, Japan
| |
Collapse
|
14
|
Srisomboon Y, Poonyachoti S, Deachapunya C. Soy isoflavones enhance β-defensin synthesis and secretion in endometrial epithelial cells with exposure to TLR3 agonist polyinosinic-polycytidylic acid. Am J Reprod Immunol 2017; 78. [PMID: 28429578 DOI: 10.1111/aji.12694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/25/2017] [Indexed: 12/14/2022] Open
Abstract
PROBLEM β-defensins are important innate chemical barriers that protect the endometrium from pathogen invasion. The effects of soy isoflavones, genistein and daidzein, on the expression and secretion of porcine β-defensins (PBD) in endometrial epithelial cells were investigated under normal or poly I:C-stimulated conditions. METHOD OF STUDY Primary cultured porcine endometrial epithelial (PE) cells were pretreated with genistein or daidzein followed by poly I:C inoculation. During treatment, the culture media were analyzed for PBD 1-4 secretion by ELISA and the total RNA for PBD gene expression by quantitative RT-PCR. RESULTS Porcine endometrial epithelial cells constitutively expressed PBD 1-4 and secreted PBD-1, PBD-2, and PBD-4. Genistein and daidzein enhanced PBD-2 expression and PBD-2 and PBD-3 secretion. These compounds also potentiated PBD-2 and PBD-3 expression and secretion which were upregulated by poly I:C. CONCLUSION Soy isoflavones, genistein and daidzein, could be potentially used for promoting the innate host defense of endometrium against infection.
Collapse
Affiliation(s)
- Yotesawee Srisomboon
- Department of Physiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Sutthasinee Poonyachoti
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chatsri Deachapunya
- Department of Physiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
15
|
Thurman AR, Yousefieh N, Chandra N, Kimble T, Asin S, Rollenhagen C, Anderson SM, Herold BC, Freiermuth JL, Starkman BS, Mesquita PM, Richardson-Harman N, Cunningham T, Hillier S, Rabe L, Schwartz JL, Doncel GF. Comparison of Mucosal Markers of Human Immunodeficiency Virus Susceptibility in Healthy Premenopausal Versus Postmenopausal Women. AIDS Res Hum Retroviruses 2017; 33:807-819. [PMID: 28398069 DOI: 10.1089/aid.2016.0320] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to characterize cervicovaginal (CV) mucosal factors modulating susceptibility to human immunodeficiency virus (HIV) acquisition in healthy premenopausal (PRE) and postmenopausal (POST) women before and after treatment with estradiol (E2). We compared CV mucosal epithelial histology and immune cells, vaginal microbiota, antimicrobial activity of and soluble mucosal protein concentrations in the CV fluid lavage (CVL), and p24 antigen production after ex vivo infection of ectocervical tissues with HIV-1BaL among PRE women (n = 20) in the follicular and luteal phases of the menstrual cycle and POST women (n = 17) at baseline and after ∼1 month of treatment with 0.01% vaginal E2 cream. Compared to PRE women, we measured higher levels of p24 antigen after ex vivo infection in tissues from POST women. POST women had a significantly thinner vaginal epithelium with decreased tight junction proteins and a higher density of mucosal immune T cells and lower levels of CD1a antigen-presenting cells, antimicrobial peptides, and inflammatory cytokines in the CVL (p values <.05). POST women had higher vaginal pH and lower vaginal Lactobacilli (p values <.05) than PRE women. After vaginal E2 therapy, CV endpoints and ex vivo HIV replication in POST tissues were similar to those observed in PRE tissues. The CV mucosa in POST women is thinned and compromised, with increased HIV-target immune cells and decreased antimicrobial factors, being more susceptible to HIV infection. After POST women receive topical E2 treatment, mucosal endpoints are similar to PRE levels.
