1
|
Wolf A, Moore P, Hong C, Sathyamoorthy M. A Possible Phenotype-to-Genotype Association of Novel Single-Nucleotide Variants in the Coding Exons of the ZNF469 Gene to Arterial Aneurysmal and Dissection Diseases. Int J Mol Sci 2024; 25:13730. [PMID: 39769491 PMCID: PMC11678303 DOI: 10.3390/ijms252413730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
After reporting the first known clinical case associating compound heterozygous single-nucleotide variants in Exon 2 of ZNF469 to aortic aneurysmal and iliac dissection, we began prospective surveillance in our vascular genetic practice for similar cases. Herein, we present nine (9) subjects from a total cohort of 135 with arterial aneurysms or dissections who revealed single-nucleotide variants in ZNF469 with no other alterations in a panel of 35 genes associated with aneurysmal and dissection disorders. Five out of nine (5/9) single-nucleotide variants were in Exon 1, and four out of nine (4/9) mutations were in Exon 2, both of which are principal coding exons for this gene. Eight out of nine (8/9) were ACMG variants of unknown significance (VUSs), and one out of nine (1/9) was an ACMG pathogenic mutation previously associated to brittle cornea syndrome (BCS). Of our nine subjects, four (44.4%) experienced clinically significant vascular dissection, and four (44.4%) had a family history of one or more first-degree relatives with aneurysmal or dissection diseases. This novel genetic case series significantly strengthens our initial discovery of ZNF469's potential association with arterial aneurysmal/dissection diseases through the study of this cohort of unrelated patients.
Collapse
Affiliation(s)
- Adam Wolf
- Sathyamoorthy Laboratory, Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, TX 76104, USA
| | - Peyton Moore
- Sathyamoorthy Laboratory, Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, TX 76104, USA
| | - Charles Hong
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Mohanakrishnan Sathyamoorthy
- Sathyamoorthy Laboratory, Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, TX 76104, USA
- Consultants in Cardiovascular Medicine and Science, Fort Worth, TX 76104, USA
- Fort Worth Institute for Molecular Medicine and Genomics Research, Fort Worth, TX 76104, USA
| |
Collapse
|
2
|
Luo C, He S, Shi F, Zhou J, Shang L. The Role of TRAIL Signaling in Cancer: Searching for New Therapeutic Strategies. BIOLOGY 2024; 13:521. [PMID: 39056714 PMCID: PMC11274015 DOI: 10.3390/biology13070521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Cancer continues to pose a significant threat to global health, with its status as a leading cause of death remaining unchallenged. Within the realm of cancer research, the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) stands out as a critical player, having been identified in the 1990s as the tenth member of the TNF family. This review examines the pivotal role of TRAIL in cancer biology, focusing on its ability to induce apoptosis in malignant cells through both endogenous and exogenous pathways. We provide an in-depth analysis of TRAIL's intracellular signaling and intercellular communication, underscoring its potential as a selective anticancer agent. Additionally, the review explores TRAIL's capacity to reshape the tumor microenvironment, thereby influencing cancer progression and response to therapy. With an eye towards future developments, we discuss the prospects of harnessing TRAIL's capabilities for the creation of tailored, precision-based cancer treatments, aiming to enhance efficacy and improve patient survival rates.
