1
|
Investigation of the 12-month efficacy and safety of low-dose mifepristone in the treatment of painful adenomyosis. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
2
|
Zhai J, Li S, Hu J, Gao M, Sun Y, Chen ZJ, Giudice LC, Du Y. In Silico, In Vitro, and In Vivo Analysis Identifies Endometrial Circadian Clock Genes in Recurrent Implantation Failure. J Clin Endocrinol Metab 2021; 106:2077-2091. [PMID: 33619544 PMCID: PMC8502449 DOI: 10.1210/clinem/dgab119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT Previous work has demonstrated the role of the circadian clock in ovarian steroid hormone synthesis and attributed embryo implantation failure associated with arrhythmic circadian clock genes to insufficient ovarian-derived progesterone synthesis. Research on expression of core circadian clock genes in the endometrium itself and possible roles in compromised endometrial receptivity and recurrent implantation failure (RIF) are limited. OBJECTIVE We aimed to assess the core circadian clock gene profiling in human endometrium across the menstrual cycle and the possible gene interaction networks in the endometrial receptivity of window of implantation (WOI) as well as RIF. METHODS The study was initially an in silico study, with confirmatory lab-based data from primary human endometrial stromal cells (hESCs) as well as endometrial biopsies obtained from 60 women undergoing gynecological surgery in a clinical research center. The study included 30 RIF women and 30 age-matched and body mass index-matched controls. RESULTS Initial data mining and bioinformatics analysis of human endometrial microarray datasets across the menstrual cycle and between RIF women versus controls demonstrated the varied expression of core circadian clock genes across menstrual cycle, including the key role of PER2 in WOI and RIF. A PER2-centered network was investigated in the regulation of endometrial receptivity. We also confirmed the evidently increased mRNA expression of SHTN1, RXFP1, KLF5, and STEAP4 in the endometrium of RIF women, displaying the same trend as PER2 did, without any changes in MT1E and FKBP5. Treatment of PER2 siRNA in hESCs verified the positive regulation of PER2 to SHTN1, KLF5, and STEAP4. CONCLUSION Aberrant expression of endometrial PER2 might contribute to impaired endometrial receptivity and development of RIF via regulating SHTN1, KLF5, and STEAP4.
Collapse
Affiliation(s)
- Junyu Zhai
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jingwen Hu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Minzhi Gao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
| | - Linda C Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Correspondence: Yanzhi Du, MD, PhD, 845 Lingshan Road, Shanghai 200135, China.
| |
Collapse
|
3
|
Li Y, Cao L, Qian Z, Guo Q, Niu X, Huang L. Mifepristone regulates Tregs function mediated by dendritic cells through suppressing the expression of TGF-β. Immunopharmacol Immunotoxicol 2021; 43:85-93. [PMID: 33406939 DOI: 10.1080/08923973.2020.1867998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies have demonstrated that mifepristone in the daily low-dose affects the function of endometrium. These researches also implied an alteration of endometrium immune balance, which might be involved in regulating endometrial function. However, the detailed mechanisms remain to be further explored. METHODS In this study, the expressions of CD80, CD86, and ICAM-1 in dendritic cells (DCs), which were stimulated with different concentrations of mifepristone (20, 65, and 200 nM), were detected by FACS. After that, we further evaluated the expression of Forkhead box P3 (FOXP3) and IL-10 in Tregs, which co-cultured with mifepristone treated DCs. In mechanism, we compared the indoleamine 2,3-dioxygenase (IDO) and TGF-β expression with enzyme-linked immunosorbent assay (ELISA). RESULTS The results indicated that mifepristone promoted the expressions of CD80, CD86, and ICAM-1 in a dosage dependent manner. Reversely, FOXP3 and IL-10 expression levels in Tregs co-cultured with mifepristone-treated DCs were significantly decreased compared with those co-cultured with nontreated DC. Furthermore, a significant reduce in IDO and TGF-β expression was observed in DCs treated with mifepristone. By using the IDO inhibitor (1-methyl tryptophan, 1-MT) or TGF-b supplement, we confirmed that TGF-β, but not IDO could rescue the downregulation of FOXP3 and IL-10 in Tregs co-cultured with mifepristone treated DCs. All of these results suggest that mifepristone may regulate DC function by decreasing TGF-β expression, which further results in the downregulations of FOXP3 and IL-10 in Tregs. CONCLUSION Therefore, our research provides a theoretical basis for a potentially clinical application of mifepristone as a novel contraceptive.
