1
|
Hou Z, Merényi Z, Yang Y, Zhang Y, Csernetics Á, Bálint B, Hegedüs B, Földi C, Wu H, Kristóffy Z, Ábrahám E, Miklovics N, Virágh M, Liu XB, Zsibrita N, Lipinszki Z, Karcagi I, Gao W, Nagy LG. An evolutionarily ancient transcription factor drives spore morphogenesis in mushroom-forming fungi. Curr Biol 2025; 35:1470-1483.e5. [PMID: 40073868 DOI: 10.1016/j.cub.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025]
Abstract
Sporulation is the most widespread means of reproduction and dispersal in fungi and, at the same time, an industrially important trait in crop mushrooms. In the Basidiomycota, sexual spores are produced on specialized cells known as basidia, from which they are forcibly discharged with the highest known acceleration in nature. However, the genetics of sporulation remains poorly known. Here, we identify a new, highly conserved transcription factor, sporulation-related regulator 1 (srr1), and systematically address the genetics of spore formation for the first time in the Basidiomycota. We show that Srr1 regulates postmeiotic spore morphogenesis, but not other aspects of fruiting body development or meiosis, and its role is conserved in the phylogenetically distant, but industrially important, Pleurotus spp. (oyster mushrooms). We used RNA sequencing to understand genes directly or indirectly regulated by Srr1 and identified a strongly supported binding motif for the protein. Using an inferred network of putative target genes regulated by Srr1 and comparative genomics, we identified genes lost in secondarily non-ballistosporic taxa, including a novel sporulation-specific chitinase gene. Overall, our study offers systematic insights into the genetics of spore morphogenesis in the Basidiomycota.
Collapse
Affiliation(s)
- Zhihao Hou
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary; Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Yashu Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing 100081, China
| | - Yan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Árpád Csernetics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Csenge Földi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary; Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Hongli Wu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Zsolt Kristóffy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Edit Ábrahám
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Nikolett Miklovics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Xiao-Bin Liu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Nikolett Zsibrita
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Zoltán Lipinszki
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Ildikó Karcagi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Wei Gao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing 100081, China
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary.
| |
Collapse
|
2
|
Berkel C, Cacan E. Involvement of ATMIN-DYNLL1-MRN axis in the progression and aggressiveness of serous ovarian cancer. Biochem Biophys Res Commun 2021; 570:74-81. [PMID: 34273621 DOI: 10.1016/j.bbrc.2021.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022]
Abstract
The loss of DYNLL1 contributes to chemoresistance in ovarian cancer. DYNLL1 binds to MRE11, a component of MRN complex (MRE11-RAD50-NBS1), and limits its function in homologous recombination (HR) repair in BRCA1-mutant cells. Decreased activity of MRE11 results in less HR-repair events and thus leads to higher sensitivity against DNA-damaging agents such as cisplatin. Therefore, a better understanding of the cellular changes in DYNLL1-MRN axis in ovarian cancer is needed. Here, we showed that DYNLL1 overexpression leads to decreased chemoresistance even in BRCA-proficient ovarian cancer cells. ATMIN, a transcriptional activator of DYNLL1, showed decreased expression; however, two components of MRN complex, MRE11 and NBS1 (NBN), showed increased expression in high grade compared to low grade serous ovarian cancer. We found that the components of MRN complex (MRE11-RAD50-NBS1) have higher protein levels in sites of omental metastasis and serous tubal intraepithelial carcinoma (STIC) compared to surrounding non-malignant stromal cells in patients with high grade serous ovarian cancer. We showed that the percentage of copy number variation (CNV) events in genes encoding ATMIN, DYNLL1, MRE11 and NBN are the highest in ovarian cancer among other cancer types. ATMIN and DYNLL1 genes are mostly characterized by copy number losses; however, CNV events in MRN complex components are mostly copy number gains. This study highlights the importance of ATMIN-DYNLL1-MRN axis in the development, progression and therapy response of ovarian cancer. MRN levels in ovarian cancer that differ from adjacent, non-malignant tissues may represent actionable therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, 60250, Turkey.
| | - Ercan Cacan
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, 60250, Turkey.