Collapse
Affiliation(s)
- Cheng Luo
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Shan He
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jianhua Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
| | - Li Shang
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
| |
Collapse
|
3
|
Vandersteen AM, Weerakkody RA, Parry DA, Kanonidou C, Toddie-Moore DJ, Vandrovcova J, Darlay R, Santoyo-Lopez J, Meynert A, Kazkaz H, Grahame R, Cummings C, Bartlett M, Ghali N, Brady AF, Pope FM, van Dijk FS, Cordell HJ, Aitman TJ. Genetic complexity of diagnostically unresolved Ehlers-Danlos syndrome. J Med Genet 2024; 61:232-238. [PMID: 37813462 DOI: 10.1136/jmg-2023-109329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND The Ehlers-Danlos syndromes (EDS) are heritable disorders of connective tissue (HDCT), reclassified in the 2017 nosology into 13 subtypes. The genetic basis for hypermobile Ehlers-Danlos syndrome (hEDS) remains unknown. METHODS Whole exome sequencing (WES) was undertaken on 174 EDS patients recruited from a national diagnostic service for complex EDS and a specialist clinic for hEDS. Patients had already undergone expert phenotyping, laboratory investigation and gene sequencing, but were without a genetic diagnosis. Filtered WES data were reviewed for genes underlying Mendelian disorders and loci reported in EDS linkage, transcriptome and genome-wide association studies (GWAS). A genetic burden analysis (Minor Allele Frequency (MAF) <0.05) incorporating 248 Avon Longitudinal Study of Parents and Children (ALSPAC) controls sequenced as part of the UK10K study was undertaken using TASER methodology. RESULTS Heterozygous pathogenic (P) or likely pathogenic (LP) variants were identified in known EDS and Loeys-Dietz (LDS) genes. Multiple variants of uncertain significance where segregation and functional analysis may enable reclassification were found in genes associated with EDS, LDS, heritable thoracic aortic disease (HTAD), Mendelian disorders with EDS symptomatology and syndromes with EDS-like features. Genetic burden analysis revealed a number of novel loci, although none reached the threshold for genome-wide significance. Variants with biological plausibility were found in genes and pathways not currently associated with EDS or HTAD. CONCLUSIONS We demonstrate the clinical utility of large panel-based sequencing and WES for patients with complex EDS in distinguishing rare EDS subtypes, LDS and related syndromes. Although many of the P and LP variants reported in this cohort would be identified with current panel testing, they were not at the time of this study, highlighting the use of extended panels and WES as a clinical tool for complex EDS. Our results are consistent with the complex genetic architecture of EDS and suggest a number of novel hEDS and HTAD candidate genes and pathways.
Collapse
Affiliation(s)
- Anthony M Vandersteen
- Maritime Medical Genetics Service, IWK Health Centre, Halifax, Nova Scotia, Canada
- Faculty of Medicine, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ruwan A Weerakkody
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
- Department of Vascular Surgery, Royal Free Hospital, London, UK
| | - David A Parry
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Christina Kanonidou
- Department of Clinical Biochemistry, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Daniel J Toddie-Moore
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Street Institute of Neurology, University College London, London, UK
| | - Rebecca Darlay
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Alison Meynert
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Hanadi Kazkaz
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rodney Grahame
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Carole Cummings
- Ehlers-Danlos Syndrome National Diagnostic Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow, UK
- Department of Metabolism, Digestion and Reproduction Section of Genetics and Genomics, Imperial College London, London, UK
| | - Marion Bartlett
- Ehlers-Danlos Syndrome National Diagnostic Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow, UK
- Department of Metabolism, Digestion and Reproduction Section of Genetics and Genomics, Imperial College London, London, UK
| | - Neeti Ghali
- Ehlers-Danlos Syndrome National Diagnostic Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow, UK
- Department of Metabolism, Digestion and Reproduction Section of Genetics and Genomics, Imperial College London, London, UK
| | - Angela F Brady
- Ehlers-Danlos Syndrome National Diagnostic Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow, UK
- Department of Metabolism, Digestion and Reproduction Section of Genetics and Genomics, Imperial College London, London, UK
| | - F Michael Pope
- Ehlers-Danlos Syndrome National Diagnostic Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow, UK
- Department of Metabolism, Digestion and Reproduction Section of Genetics and Genomics, Imperial College London, London, UK
| | - Fleur S van Dijk
- Ehlers-Danlos Syndrome National Diagnostic Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow, UK
- Department of Metabolism, Digestion and Reproduction Section of Genetics and Genomics, Imperial College London, London, UK
| | - Heather J Cordell
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Timothy J Aitman
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Hua R, Gao H, He C, Xin S, Wang B, Zhang S, Gao L, Tao Q, Wu W, Sun F, Xu J. An emerging view on vascular fibrosis molecular mediators and relevant disorders: from bench to bed. Front Cardiovasc Med 2023; 10:1273502. [PMID: 38179503 PMCID: PMC10764515 DOI: 10.3389/fcvm.2023.1273502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Vascular fibrosis is a widespread pathologic condition that arises during vascular remodeling in cardiovascular dysfunctions. According to previous studies, vascular fibrosis is characterized by endothelial matrix deposition and vascular wall thickening. The RAAS and TGF-β/Smad signaling pathways have been frequently highlighted. It is, however, far from explicit in terms of understanding the cause and progression of vascular fibrosis. In this review, we collected and categorized a large number of molecules which influence the fibrosing process, in order to acquire a better understanding of vascular fibrosis, particularly of pathologic dysfunction. Furthermore, several mediators that prevent vascular fibrosis are discussed in depth in this review, with the aim that this will contribute to the future prevention and treatment of related conditions.