Collapse
Affiliation(s)
- Yinghua Li
- Hangzhou Women's Hospital, Hangzhou, China.,Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Cao
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhida Qian
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingyun Guo
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocen Niu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Huang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Hernández-Vargas P, Muñoz M, Domínguez F. Identifying biomarkers for predicting successful embryo implantation: applying single to multi-OMICs to improve reproductive outcomes. Hum Reprod Update 2020; 26:264-301. [PMID: 32096829 DOI: 10.1093/humupd/dmz042] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/08/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Successful embryo implantation is a complex process that requires the coordination of a series of events, involving both the embryo and the maternal endometrium. Key to this process is the intricate cascade of molecular mechanisms regulated by endocrine, paracrine and autocrine modulators of embryonic and maternal origin. Despite significant progress in ART, implantation failure still affects numerous infertile couples worldwide and fewer than 10% of embryos successfully implant. Improved selection of both the viable embryos and the optimal endometrial phenotype for transfer remains crucial to enhancing implantation chances. However, both classical morphological embryo selection and new strategies incorporated into clinical practice, such as embryonic genetic analysis, morphokinetics or ultrasound endometrial dating, remain insufficient to predict successful implantation. Additionally, no techniques are widely applied to analyse molecular signals involved in the embryo-uterine interaction. More reliable biological markers to predict embryo and uterine reproductive competence are needed to improve pregnancy outcomes. Recent years have seen a trend towards 'omics' methods, which enable the assessment of complete endometrial and embryonic molecular profiles during implantation. Omics have advanced our knowledge of the implantation process, identifying potential but rarely implemented biomarkers of successful implantation. OBJECTIVE AND RATIONALE Differences between the findings of published omics studies, and perhaps because embryonic and endometrial molecular signatures were often not investigated jointly, have prevented firm conclusions being reached. A timely review summarizing omics studies on the molecular determinants of human implantation in both the embryo and the endometrium will help facilitate integrative and reliable omics approaches to enhance ART outcomes. SEARCH METHODS In order to provide a comprehensive review of the literature published up to September 2019, Medline databases were searched using keywords pertaining to omics, including 'transcriptome', 'proteome', 'secretome', 'metabolome' and 'expression profiles', combined with terms related to implantation, such as 'endometrial receptivity', 'embryo viability' and 'embryo implantation'. No language restrictions were imposed. References from articles were also used for additional literature. OUTCOMES Here we provide a complete summary of the major achievements in human implantation research supplied by omics approaches, highlighting their potential to improve reproductive outcomes while fully elucidating the implantation mechanism. The review highlights the existence of discrepancies among the postulated biomarkers from studies on embryo viability or endometrial receptivity, even using the same omic analysis. WIDER IMPLICATIONS Despite the huge amount of biomarker information provided by omics, we still do not have enough evidence to link data from all omics with an implantation outcome. However, in the foreseeable future, application of minimally or non-invasive omics tools, together with a more integrative interpretation of uniformly collected data, will help to overcome the difficulties for clinical implementation of omics tools. Omics assays of the embryo and endometrium are being proposed or already being used as diagnostic tools for personalised single-embryo transfer in the most favourable endometrial environment, avoiding the risk of multiple pregnancies and ensuring better pregnancy rates.