| |
Collapse
|
3
|
Na J, Newman JA, Then CK, Syed J, Vendrell I, Torrecilla I, Ellermann S, Ramadan K, Fischer R, Kiltie AE. SPRTN protease-cleaved MRE11 decreases DNA repair and radiosensitises cancer cells. Cell Death Dis 2021; 12:165. [PMID: 33558481 PMCID: PMC7870818 DOI: 10.1038/s41419-021-03437-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/21/2022]
Abstract
The human MRE11/RAD50/NBS1 (MRN) complex plays a crucial role in sensing and repairing DNA DSB. MRE11 possesses dual 3'-5' exonuclease and endonuclease activity and forms the core of the multifunctional MRN complex. We previously identified a C-terminally truncated form of MRE11 (TR-MRE11) associated with post-translational MRE11 degradation. Here we identified SPRTN as the essential protease for the formation of TR-MRE11 and characterised the role of this MRE11 form in its DNA damage response (DDR). Using tandem mass spectrometry and site-directed mutagenesis, the SPRTN-dependent cleavage site for MRE11 was identified between 559 and 580 amino acids. Despite the intact interaction of TR-MRE11 with its constitutive core complex proteins RAD50 and NBS1, both nuclease activities of truncated MRE11 were dramatically reduced due to its deficient binding to DNA. Furthermore, lack of the MRE11 C-terminal decreased HR repair efficiency, very likely due to abolished recruitment of TR-MRE11 to the sites of DNA damage, which consequently led to increased cellular radiosensitivity. The presence of this DNA repair-defective TR-MRE11 could explain our previous finding that the high MRE11 protein expression by immunohistochemistry correlates with improved survival following radical radiotherapy in bladder cancer patients.
Collapse
Affiliation(s)
- Juri Na
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Chee Kin Then
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Junetha Syed
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Iolanda Vendrell
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ignacio Torrecilla
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sophie Ellermann
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Kristijan Ramadan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anne E Kiltie
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
4
|
Alabdullah AK, Borrill P, Martin AC, Ramirez-Gonzalez RH, Hassani-Pak K, Uauy C, Shaw P, Moore G. A Co-Expression Network in Hexaploid Wheat Reveals Mostly Balanced Expression and Lack of Significant Gene Loss of Homeologous Meiotic Genes Upon Polyploidization. FRONTIERS IN PLANT SCIENCE 2019; 10:1325. [PMID: 31681395 PMCID: PMC6813927 DOI: 10.3389/fpls.2019.01325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/24/2019] [Indexed: 05/05/2023]
Abstract
Polyploidization has played an important role in plant evolution. However, upon polyploidization, the process of meiosis must adapt to ensure the proper segregation of increased numbers of chromosomes to produce balanced gametes. It has been suggested that meiotic gene (MG) duplicates return to a single copy following whole genome duplication to stabilize the polyploid genome. Therefore, upon the polyploidization of wheat, a hexaploid species with three related (homeologous) genomes, the stabilization process may have involved rapid changes in content and expression of MGs on homeologous chromosomes (homeologs). To examine this hypothesis, sets of candidate MGs were identified in wheat using co-expression network analysis and orthology informed approaches. In total, 130 RNA-Seq samples from a range of tissues including wheat meiotic anthers were used to define co-expressed modules of genes. Three modules were significantly correlated with meiotic tissue samples but not with other tissue types. These modules were enriched for GO terms related to cell cycle, DNA replication, and chromatin modification and contained orthologs of known MGs. Overall, 74.4% of genes within these meiosis-related modules had three homeologous copies which was similar to other tissue-related modules. Amongst wheat MGs identified by orthology, rather than co-expression, the majority (93.7%) were either retained in hexaploid wheat at the same number of copies (78.4%) or increased in copy number (15.3%) compared to ancestral wheat species. Furthermore, genes within meiosis-related modules showed more balanced expression levels between homeologs than genes in non-meiosis-related modules. Taken together, our results do not support extensive gene loss nor changes in homeolog expression of MGs upon wheat polyploidization. The construction of the MG co-expression network allowed identification of hub genes and provided key targets for future studies.
Collapse
Affiliation(s)
| | - Philippa Borrill
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | - Keywan Hassani-Pak
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Peter Shaw
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
5
|
Abstract
Sex in social amoebae (or dictyostelids) has a number of striking features. Dictyostelid zygotes do not proliferate but grow to a large size by feeding on other cells of the same species, each zygote ultimately forming a walled structure called a macrocyst. The diploid macrocyst nucleus undergoes meiosis, after which a single meiotic product survives to restart haploid vegetative growth. Meiotic recombination is generally initiated by the Spo11 enzyme, which introduces DNA double-strand breaks. Uniquely, as far as is known among sexual eukaryotes, dictyostelids lack a SPO11 gene. Despite this, recombination occurs at high frequencies during meiosis in dictyostelids, through unknown mechanisms. The molecular processes underlying these events, and the evolutionary drivers that brought them into being, may shed light on the genetic conflicts that occur within and between genomes, and how they can be resolved.
