1
|
Feng S, Gui Y, Yin S, Xiong X, Liu K, Li J, Dong J, Ma X, Zhou S, Zhang B, Yang S, Wang F, Wang X, Jiang X, Yuan S. Histone demethylase KDM2A recruits HCFC1 and E2F1 to orchestrate male germ cell meiotic entry and progression. EMBO J 2024; 43:4197-4227. [PMID: 39160277 PMCID: PMC11448500 DOI: 10.1038/s44318-024-00203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
In mammals, the transition from mitosis to meiosis facilitates the successful production of gametes. However, the regulatory mechanisms that control meiotic initiation remain unclear, particularly in the context of complex histone modifications. Herein, we show that KDM2A, acting as a lysine demethylase targeting H3K36me3 in male germ cells, plays an essential role in modulating meiotic entry and progression. Conditional deletion of Kdm2a in mouse pre-meiotic germ cells results in complete male sterility, with spermatogenesis ultimately arrested at the zygotene stage of meiosis. KDM2A deficiency disrupts H3K36me2/3 deposition in c-KIT+ germ cells, characterized by a reduction in H3K36me2 but a dramatic increase in H3K36me3. Furthermore, KDM2A recruits the transcription factor E2F1 and its co-factor HCFC1 to the promoters of key genes required for meiosis entry and progression, such as Stra8, Meiosin, Spo11, and Sycp1. Collectively, our study unveils an essential role for KDM2A in mediating H3K36me2/3 deposition and controlling the programmed gene expression necessary for the transition from mitosis to meiosis during spermatogenesis.
Collapse
Affiliation(s)
- Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi Yin
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, 610041, China
| | - Xinxin Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinmei Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juan Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xixiang Ma
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shunchang Zhou
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bingqian Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiyu Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaohua Jiang
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
2
|
Johnson TA, Niedenberger BA, Kirsanov O, Harrington EV, Malachowski T, Geyer CB. Differential responsiveness of spermatogonia to retinoic acid dictates precocious differentiation but not meiotic entry during steady-state spermatogenesis†. Biol Reprod 2023; 108:822-836. [PMID: 36708226 PMCID: PMC10183363 DOI: 10.1093/biolre/ioad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 01/29/2023] Open
Abstract
The foundation of mammalian spermatogenesis is provided by undifferentiated spermatogonia, which comprise of spermatogonial stem cells (SSCs) and transit-amplifying progenitors that differentiate in response to retinoic acid (RA) and are committed to enter meiosis. Our laboratory recently reported that the foundational populations of SSCs, undifferentiated progenitors, and differentiating spermatogonia are formed in the neonatal testis in part based on their differential responsiveness to RA. Here, we expand on those findings to define the extent to which RA responsiveness during steady-state spermatogenesis in the adult testis regulates the spermatogonial fate. Our results reveal that both progenitor and differentiating spermatogonia throughout the testis are capable of responding to exogenous RA, but their resulting fates were quite distinct-undifferentiated progenitors precociously differentiated and proceeded into meiosis on a normal timeline, while differentiating spermatogonia were unable to hasten their entry into meiosis. This reveals that the spermatogonia responding to RA must still complete the 8.6 day differentiation program prior to their entry into meiosis. Addition of exogenous RA enriched testes with preleptotene and pachytene spermatocytes one and two seminiferous cycles later, respectively, supporting recent clinical studies reporting increased sperm production and enhanced fertility in subfertile men on long-term RA analog treatment. Collectively, our results reveal that a well-buffered system exists within mammalian testes to regulate spermatogonial RA exposure, that exposed undifferentiated progenitors can precociously differentiate, but must complete a normal-length differentiation program prior to entering meiosis, and that daily RA treatments increased the numbers of advanced germ cells by directing undifferentiated progenitors to continuously differentiate.
Collapse
Affiliation(s)
- Taylor A Johnson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NCUSA
| | - Bryan A Niedenberger
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NCUSA
| | - Oleksandr Kirsanov
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NCUSA
| | - Ellen V Harrington
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NCUSA
| | - Taylor Malachowski
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NCUSA
| | - Christopher B Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NCUSA
- East Carolina Diabetes and Obesity Institute at East Carolina University, Greenville, NCUSA
| |
Collapse
|
3
|
Inoue H, Sakurai T, Hasegawa K, Suzuki A, Saga Y. NANOS3 suppresses premature spermatogonial differentiation to expand progenitors and fine-tunes spermatogenesis in mice. Biol Open 2022; 11:274984. [PMID: 35394008 PMCID: PMC9002807 DOI: 10.1242/bio.059146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 12/19/2022] Open
Abstract
In the mouse testis, sperm originate from spermatogonial stem cells (SSCs). SSCs give rise to spermatogonial progenitors, which expand their population until entering the differentiation process that is precisely regulated by a fixed time-scaled program called the seminiferous cycle. Although this expansion process of progenitors is highly important, its regulatory mechanisms remain unclear. NANOS3 is an RNA-binding protein expressed in the progenitor population. We demonstrated that the conditional deletion of Nanos3 at a later embryonic stage results in the reduction of spermatogonial progenitors in the postnatal testis. This reduction was associated with the premature differentiation of progenitors. Furthermore, this premature differentiation caused seminiferous stage disagreement between adjacent spermatogenic cells, which influenced spermatogenic epithelial cycles, leading to disruption of the later differentiation pathway. Our study suggests that NANOS3 plays an important role in timing progenitor expansion to adjust to the proper differentiation timing by blocking the retinoic acid (RA) signaling pathway.
Collapse
Affiliation(s)
- Hiroki Inoue
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima, 411-8540Japan
| | - Takayuki Sakurai
- Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan
| | - Kazuteru Hasegawa
- Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, 240-8501Japan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima, 411-8540Japan.,Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
4
|
Ruthig VA, Lamb DJ. Updates in Sertoli Cell-Mediated Signaling During Spermatogenesis and Advances in Restoring Sertoli Cell Function. Front Endocrinol (Lausanne) 2022; 13:897196. [PMID: 35600584 PMCID: PMC9114725 DOI: 10.3389/fendo.2022.897196] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 01/16/2023] Open
Abstract
Since their initial description by Enrico Sertoli in 1865, Sertoli cells have continued to enchant testis biologists. Testis size and germ cell carrying capacity are intimately tied to Sertoli cell number and function. One critical Sertoli cell function is signaling from Sertoli cells to germ cells as part of regulation of the spermatogenic cycle. Sertoli cell signals can be endocrine or paracrine in nature. Here we review recent advances in understanding the interplay of Sertoli cell endocrine and paracrine signals that regulate germ cell state. Although these findings have long-term implications for treating male infertility, recent breakthroughs in Sertoli cell transplantation have more immediate implications. We summarize the surge of advances in Sertoli cell ablation and transplantation, both of which are wedded to a growing understanding of the unique Sertoli cell niche in the transitional zone of the testis.
Collapse
Affiliation(s)
- Victor A. Ruthig
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
- Sexual Medicine Lab, Weill Cornell Medicine, New York, NY, United States
| | - Dolores J. Lamb
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
- Center for Reproductive Genomics, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Dolores J. Lamb,
| |
Collapse
|