Collapse
Affiliation(s)
- Purificación Hernández-Vargas
- IVI-RMA Alicante, Innovation. Avda. de Denia 111, 03015 Alicante, Spain.,Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| | - Manuel Muñoz
- IVI-RMA Alicante, Innovation. Avda. de Denia 111, 03015 Alicante, Spain.,Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| | - Francisco Domínguez
- Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| |
Collapse
|
5
|
Pathophysiological Basis of Endometriosis-Linked Stress Associated with Pain and Infertility: A Conceptual Review. REPRODUCTIVE MEDICINE 2020. [DOI: 10.3390/reprodmed1010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Women with endometriosis are often under stress due to the associated pain, infertility, inflammation-related and other comorbidities including cancer. Additionally, these women are also under stress due to taboos, myths, inter-personal troubles surrounding infertility and pain of the disease as well as due to frequent incidences of missed diagnosis and treatment recurrence. Often these women suffer from frustration and loss of valuable time in the prime phase of life. All these complexities integral to endometriosis posit a hyperstructure of integrative stress physiology with overt differentials in effective allostatic state in women with disease compared with disease-free women. In the present review, we aim to critically examine various aspects of pathophysiological basis of stress surrounding endometriosis with special emphasis on pain and subfertility that are known to affect the overall health and quality of life of women with the disease and promising pathophysiological basis for its effective management.
Collapse
|
6
|
Houshdaran S, Chen JC, Vallvé-Juanico J, Balayan S, Vo KC, Smith-McCune K, Greenblatt RM, Irwin JC, Giudice LC. Progestins Related to Progesterone and Testosterone Elicit Divergent Human Endometrial Transcriptomes and Biofunctions. Int J Mol Sci 2020; 21:ijms21072625. [PMID: 32283828 PMCID: PMC7177488 DOI: 10.3390/ijms21072625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 12/30/2022] Open
Abstract
Progestins are widely used for the treatment of gynecologic disorders and alone, or combined with an estrogen, are used as contraceptives. While their potencies, efficacies and side effects vary due to differences in structures, doses and routes of administration, little is known about their effects on the endometrial transcriptome in the presence or absence of estrogen. Herein, we assessed the transcriptome and pathways induced by progesterone (P4) and the three most commonly used synthetic progestins, medroxyprogesterone acetate (MPA), levonorgestrel (LNG), and norethindrone acetate (NETA), on human endometrial stromal fibroblasts (eSF), key players in endometrial physiology and reproductive success. While there were similar transcriptional responses, each progestin induced unique genes and biofunctions, consistent with their structural similarities to progesterone (P4 and MPA) or testosterone (LNG and NETA), involving cellular proliferation, migration and invasion. Addition of estradiol (E2) to each progestin influenced the number of differentially expressed genes and biofunctions in P4 and MPA, while LNG and NETA signatures were more independent of E2. Together, these data suggest different mechanisms of action for different progestins, with progestin-specific altered signatures when combined with E2. Further investigation is warranted for a personalized approach in different gynecologic disorders, for contraception, and minimizing side effects associated with their use.
Collapse
Affiliation(s)
- Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (S.H.); (J.V.-J.); (S.B.); (K.C.V.); (K.S.-M.); (J.C.I.)
| | | | - Júlia Vallvé-Juanico
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (S.H.); (J.V.-J.); (S.B.); (K.C.V.); (K.S.-M.); (J.C.I.)
| | - Shayna Balayan
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (S.H.); (J.V.-J.); (S.B.); (K.C.V.); (K.S.-M.); (J.C.I.)
| | - Kim Chi Vo
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (S.H.); (J.V.-J.); (S.B.); (K.C.V.); (K.S.-M.); (J.C.I.)
| | - Karen Smith-McCune
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (S.H.); (J.V.-J.); (S.B.); (K.C.V.); (K.S.-M.); (J.C.I.)
| | - Ruth M. Greenblatt
- Departments of Clinical Pharmacy, Medicine, Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA;
| | - Juan C. Irwin
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (S.H.); (J.V.-J.); (S.B.); (K.C.V.); (K.S.-M.); (J.C.I.)
| | - Linda C. Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (S.H.); (J.V.-J.); (S.B.); (K.C.V.); (K.S.-M.); (J.C.I.)
