1
|
Farslow JC, Lipinski KJ, Packard LB, Edgley ML, Taylor J, Flibotte S, Moerman DG, Katju V, Bergthorsson U. Rapid Increase in frequency of gene copy-number variants during experimental evolution in Caenorhabditis elegans. BMC Genomics 2015; 16:1044. [PMID: 26645535 PMCID: PMC4673709 DOI: 10.1186/s12864-015-2253-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/27/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Gene copy-number variation (CNVs), which provides the raw material for the evolution of novel genes, is widespread in natural populations. We investigated whether CNVs constitute a common mechanism of genetic change during adaptation in experimental Caenorhabditis elegans populations. Outcrossing C. elegans populations with low fitness were evolved for >200 generations. The frequencies of CNVs in these populations were analyzed by oligonucleotide array comparative genome hybridization, quantitative PCR, PCR, DNA sequencing across breakpoints, and single-worm PCR. RESULTS Multiple duplications and deletions rose to intermediate or high frequencies in independent populations. Several lines of evidence suggest that these changes were adaptive: (i) copy-number changes reached high frequency or were fixed in a short time, (ii) many independent populations harbored CNVs spanning the same genes, and (iii) larger average size of CNVs in adapting populations relative to spontaneous CNVs. The latter is expected if larger CNVs are more likely to encompass genes under selection for a change in gene dosage. Several convergent CNVs originated in populations descended from different low fitness ancestors as well as high fitness controls. CONCLUSIONS We show that gene copy-number changes are a common class of adaptive genetic change. Due to the high rates of origin of spontaneous duplications and deletions, copy-number changes containing the same genes arose readily in independent populations. Duplications that reached high frequencies in these adapting populations were significantly larger in span. Many convergent CNVs may be general adaptations to laboratory conditions. These results demonstrate the great potential borne by CNVs for evolutionary adaptation.
Collapse
Affiliation(s)
- James C Farslow
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Kendra J Lipinski
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Lucille B Packard
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mark L Edgley
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jon Taylor
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Vaishali Katju
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Present address: Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Ulfar Bergthorsson
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA. .,Present address: Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA.
| |
Collapse
|
2
|
Jones MR, Rose AM, Baillie DL. The ortholog of the human proto-oncogene ROS1 is required for epithelial development in C. elegans. Genesis 2013; 51:545-61. [PMID: 23733356 PMCID: PMC4232869 DOI: 10.1002/dvg.22405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
Abstract
The orphan receptor ROS1 is a human proto-oncogene, mutations of which are found in an increasing number of cancers. Little is known about the role of ROS1, however in vertebrates it has been implicated in promoting differentiation programs in specialized epithelial tissues. In this study we show that the C. elegans ortholog of ROS1, the receptor tyrosine kinase ROL-3, has an essential role in orchestrating the morphogenesis and development of specialized epidermal tissues, highlighting a potentially conserved function in coordinating crosstalk between developing epithelial cells. We also provide evidence of a direct relationship between ROL-3, the mucin SRAP-1, and BCC-1, the homolog of mRNA regulating protein Bicaudal-C. This study answers a longstanding question as to the developmental function of ROL-3, identifies three new genes that are expressed and function in the developing epithelium of C. elegans, and introduces the nematode as a potentially powerful model system for investigating the increasingly important, yet poorly understood, human oncogene ROS1. genesis 51:545–561.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4.
| | | | | |
Collapse
|