Collapse
Affiliation(s)
- Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Qiang Tao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Wenqi Wu
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Riera-Domingo C, Leite-Gomes E, Charatsidou I, Zhao P, Carrá G, Cappellesso F, Mourao L, De Schepper M, Liu D, Serneels J, Alameh MG, Shuvaev VV, Geukens T, Isnaldi E, Prenen H, Weissman D, Muzykantov VR, Soenen S, Desmedt C, Scheele CL, Sablina A, Di Matteo M, Martín-Pérez R, Mazzone M. Breast tumors interfere with endothelial TRAIL at the premetastatic niche to promote cancer cell seeding. SCIENCE ADVANCES 2023; 9:eadd5028. [PMID: 36947620 PMCID: PMC10032608 DOI: 10.1126/sciadv.add5028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Endothelial cells (ECs) grant access of disseminated cancer cells to distant organs. However, the molecular players regulating the activation of quiescent ECs at the premetastatic niche (PMN) remain elusive. Here, we find that ECs at the PMN coexpress tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its cognate death receptor 5 (DR5). Unexpectedly, endothelial TRAIL interacts intracellularly with DR5 to prevent its signaling and preserve a quiescent vascular phenotype. In absence of endothelial TRAIL, DR5 activation induces EC death and nuclear factor κB/p38-dependent EC stickiness, compromising vascular integrity and promoting myeloid cell infiltration, breast cancer cell adhesion, and metastasis. Consistently, both down-regulation of endothelial TRAIL at the PMN by proangiogenic tumor-secreted factors and the presence of the endogenous TRAIL inhibitors decoy receptor 1 (DcR1) and DcR2 favor metastasis. This study discloses an intracrine mechanism whereby TRAIL blocks DR5 signaling in quiescent endothelia, acting as gatekeeper of the vascular barrier that is corrupted by the tumor during cancer cell dissemination.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Eduarda Leite-Gomes
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Iris Charatsidou
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peihua Zhao
- Laboratory for Mechanisms of Cell Transformation, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Mechanisms of Cell Transformation, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Giovanna Carrá
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
- Molecular Biotechnology Center, Torino, Italy
| | - Federica Cappellesso
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Larissa Mourao
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maxim De Schepper
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Dana Liu
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jens Serneels
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Vladimir V. Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tatjana Geukens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Edoardo Isnaldi
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Hans Prenen
- Department of Oncology, University Hospital Antwerp, Edegem, Belgium
| | - Drew Weissman
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefaan Soenen
- Leuven Cancer Institute, KU Leuven, Belgium
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Colinda L. G. J. Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Anna Sablina
- Laboratory for Mechanisms of Cell Transformation, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Mechanisms of Cell Transformation, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Rosa Martín-Pérez
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Behind the Adaptive and Resistance Mechanisms of Cancer Stem Cells to TRAIL. Pharmaceutics 2021; 13:pharmaceutics13071062. [PMID: 34371753 PMCID: PMC8309156 DOI: 10.3390/pharmaceutics13071062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.
Collapse
|
7
|
Quiroz-Reyes AG, Delgado-Gonzalez P, Islas JF, Gallegos JLD, Martínez Garza JH, Garza-Treviño EN. Behind the Adaptive and Resistance Mechanisms of Cancer Stem Cells to TRAIL. Pharmaceutics 2021; 13:1062. [DOI: https:/doi.org/10.3390/pharmaceutics13071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.
Collapse
|