- Correspondence: ; Tel.: +1-4154762039
| |
Collapse
|
7
|
Liu X, Zhang L, Han J, Yang L, Cui J, Che S, Cao B, Song Y. A comparative analysis of gene expression induced by the embryo in the caprine endometrium. Vet Med Sci 2019; 6:196-203. [PMID: 31782264 PMCID: PMC7196676 DOI: 10.1002/vms3.221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/05/2019] [Accepted: 10/19/2019] [Indexed: 12/25/2022] Open
Abstract
Transcriptomics is an established powerful tool to identify potential mRNAs and ncRNAs (non‐coding RNAs) for endometrial receptivity. In this study, the goat endometrium at estrus day 5 (ED5) and estrus day 15 (ED15) were selected to systematically analyse the differential expressed genes (DEGs) what were induced by the embryo. There were 1,847 genes which were significantly differential expressed in endometrium induced by the embryo at ED5, and 1,346 at ED15 (p‐value < .05). Secreted phosphoprotein 1 (SPP) was the responsive genes for embryo in the goat endometrium during estrus cycle, neurotensis (NTS) and pleiotrophin (PTN) were the responsive genes for embryo in the goat endometrium at ED5, Testin (TES) and Phosphate and Tension Homology Deleted on Chromsome ten (PTEN) at ED15. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analysis revealed cytoplasm and Endocytosis were indispensable for the endometrium development in dairy goat. In a word, this resulting view of the transcriptome greatly uncovered the global trends in mRNAs expression induced by the embryo in the endometrium of dairy goats.
Collapse
Affiliation(s)
- Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jincheng Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lichun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Sicheng Che
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Wang X, Yu Q. An update on the progress of transcriptomic profiles of human endometrial receptivity. Biol Reprod 2019; 98:440-448. [PMID: 29365037 DOI: 10.1093/biolre/ioy018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022] Open
Abstract
Despite advances in our understanding of fertility, implantation failure remains a significant problem for both spontaneous and assisted pregnancies. Most research efforts concerning the process of implantation are embryo-centric, with a dearth of studies on endometrial factors. Currently, there are no practical and effective diagnostic tools available to precisely predict endometrial receptivity. Transcriptomics, a field based on microarray technology, has a number of procedures for clinical applications, although the functional relevance of most identified genes remains unclear. Importantly, RNA sequencing will further improve the precision and broaden the clinical use of the transcriptome by detecting previously undiscovered genes, which could be used to further our understanding of endometrial receptivity. In this review, potential biomarkers based on endometrium gene expression profiles of human endometrial receptivity were described and compared in natural and stimulated cycles toward discovering future prospects for personalized medical approaches. The intent of this synthesis is to provide researchers, doctors, and clinicians in the field with a better understanding of endometrium receptivity, promote further study in the transcriptome in embryo implantation, and ultimately, improve pregnancy outcome.
Collapse
Affiliation(s)
- Xi Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Lira-Albarrán S, Vega CC, Durand M, Rangel C, Larrea F. Functional genomic analysis of the human receptive endometrium transcriptome upon administration of mifepristone at the time of follicle rupture. Mol Cell Endocrinol 2019; 485:88-96. [PMID: 30796948 DOI: 10.1016/j.mce.2019.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 01/10/2023]
Abstract
The aim of this study was to analyze the effects of progesterone withdrawal on gene transcription in receptive endometrium by the administration of a single dose of 50 mg of the anti-progesterone receptor mifepristone (MFP) at the time of follicle rupture (FR). Six volunteer ovulatory women were studied, taking endometrial biopsies of three control and three MFP-treated women on days LH+2 (C-LH+2) and LH+7 (T-MFP), respectively. The biopsies were prepared for RNA isolation or histological and immunohistochemistry studies. The genomic data from 14 women (C-LH+7) were included as a historical control. The functional genomic analysis of the differentially expressed genes showed that MFP interfered negatively with the bio-functions decidualization of uterus and implantation of blastocyst and embryo. The results of this study confirm but also give new information on how MFP affects endometrial gene expression when administered at the time of FR and the dose used in emergency contraception.