Collapse
Affiliation(s)
- Andrea Ries Thurman
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Nazita Yousefieh
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Neelima Chandra
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Thomas Kimble
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Susana Asin
- V.A. Medical Center, White River Junction, Vermont
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Christiane Rollenhagen
- V.A. Medical Center, White River Junction, Vermont
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Sharon M. Anderson
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | | | | | | | | | | | - Tina Cunningham
- Center for Health Analytics and Discovery, Eastern Virginia Medical School, Norfolk, Virginia
| | - Sharon Hillier
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lorna Rabe
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Jill L. Schwartz
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Gustavo F. Doncel
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
16
|
Sonoki H, Tanimae A, Endo S, Matsunaga T, Furuta T, Ichihara K, Ikari A. Kaempherol and Luteolin Decrease Claudin-2 Expression Mediated by Inhibition of STAT3 in Lung Adenocarcinoma A549 Cells. Nutrients 2017; 9:nu9060597. [PMID: 28608828 PMCID: PMC5490576 DOI: 10.3390/nu9060597] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/03/2017] [Accepted: 06/10/2017] [Indexed: 12/12/2022] Open
Abstract
Claudin-2 is highly expressed in human lung adenocarcinoma tissues and may be a novel target for cancer chemotherapy because knockdown of claudin-2 decreases cell proliferation. We found that flavonoids including kaempferol, chrysin, and luteolin concentration-dependently decrease claudin-2 expression in lung adenocarcinoma A549 cells. Claudin-2 expression is up-regulated by mitogen-activated protein kinase kinase (MEK)/ extracellular signal-regulated kinase (ERK)/c-Fos and phosphoinositide 3-kinase (PI3K)/Akt/nuclear factor-κB (NF-κB) pathways, but these activities were not inhibited by kaempferol, chrysin, and luteolin. Promoter deletion assay using luciferase reporter vector showed that kaempferol and luteolin inhibit the function of transcriptional factor that binds to the region between −395 and −144 of claudin-2 promoter. The decrease in promoter activity was suppressed by mutation in signal transducers and activators of transcription (STAT)-binding site, which is located between −395 and −144. The phosphorylation level of STAT3 was not decreased, but the binding of STAT3 on the promoter region is suppressed by kaempferol and luteolin in chromatin immunoprecipitation assay. The inhibition of cell proliferation caused by kaempferol and luteolin was partially recovered by ectopic claudin-2 expression. Taken together, kaempferol and luteolin decreased claudin-2 expression and proliferation in A549 cells mediated by the inhibition of binding of STAT3 on the promoter region of claudin-2. The intake of foods and nutrients rich in these flavonoids may prevent lung adenocarcinoma development.
Collapse
Affiliation(s)
- Hiroyuki Sonoki
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Asami Tanimae
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Satoshi Endo
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Toshiyuki Matsunaga
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Takumi Furuta
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan.
| | - Kenji Ichihara
- Nagaragawa Research Center, API Co., Ltd., Gifu 502-0071, Japan.
| | - Akira Ikari
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| |
Collapse
|
17
|
Wang B, Wu C. Dietary soy isoflavones alleviate dextran sulfate sodium-induced inflammation and oxidative stress in mice. Exp Ther Med 2017; 14:276-282. [PMID: 28672925 PMCID: PMC5488499 DOI: 10.3892/etm.2017.4469] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/24/2017] [Indexed: 01/10/2023] Open
Abstract
It has been hypothesized that soy isoflavones exhibit anti-oxidative and anti-inflammatory functions, however, the effects of soy isoflavones on inflammatory bowel diseases remain unknown. Therefore, the present study aimed to investigate the effect and underlying mechanism of dietary soy isoflavones on dextran sulfate sodium (DSS)-induced colitis. Mice were administered DSS and soy isoflavones, and histomorphometry, oxidative stress, inflammation and intestinal tight junctions were determined. The current study demonstrated that dietary soy isoflavones alleviated DSS-induced growth suppression, colonic inflammatory response, oxidative stress and colonic barrier dysfunction. DSS treatment was indicated to activate Toll-like receptor 4 (TRL4) and myeloid differentiation protein 88 (MyD88) in mice, whereas dietary soy isoflavones inhibited Myd88 expression in DSS-challenged mice. In conclusion, dietary soy isoflavones alleviate DSS-induced inflammation in mice, which may be associated with enhancing antioxidant function and inhibiting the TLR4/MyD88 signal.
