1
|
Odendaal ML, Taenzer J, de Rooij MMT, Kuiling S, Bogaert D, Franz E, Smit LAM. Nasopharyngeal microbiota is influenced by agricultural air pollution in individuals with and without COPD. Sci Rep 2025; 15:15653. [PMID: 40325057 PMCID: PMC12053623 DOI: 10.1038/s41598-025-00242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
Respiratory health in chronic obstructive pulmonary disease (COPD) is influenced by environmental factors such as air pollution, yet the role of the airway microbiota in this relationship remains unclear. We investigated the association between exposure to air pollution from livestock farms and the nasopharyngeal microbiota in individuals with COPD compared to healthy control subjects. The study included nasopharyngeal swabs from 186 currently non-smoking participants in the Netherlands, including 65 individuals with COPD and 121 without from a regional rural cohort. Additionally, 116 individuals from a population-wide cohort were included as national controls. Samples were taken at three time points over 12 weeks. The nasopharyngeal microbiota was studied using 16 S rRNA gene-based sequencing for all baseline samples and a random selection of 6-weeks and 12-weeks samples. Dispersion models were used to determine the average concentrations of livestock-related PM10, endotoxin, and ammonia at the participants' home addresses. Individuals with COPD had a higher absolute abundance of anaerobic bacteria, such as Peptoniphilus, Anaerococcus, Finegoldia magna, and Prevotella. Importantly, residential exposure to ammonia was identified as the most important driver of the microbial community composition, explaining 6.6% of the variation in nasopharyngeal microbiota in individuals with COPD. Higher ammonia concentrations were associated with decreased levels of key commensals and increased abundance of anaerobic bacteria. Furthermore, individuals living in areas with high livestock density exhibited greater microbial diversity compared to the broader national population. The study highlights the influence of residential exposure to livestock-related air pollution, particularly ammonia, on nasopharyngeal microbiota composition in individuals with COPD. Our findings suggest that environmental factors significantly impact microbial communities and underscore the potential role of anaerobic bacteria in COPD pathology. Future research should further investigate the mechanisms by which environmental air pollutants affect microbial communities and explore potential interventions to mitigate their effects on respiratory health.
Collapse
Affiliation(s)
- Mari-Lee Odendaal
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands.
| | - Julia Taenzer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Sjoerd Kuiling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Crucianelli S, Mariano A, Valeriani F, Cocomello N, Gianfranceschi G, Baseggio Conrado A, Moretti F, Scotto d'Abusco A, Mennuni G, Fraioli A, Del Ben M, Romano Spica V, Fontana M. Effects of sulphur thermal water inhalations in long-COVID syndrome: Spa-centred, double-blinded, randomised case-control pilot study. Clin Med (Lond) 2024; 24:100251. [PMID: 39370044 PMCID: PMC11570715 DOI: 10.1016/j.clinme.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND The long-COVID syndrome is characterised by a plethora of symptoms. Given its social and economic impact, many studies have stressed the urgency of proposing innovative strategies other than hospital settings. In this double-blinded, randomised, case-control trial, we investigate the effects of sulphur thermal water inhalations, rich in H2S, compared to distilled water inhalations on symptoms, inflammatory markers and nasal microbiome in long-COVID patients. METHODS About 30 outpatients aged 18-75 with positive diagnosis for long-COVID were randomised in two groups undergoing 12 consecutive days of inhalations. The active group (STW) received sulphur thermal water inhalations whereas the placebo group received inhalations of sterile distilled non-pyrogenic water (SDW). Each participant was tested prior treatment at day 1 (T0), after the inhalations at day 14 (T1) and at 3 months follow-up (T2). At each time point, blood tests, nasal swabs for microbiome sampling, pulmonary functionality tests (PFTs) and pro-inflammatory marker measure were performed. RESULTS The scores obtained in the administered tests (6MWT, Borg score and SGRQ) at T0 showed a significant variation in the STW group, at T1 and T2. Serum cytokine levels and other inflammatory biomarkers reported a statistically significant decrease. Some specific parameters of PFTs showed ameliorations in the STW group only. Changes in the STW nasopharyngeal microbiota composition were noticed, especially from T0 to T2. CONCLUSIONS Inhalations of sulphur thermal water exerted objective and subjective improvements on participants affected by long-COVID. Significant reduction of inflammatory markers, dyspnoea scores and quantitative and qualitative changes in the nasopharyngeal microbiome were also assessed.
