1
|
Ludwig CLM, Bohleber S, Rebl A, Wirth EK, Venuto MT, Langhammer M, Schweizer U, Weitzel JM, Michaelis M. Endocrine and molecular factors of increased female reproductive performance in the Dummerstorf high-fertility mouse line FL1. J Mol Endocrinol 2022; 69:285-298. [PMID: 35388794 PMCID: PMC9175557 DOI: 10.1530/jme-22-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
The Dummerstorf high-fertility mouse line FL1 is a worldwide unique selection experiment for increased female reproductive performance. After more than 190 generations of selection, these mice doubled the amount of offspring per litter compared to the unselected control line. FL1 females have a superior lifetime fecundity and the highest Silver fecundity index that has been described in mice, while their offspring show no signs of growth retardation. The reasons for the increased reproductive performance remained unclear. Thus, this study aims to characterize the Dummerstorf high-fertility mouse line FL1 on endocrine and molecular levels on the female side. We analyzed parameters of the hypothalamic pituitary gonadal axis on both hormonal and transcriptional levels. Gonadotropin-releasing hormone and follicle-stimulating hormone (FSH) concentrations were decreased in FL1 throughout the whole estrous cycle. Luteinizing hormone (LH) was increased in FL1 mice in estrus. Progesterone concentrations were decreased in estrus in FL1 mice and not affected in diestrus. We used a holistic gene expression approach in the ovary to obtain a global picture of how the high-fertility phenotype is achieved. We found several differentially expressed genes in the ovaries of FL1 mice that are associated with different female fertility traits. Our results indicate that ovulation rates in mice can be increased despite decreased FSH levels. Cycle-related alterations of progesterone and LH levels have the potential to improve follicular maturation, and interactions of endocrine and molecular factors lead to enhanced follicular survival, more successful folliculogenesis and therefore higher ovulation rates in female FL1 mice.
Collapse
Affiliation(s)
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie (IBMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Fish Genetics Unit, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Eva Katrin Wirth
- Department of Endocrinology and Metabolism, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Marzia Tindara Venuto
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martina Langhammer
- Institute of Genetics and Biometry, Service Group Model Laboratory Animals, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie (IBMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Joachim M Weitzel
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Correspondence should be addressed to J M Weitzel or M Michaelis: or
| | - Marten Michaelis
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Correspondence should be addressed to J M Weitzel or M Michaelis: or
| |
Collapse
|
2
|
Palma-Vera SE, Reyer H, Langhammer M, Reinsch N, Derezanin L, Fickel J, Qanbari S, Weitzel JM, Franzenburg S, Hemmrich-Stanisak G, Schoen J. Genomic characterization of the world's longest selection experiment in mouse reveals the complexity of polygenic traits. BMC Biol 2022; 20:52. [PMID: 35189878 PMCID: PMC8862358 DOI: 10.1186/s12915-022-01248-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long-term selection experiments are a powerful tool to understand the genetic background of complex traits. The longest of such experiments has been conducted in the Research Institute for Farm Animal Biology (FBN), generating extreme mouse lines with increased fertility, body mass, protein mass and endurance. For >140 generations, these lines have been maintained alongside an unselected control line, representing a valuable resource for understanding the genetic basis of polygenic traits. However, their history and genomes have not been reported in a comprehensive manner yet. Therefore, the aim of this study is to provide a summary of the breeding history and phenotypic traits of these lines along with their genomic characteristics. We further attempt to decipher the effects of the observed line-specific patterns of genetic variation on each of the selected traits. RESULTS Over the course of >140 generations, selection on the control line has given rise to two extremely fertile lines (>20 pups per litter each), two giant growth lines (one lean, one obese) and one long-distance running line. Whole genome sequencing analysis on 25 animals per line revealed line-specific patterns of genetic variation among lines, as well as high levels of homozygosity within lines. This high degree of distinctiveness results from the combined effects of long-term continuous selection, genetic drift, population bottleneck and isolation. Detection of line-specific patterns of genetic differentiation and structural variation revealed multiple candidate genes behind the improvement of the selected traits. CONCLUSIONS The genomes of the Dummerstorf trait-selected mouse lines display distinct patterns of genomic variation harbouring multiple trait-relevant genes. Low levels of within-line genetic diversity indicate that many of the beneficial alleles have arrived to fixation alongside with neutral alleles. This study represents the first step in deciphering the influence of selection and neutral evolutionary forces on the genomes of these extreme mouse lines and depicts the genetic complexity underlying polygenic traits.