Collapse
|
6
|
Syed A, Tainer JA. The MRE11-RAD50-NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu Rev Biochem 2018; 87:263-294. [PMID: 29709199 PMCID: PMC6076887 DOI: 10.1146/annurev-biochem-062917-012415] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genomic instability in disease and its fidelity in health depend on the DNA damage response (DDR), regulated in part from the complex of meiotic recombination 11 homolog 1 (MRE11), ATP-binding cassette-ATPase (RAD50), and phosphopeptide-binding Nijmegen breakage syndrome protein 1 (NBS1). The MRE11-RAD50-NBS1 (MRN) complex forms a multifunctional DDR machine. Within its network assemblies, MRN is the core conductor for the initial and sustained responses to DNA double-strand breaks, stalled replication forks, dysfunctional telomeres, and viral DNA infection. MRN can interfere with cancer therapy and is an attractive target for precision medicine. Its conformations change the paradigm whereby kinases initiate damage sensing. Delineated results reveal kinase activation, posttranslational targeting, functional scaffolding, conformations storing binding energy and enabling access, interactions with hub proteins such as replication protein A (RPA), and distinct networks at DNA breaks and forks. MRN biochemistry provides prototypic insights into how it initiates, implements, and regulates multifunctional responses to genomic stress.
Collapse
Affiliation(s)
- Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Moiani D, Ronato DA, Brosey CA, Arvai AS, Syed A, Masson JY, Petricci E, Tainer JA. Targeting Allostery with Avatars to Design Inhibitors Assessed by Cell Activity: Dissecting MRE11 Endo- and Exonuclease Activities. Methods Enzymol 2018. [PMID: 29523233 DOI: 10.1016/bs.mie.2017.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For inhibitor design, as in most research, the best system is question dependent. We suggest structurally defined allostery to design specific inhibitors that target regions beyond active sites. We choose systems allowing efficient quality structures with conformational changes as optimal for structure-based design to optimize inhibitors. We maintain that evolutionarily related targets logically provide molecular avatars, where this Sanskrit term for descent includes ideas of functional relationships and of being a physical embodiment of the target's essential features without requiring high sequence identity. Appropriate biochemical and cell assays provide quantitative measurements, and for biomedical impacts, any inhibitor's activity should be validated in human cells. Specificity is effectively shown empirically by testing if mutations blocking target activity remove cellular inhibitor impact. We propose this approach to be superior to experiments testing for lack of cross-reactivity among possible related enzymes, which is a challenging negative experiment. As an exemplary avatar system for protein and DNA allosteric conformational controls, we focus here on developing separation-of-function inhibitors for meiotic recombination 11 nuclease activities. This was achieved not by targeting the active site but rather by geometrically impacting loop motifs analogously to ribosome antibiotics. These loops are neighboring the dimer interface and active site act in sculpting dsDNA and ssDNA into catalytically competent complexes. One of our design constraints is to preserve DNA substrate binding to geometrically block competing enzymes and pathways from the damaged site. We validate our allosteric approach to controlling outcomes in human cells by reversing the radiation sensitivity and genomic instability in BRCA mutant cells.