Collapse
Affiliation(s)
- Saúl Lira-Albarrán
- Departmento de Biología de La Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México, 14080, México
| | - Claudia C Vega
- Departmento de Biología de La Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México, 14080, México
| | - Marta Durand
- Departmento de Biología de La Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México, 14080, México
| | - Claudia Rangel
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Ciudad de México, 14610, México
| | - Fernando Larrea
- Departmento de Biología de La Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México, 14080, México.
| |
Collapse
|
10
|
Lira-Albarrán S, Durand M, Barrera D, Vega C, Becerra RG, Díaz L, García-Quiroz J, Rangel C, Larrea F. A single preovulatory administration of ulipristal acetate affects the decidualization process of the human endometrium during the receptive period of the menstrual cycle. Mol Cell Endocrinol 2018; 476:70-78. [PMID: 29709683 DOI: 10.1016/j.mce.2018.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
In order to get further information on the effects of ulipristal acetate (UPA) upon the process of decidualization of endometrium, a functional analysis of the differentially expressed genes in endometrium (DEG) from UPA treated-versus control-cycles of normal ovulatory women was performed. A list of 1183 endometrial DEG, from a previously published study by our group, was submitted to gene ontology, gene enrichment and ingenuity pathway analyses (IPA). This functional analysis showed that decidualization was a biological process overrepresented. Gene set enrichment analysis identified LIF, PRL, IL15 and STAT3 among the most down-regulated genes within the JAK STAT canonical pathway. IPA showed that decidualization of uterus was a bio-function predicted as inhibited by UPA. The results demonstrated that this selective progesterone receptor modulator, when administered during the periovulatory phase of the menstrual cycle, may affect the molecular mechanisms leading to endometrial decidualization in response to progesterone during the period of maximum embryo receptivity.
Collapse
Affiliation(s)
- Saúl Lira-Albarrán
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Marta Durand
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - David Barrera
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Claudia Vega
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Rocio García Becerra
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Claudia Rangel
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.
| |
Collapse
|
11
|
Zheng Q, Li Y, Zhang D, Cui X, Dai K, Yang Y, Liu S, Tan J, Yan Q. ANP promotes proliferation and inhibits apoptosis of ovarian granulosa cells by NPRA/PGRMC1/EGFR complex and improves ovary functions of PCOS rats. Cell Death Dis 2017; 8:e3145. [PMID: 29072679 PMCID: PMC5682660 DOI: 10.1038/cddis.2017.494] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complicated reproductive endocrine disease characterized by polycystic ovaries, hyperandrogenism and anovulation. It is one of the main causes of infertility. RU486 is an antagonist of progesterone receptor, and most commonly used as a contraceptive. However, whether RU486 is correlated with PCOS remains unclear. Atrial natriuretic peptide (ANP) is a small peptide with natriuretic and diuretic functions, and its availability to be used in PCOS treatment is unknown. Here, we showed that the serum ANP level was lower in PCOS patients than that in healthy women, and it was also decreased in the serum and ovarian tissues of RU486-induced PCOS rats compared with the control rats. We also found that RU486 inhibited the proliferation and promoted the apoptosis of human KGN ovarian granulosa cells by downregulating progesterone receptor membrane component 1 (PGRMC1). Meantime, ANP promoted the proliferation and inhibited the apoptosis of KGN cells through upregulating ANP receptor A (NPRA). The promotive effects of ANP on ovarian functions were mediated through the formation of an NPRA/PGRMC1/EGFR complex, which further activated MAPK/ERK signaling and transcription factor AP1. Moreover, ANP treatment reversed the PCOS symptoms, and improved the fertility of RU486-induced PCOS rats. Collectively, these findings highlight that RU486 is associated with the pathogenesis of PCOS, and ANP treatment may be a promising therapeutic option for PCOS.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Yulin Li
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Dandan Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Xinyuan Cui
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Kuixing Dai
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Yu Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Jichun Tan
- Centre for Auxiliary Human Reproduction, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| |
Collapse
|
12
|
Lira-Albarrán S, Durand M, Larrea-Schiavon MF, González L, Barrera D, Vega C, Gamboa-Domínguez A, Rangel C, Larrea F. Ulipristal acetate administration at mid-cycle changes gene expression profiling of endometrial biopsies taken during the receptive period of the human menstrual cycle. Mol Cell Endocrinol 2017; 447:1-11. [PMID: 28219738 DOI: 10.1016/j.mce.2017.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
The aim of this study was to analyze the effects of mid-cycle administration of Ulipristal acetate (UPA) on gene expression in endometrial biopsies taken during the receptive phase of the cycle. Fourteen healthy menstruating women were studied during 14 control non-treated and 12 treated cycles with a single dose of 30 mg UPA when follicle diameter reached 20 mm. Ovulation in both treated and control cycles was confirmed by serial determinations of serum LH, progesterone and vaginal ultrasound. An endometrial biopsy at day LH+7, in each cycle, was taken for RNA microarray and qPCR analysis or prepared for histological and immunohistochemistry studies. Functional analysis of differentially expressed genes showed the presence of changes compatible with a non-receptive endometrial phenotype, further confirmed by qPCR and immunohistochemistry. This study suggests the effects of UPA on endometrial receptivity, offering a plausible explanation for the higher contraceptive efficacy of this method compared to that of levonorgestrel.