Collapse
Affiliation(s)
- Sergio E Palma-Vera
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| | - Henry Reyer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martina Langhammer
- Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Norbert Reinsch
- Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Lorena Derezanin
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Department of Evolutionary Genetics, Research Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Joerns Fickel
- Department of Evolutionary Genetics, Research Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- University of Potsdam, Institute for Biochemistry and Biology, Potsdam, Germany
| | - Saber Qanbari
- Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Joachim M Weitzel
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | | | - Jennifer Schoen
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Department of Reproduction Biology, Research Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| |
Collapse
|
3
|
Langhammer M, Wytrwat E, Michaelis M, Schön J, Tuchscherer A, Reinsch N, Weitzel JM. Two mouse lines selected for large litter size display different lifetime fecundities. Reproduction 2021; 161:721-730. [PMID: 33878028 PMCID: PMC8183634 DOI: 10.1530/rep-20-0563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/20/2021] [Indexed: 12/16/2022]
Abstract
We recently described two outbred mouse lines that were selected for large litter size at first delivery. However, lifetime fecundity appears to be economically more important for the husbandry of many polytocous species for which mouse lines might serve as bona fide animal models (e.g. for pigs). In the present study, we compared the lifetime fecundities of two highly fertile mouse lines (FL1 and FL2: >20 offspring/litter at first delivery) with those of an unselected control line (ctrl) and two lines that were selected for high body weight (DU6) and high protein mass (DU6P) without selection pressure on fertility. We tested the hypothesis that selection for large litter size at first parturition would also increase lifetime fecundity in mice, and we observed very large differences between lines. Whereas FL1 and ctrl delivered up to nine and ten litters, none of the DU6 and DU6P females gave birth to more than five litters. In line with this observation, FL1 delivered the most pups per lifetime (85.7/female). FL2 females produced the largest average litter sizes (20.4 pups/litter) in the first four litters; however, they displayed a reduced number of litters. With the exception of ctrl, litter sizes declined from litter to litter. Repeated delivery of litters with high offspring numbers did not affect the general health of FL females. The presented data demonstrate that two biodiverse, highly fertile mouse lines selected for large litter size at first delivery show different lifetime reproductive fitness levels. Thus, these mouse lines might serve as valuable mouse models for investigating lifetime productivity and longevity in farm animals.
Collapse
Affiliation(s)
- Martina Langhammer
- Institut für Genetik und Biometrie, Leibniz-Institut für Nutztierbiologie (FBN), Dummerstorf, Germany
| | - Erika Wytrwat
- Institut für Genetik und Biometrie, Leibniz-Institut für Nutztierbiologie (FBN), Dummerstorf, Germany
| | - Marten Michaelis
- Institut für Fortpflanzungsbiologie, Leibniz-Institut für Nutztierbiologie (FBN), Dummerstorf, Germany
| | - Jennifer Schön
- Institut für Fortpflanzungsbiologie, Leibniz-Institut für Nutztierbiologie (FBN), Dummerstorf, Germany
| | - Armin Tuchscherer
- Institut für Genetik und Biometrie, Leibniz-Institut für Nutztierbiologie (FBN), Dummerstorf, Germany
| | - Norbert Reinsch
- Institut für Genetik und Biometrie, Leibniz-Institut für Nutztierbiologie (FBN), Dummerstorf, Germany
| | - Joachim M Weitzel
- Institut für Fortpflanzungsbiologie, Leibniz-Institut für Nutztierbiologie (FBN), Dummerstorf, Germany
| |
Collapse
|
4
|
Michaelis M, Sobczak A, Ludwig C, Marvanová H, Langhammer M, Schön J, Weitzel JM. Altered testicular cell type composition in males of two outbred mouse lines selected for high fertility. Andrology 2020; 8:1419-1427. [PMID: 32306511 DOI: 10.1111/andr.12802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Recently we described two outbred mouse lines which have been selected for high fertility. These mouse models doubled the number of offspring per litter. OBJECTIVES Although selected for a primarily female-trait of high fertility (increased litter size), we were interested whether also males of the fertility lines show differences within their reproductive organs. MATERIALS AND METHODS We investigated males from two outbred mouse lines which have been selected for the phenotype "high fertility" for more than 170 generations. In the present study, we analysed the testicular cell type composition by flow cytometry. We further investigated the weights of reproductive organs, histomorphometry of testis as well as studied sperm motility parameters using a thermal stress assay as well as a sperm hyperactivation assay. RESULTS Here, we describe that males of the fertility line (FL) 1 show an increased percentage of diploid cells within the testis. Flow cytometric analysis identified this enlarged cell population as Leydig cells. Testis weights were unaffected whereas the weights of seminal vesicles of FL1 and FL2 were increased compared to Ctrl bucks. FL2 males show decreased diameter of tubulus seminiferi and an enhanced spermatid/Sertoli cell index. Sperm motility parameters of FL1 and Ctrl males are initially indistinguishable but FL1 spermatozoa show a better performance in a thermal stress experiment over a 5 hours observation period. DISCUSSION These data indicate that although selected for a primarily female-trait of high fertility also males from the fertility lines are effected by defined alterations in their reproductive organs. CONCLUSION Some of these alterations are FL1-specific others are FL2-associated, indicating that different molecular strategies warrant the high-fertility phenotype on the female as well as on the male side.
Collapse
Affiliation(s)
- Marten Michaelis
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Alexander Sobczak
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Carolin Ludwig
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Hana Marvanová
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martina Langhammer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jennifer Schön
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Joachim M Weitzel
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|