Collapse
Affiliation(s)
- Davide Moiani
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Daryl A Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, Québec City, QC, Canada; Laval University Cancer Research Center, Québec City, QC, Canada
| | - Chris A Brosey
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Andrew S Arvai
- The Scripps Research Institute, La Jolla, CA, United States
| | - Aleem Syed
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Québec City, QC, Canada; Laval University Cancer Research Center, Québec City, QC, Canada
| | | | - John A Tainer
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States; Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
8
|
Igarashi K, Kobayashi J, Katsumura T, Urushihara Y, Hida K, Watanabe-Asaka T, Oota H, Oda S, Mitani H. An Approach to Elucidate NBS1 Function in DNA Repair Using Frequent Nonsynonymous Polymorphism in Wild Medaka (Oryzias latipes) Populations. PLoS One 2017; 12:e0170006. [PMID: 28107384 PMCID: PMC5249114 DOI: 10.1371/journal.pone.0170006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/25/2016] [Indexed: 01/13/2023] Open
Abstract
Nbs1 is one of the genes responsible for Nijmegen breakage syndrome, which is marked with high radiosensitivity. In human NBS1 (hNBS1), Q185E polymorphism is known as the factor to cancer risks, although its DSB repair defect has not been addressed. Here we investigated the genetic variations in medaka (Oryzias latipes) wild populations, and found 40 nonsynonymous single nucleotide polymorphisms (SNPs) in medaka nbs1 (olnbs1) gene within 5 inbred strains. A mutation to histidine in Q170 residue in olNbs1, which corresponds to Q185 residue of hNBS1, was widely distributed in the closed colonies derived from the eastern Korean population of medaka. Overexpression of H170 type olNbs1 in medaka cultured cell lines resulted in the increased accumulation of olNbs1 at laser-induced DSB sites. Autophosphorylation of DNA-dependent protein kinase at T2609 was suppressed after the γ-ray irradiation, which was followed by prolonged formation of γ-H2AX foci and delayed DSB repair. These findings suggested that the nonsynonymous SNP (Q170H) in olnbs1, which induced DSB repair defects, is specifically distributed in the eastern Korean population of medaka. Furthermore, examination using the variation within wild populations might provide a novel method to characterize a driving force to spread the disease risk alleles.
Collapse
Affiliation(s)
- Kento Igarashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Junya Kobayashi
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Takafumi Katsumura
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yusuke Urushihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Kyohei Hida
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Tomomi Watanabe-Asaka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Hiroki Oota
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
9
|
Abstract
Comparisons among a variety of eukaryotes have revealed considerable variability in the structures and processes involved in their meiosis. Nevertheless, conventional forms of meiosis occur in all major groups of eukaryotes, including early-branching protists. This finding confirms that meiosis originated in the common ancestor of all eukaryotes and suggests that primordial meiosis may have had many characteristics in common with conventional extant meiosis. However, it is possible that the synaptonemal complex and the delicate crossover control related to its presence were later acquisitions. Later still, modifications to meiotic processes occurred within different groups of eukaryotes. Better knowledge on the spectrum of derived and uncommon forms of meiosis will improve our understanding of many still mysterious aspects of the meiotic process and help to explain the evolutionary basis of functional adaptations to the meiotic program.
Collapse
Affiliation(s)
- Josef Loidl
- Department of Chromosome Biology and Vienna Biocenter, University of Vienna, A-1030 Vienna, Austria;
| |
Collapse
|
10
|
Lafrance-Vanasse J, Williams GJ, Tainer JA. Envisioning the dynamics and flexibility of Mre11-Rad50-Nbs1 complex to decipher its roles in DNA replication and repair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:182-193. [PMID: 25576492 PMCID: PMC4417436 DOI: 10.1016/j.pbiomolbio.2014.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/20/2014] [Accepted: 12/28/2014] [Indexed: 12/23/2022]
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex is a dynamic macromolecular machine that acts in the first steps of DNA double strand break repair, and each of its components has intrinsic dynamics and flexibility properties that are directly linked with their functions. As a result, deciphering the functional structural biology of the MRN complex is driving novel and integrated technologies to define the dynamic structural biology of protein machinery interacting with DNA. Rad50 promotes dramatic long-range allostery through its coiled-coil and zinc-hook domains. Its ATPase activity drives dynamic transitions between monomeric and dimeric forms that can be modulated with mutants modifying the ATPase rate to control end joining versus resection activities. The biological functions of Mre11's dual endo- and exonuclease activities in repair pathway choice were enigmatic until recently, when they were unveiled by the development of specific nuclease inhibitors. Mre11 dimer flexibility, which may be regulated in cells to control MRN function, suggests new inhibitor design strategies for cancer intervention. Nbs1 has FHA and BRCT domains to bind multiple interaction partners that further regulate MRN. One of them, CtIP, modulates the Mre11 excision activity for homologous recombination repair. Overall, these combined properties suggest novel therapeutic strategies. Furthermore, they collectively help to explain how MRN regulates DNA repair pathway choice with implications for improving the design and analysis of cancer clinical trials that employ DNA damaging agents or target the DNA damage response.