Collapse
Affiliation(s)
- Saúl Lira-Albarrán
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México
| | - Marta Durand
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México
| | - Marco F Larrea-Schiavon
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Ciudad de México 14610, México
| | - Leticia González
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México
| | - David Barrera
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México
| | - Claudia Vega
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México
| | - Armando Gamboa-Domínguez
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México
| | - Claudia Rangel
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Ciudad de México 14610, México
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México.
| |
Collapse
|
13
|
Xue HL, Yu N, Wang J, Hao WJ, Li Y, Liu MY. Therapeutic effects of mifepristone combined with Gestrinone on patients with endometriosis. Pak J Med Sci 2016; 32:1268-1272. [PMID: 27882034 PMCID: PMC5103146 DOI: 10.12669/pjms.325.10772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: To evaluate the clinical therapeutic effects of mifepristone combined with gestrinone on patients with endometriosis. Methods: A total of 150 endometriotic patients treated in our hospital between January 2014 and December 2015 were randomly divided into a control group and a treatment group (n=75). The control group began to orally take gestrinone capsules on the second day after menstruation started (2.5 mg/time, twice/week). The treatment group orally took mifepristone tablets (12.5 mg/time, once/day), and the dosage and administration of gestrinone capsules were the same as those of the control group. After 24 weeks of consecutive treatment, the clinical therapeutic effects of the two groups were assessed, and the pelvic symptom score, clinical sign score, serum sex hormone levels and pregnancy outcomes were compared. Results: The total effective rates of control and treatment groups were 77.3% and 90.7% respectively, between which the difference was statistically significant (P<0.05). After treatment, the scores of pelvic symptoms (dysmenorrhea, dyspareunia, pelvic pain) and clinical signs (pelvic tenderness, induration) significantly reduced (P<0.05). Each score of the treatment group decreased more significantly than that of the control group did (P<0.05). The serum follicle hormone, luteinizing hormone, estrogen and progesterone levels were significantly lower than those before treatment (P<0.05). Each level of the treatment group dropped more significantly than that of the control group did (P<0.05). The pregnancy rates in the 6th and 12th months of follow-up were 28.0% and 13.3% in the control group respectively, and 42.7% and 29.3% in the treatment group respectively. Such rates of the two groups were significantly different at each follow-up time point (P<0.05). Conclusion: Mifepristone combined with gestrinone had satisfactory clinical therapeutic effects on endometriosis by reducing hormone levels and improving pregnancy outcomes. Therefore, this regimen is worthy of promotion and application in clinical practice.
Collapse
Affiliation(s)
- Hui-Ling Xue
- Hui-Ling Xue, Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, P. R. China
| | - Ning Yu
- Ning Yu, Department of Obstetrics and Gynecology, People's Hospital of Yi County, Baoding 074200, Hebei Province, P. R. China
| | - Jing Wang
- Jing Wang, Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, P. R. China
| | - Wan-Jiao Hao
- Wan-Jiao Hao, Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, P. R. China
| | - Ye Li
- Ye Li, Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, P. R. China
| | - Mei-Yun Liu
- Mei-Yun Liu, Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, P. R. China
| |
Collapse
|