Collapse
Affiliation(s)
- Serena Crucianelli
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Federica Valeriani
- Laboratory of Epidemiology and Biotechnologies, Department of Movement Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, Rome 00135, Italy
| | - Nicholas Cocomello
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Gianluca Gianfranceschi
- Laboratory of Epidemiology and Biotechnologies, Department of Movement Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, Rome 00135, Italy
| | - Alessia Baseggio Conrado
- Department of Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ferdinando Moretti
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Gioacchino Mennuni
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Antonio Fraioli
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Maria Del Ben
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Vincenzo Romano Spica
- Laboratory of Epidemiology and Biotechnologies, Department of Movement Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, Rome 00135, Italy
| | - Mario Fontana
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
| |
Collapse
|
3
|
Rebuli ME, Stanley Lee A, Nurhussien L, Tahir UA, Sun WY, Kimple AJ, Ebert CS, Almond M, Jaspers I, Rice MB. Nasal biomarkers of immune function differ based on smoking and respiratory disease status. Physiol Rep 2023; 11:e15528. [PMID: 36780897 PMCID: PMC9925276 DOI: 10.14814/phy2.15528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 02/15/2023] Open
Abstract
Respiratory biomarkers have the potential to identify airway injury by revealing inflammatory processes within the respiratory tract. Currently, there are no respiratory biomarkers suitable for clinical use to identify patients that warrant further diagnostic work-up, counseling, and treatment for toxic inhalant exposures or chronic airway disease. Using a novel, noninvasive method of sampling the nasal epithelial lining fluid, we aimed to investigate if nasal biomarker patterns could distinguish healthy nonsmoking adults from active smokers and those with chronic upper and lower airway disease in this exploratory study. We compared 28 immune mediators from healthy nonsmoking adults (n = 32), former smokers with COPD (n = 22), chronic rhinosinusitis (CRS) (n = 22), and smoking adults without airway disease (n = 13). Using ANOVA, multinomial logistic regressions, and weighted gene co-expression network analysis (WGCNA), we determined associations between immune mediators and each cohort. Six mediators (IL-7, IL-10, IL-13, IL-12p70, IL-15, and MCP-1) were lower among disease groups compared to healthy controls. Participants with lower levels of IL-10, IL-12p70, IL-13, and MCP-1 in the nasal fluid had a higher odds of being in the COPD or CRS group. The cluster analysis identified groups of mediators that correlated with disease status. Specifically, the cluster of IL-10, IL-12p70, and IL-13, was positively correlated with healthy and negatively correlated with COPD groups, and two clusters were correlated with active smoking. In this exploratory study, we preliminarily identified groups of nasal mucosal mediators that differed by airway disease and smoking status. Future prospective, age-matched studies that control for medication use are needed to validate these patterns and determine if nasosorption has diagnostic utility for upper and lower airway disease or injury.
Collapse
Affiliation(s)
- Meghan E. Rebuli
- Department of Pediatrics and Curriculum in Toxicology and Environmental MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Center for Environmental Medicine, Asthma and Lung BiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Anna Stanley Lee
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Lina Nurhussien
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Usman A. Tahir
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Wendy Y. Sun
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Adam J. Kimple
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Charles S. Ebert
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Martha Almond
- Center for Environmental Medicine, Asthma and Lung BiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Ilona Jaspers
- Department of Pediatrics and Curriculum in Toxicology and Environmental MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Center for Environmental Medicine, Asthma and Lung BiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Mary B. Rice
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|