Collapse
Affiliation(s)
- Bin Wang
- Department of Food and Nutritional Engineering, Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223005, P.R. China
| | - Cunbing Wu
- Department of Food Engineering, Jiangsu Polytechnic of Finance and Economics, Huaian, Jiangsu 223005, P.R. China
| |
Collapse
|
18
|
Luescher S, Urmann C, Butterweck V. Effect of Hops Derived Prenylated Phenols on TNF-α Induced Barrier Dysfunction in Intestinal Epithelial Cells. JOURNAL OF NATURAL PRODUCTS 2017; 80:925-931. [PMID: 28234482 DOI: 10.1021/acs.jnatprod.6b00869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For the prenylated hops phenols 6- and 8-prenylnaringenin (1 and 2), xanthohumol (3), and isoxanthohumol (4), a variety of biological activities has been described. In the current study, a transwell based in vitro model using the human intestinal epithelial cell line Caco-2 was developed to assess potential beneficial effects of compounds 1-4 on TNF-α-induced impairment of tight junction (TJ) permeability. Transepithelial electrical resistance (TEER) was measured using the latest cellZScope online monitoring device. TNF-α treatment (25 ng/mL) induced a significant decrease in TEER values (204.71 ± 4.57 at 72 h) compared to that in control values (245.94 ± 1.68 at 72 h). To determine preventive effects on TNF-α-induced impairment of TJ permeability, 1-4 were added to the apical compartment of Caco-2 monolayers 1 h before TNF-α treatment; afterward, TNF-α was added to the basolateral compartment to induce TJ dysfunction and incubated for a further 72 h. Using this setting, only 1 and 2 prevented epithelial disruption induced by TNF-α. To evaluate restorative effects of 1-4, TNF-α was added to the basolateral compartment of Caco-2 cell monolayers. After 48 h of incubation, 1-4 were added to the apical side, and TEER values were monitored online for a further 72 h. Under these experimental conditions, only 2 restored TNF-α induced barrier dysfunction.
Collapse
Affiliation(s)
- Sandro Luescher
- Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences Northwestern Switzerland , Gruendenstrasse 40, 4132 Muttenz, Switzerland
| | - Corinna Urmann
- Hochschule Weihenstephan Triesdorf, University of Applied Sciences , Schulgasse 16, 94315 Straubing, Germany
| | - Veronika Butterweck
- Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences Northwestern Switzerland , Gruendenstrasse 40, 4132 Muttenz, Switzerland
| |
Collapse
|
19
|
Quercetin Decreases Claudin-2 Expression Mediated by Up-Regulation of microRNA miR-16 in Lung Adenocarcinoma A549 Cells. Nutrients 2015; 7:4578-92. [PMID: 26061016 PMCID: PMC4488803 DOI: 10.3390/nu7064578] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/27/2022] Open
Abstract
Claudin-2 is highly expressed in human lung adenocarcinoma tissues and cells. Knockdown of claudin-2 decreases cell proliferation and migration. Claudin-2 may be a novel target for lung adenocarcinoma. However, there are no physiologically active substances of foods which decrease claudin-2 expression. We here found that quercetin, a flavonoid present in fruits and vegetables, time- and concentration-dependently decreases claudin-2 expression in lung adenocarcinoma A549 cells. In the present study, we examined what regulatory mechanism is involved in the decrease in claudin-2 expression by quercetin. Claudin-2 expression was decreased by LY-294002, a phosphatidylinositol 3-kinase (PI3-K) inhibitor, and U0126, a MEK inhibitor. These drugs inhibited the phosphorylation of Akt and ERK1/2, which are downstream targets of PI3-K and MEK, respectively. In contrast, quercetin did not inhibit the phosphorylation. Both LY-294002 and U0126 inhibited promoter activity of claudin-2, but quercetin did not. The stability of claudin-2 mRNA was decreased by quercetin. Quercetin increased the expression of microRNA miR-16. An inhibitor of miR-16 rescued quercetin-induced decrease in the claudin-2 expression. These results suggest that quercetin decreases claudin-2 expression mediated by up-regulation of miR-16 expression and instability of claudin-2 mRNA in lung adenocarcinoma cells.
Collapse
|