Collapse
Affiliation(s)
| | | | - John A Tainer
- Life Science Division, 1 Cyclotron Road, Berkeley, CA 94720, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Chuang YC, Li WC, Chen CL, Hsu PWC, Tung SY, Kuo HC, Schmoll M, Wang TF. Trichoderma reesei meiosis generates segmentally aneuploid progeny with higher xylanase-producing capability. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:30. [PMID: 25729429 PMCID: PMC4344761 DOI: 10.1186/s13068-015-0202-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/09/2015] [Indexed: 05/15/2023]
Abstract
BACKGROUND Hypocrea jecorina is the sexual form of the industrial workhorse fungus Trichoderma reesei that secretes cellulases and hemicellulases to degrade lignocellulosic biomass into simple sugars, such as glucose and xylose. H. jecorina CBS999.97 is the only T. reesei wild isolate strain that is sexually competent in laboratory conditions. It undergoes a heterothallic reproductive cycle and generates CBS999.97(1-1) and CBS999.97(1-2) haploids with MAT1-1 and MAT1-2 mating-type loci, respectively. T. reesei QM6a and its derivatives (RUT-C30 and QM9414) all have a MAT1-2 mating type locus, but they are female sterile. Sexual crossing of CBS999.97(1-1) with either CBS999.97(1-2) or QM6a produces fruiting bodies containing asci with 16 linearly arranged ascospores (the sexual spores specific to ascomycetes). This sexual crossing approach has created new opportunities for these biotechnologically important fungi. RESULTS Through genetic and genomic analyses, we show that the 16 ascospores are generated via meiosis followed by two rounds of postmeiotic mitosis. We also found that the haploid genomes of CBS999.97(1-2) and QM6a are similar to that of the ancestral T. reesei strain, whereas the CBS999.97(1-1) haploid genome contains a reciprocal arrangement between two scaffolds of the CBS999.97(1-2) genome. Due to sequence heterozygosity, most 16-spore asci (>90%) contain four or eight inviable ascospores and an equal number of segmentally aneuploid (SAN) ascospores. The viable SAN progeny produced higher levels of xylanases and white conidia due to segmental duplication and deletion, respectively. Moreover, they readily lost the duplicated segment approximately two weeks after germination. With better lignocellulosic biomass degradation capability, these SAN progeny gain adaptive advantages to the natural environment, especially in the early phase of colonization. CONCLUSIONS Our results have not only further elucidated T. reesei evolution and sexual development, but also provided new perspectives for improving T. reesei industrial strains.
Collapse
Affiliation(s)
- Yu-Chien Chuang
- />Taiwan International Graduate Program in Molecular and Cellular Biology, Academia Sinica, Taipei, 115 Taiwan
- />Institute of Life Sciences, National Defense Medical Center, Taipei, 115 Taiwan
- />Institute of Molecular Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Wan-Chen Li
- />Institute of Molecular Biology, Academia Sinica, Taipei, 115 Taiwan
- />Institute of Genome Sciences, National Yang-Ming University, Taipei, 112 Taiwan
| | - Chia-Ling Chen
- />Institute of Molecular Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Paul Wei-Che Hsu
- />Institute of Molecular Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Shu-Yun Tung
- />Institute of Molecular Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Hsiao-Che Kuo
- />Institute of Molecular Biology, Academia Sinica, Taipei, 115 Taiwan
- />Present address: Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Monika Schmoll
- />Austrian Institute of Technology, Health and Environment Department, Bioresources, University and Research Center, UFT Campus Tulln, Tulln/Donau, 3430 Austria
| | - Ting-Fang Wang
- />Taiwan International Graduate Program in Molecular and Cellular Biology, Academia Sinica, Taipei, 115 Taiwan
- />Institute of Molecular Biology, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
12
|
Subramanian VV, Hochwagen A. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 2014; 6:a016675. [PMID: 25274702 DOI: 10.1101/cshperspect.a016675] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The generation of haploid gametes by meiosis is a highly conserved process for sexually reproducing organisms that, in almost all cases, involves the extensive breakage of chromosomes. These chromosome breaks occur during meiotic prophase and are essential for meiotic recombination as well as the subsequent segregation of homologous chromosomes. However, their formation and repair must be carefully monitored and choreographed with nuclear dynamics and the cell division program to avoid the creation of aberrant chromosomes and defective gametes. It is becoming increasingly clear that an intricate checkpoint-signaling network related to the canonical DNA damage response is deeply interwoven with the meiotic program and preserves order during meiotic prophase. This meiotic checkpoint network (MCN) creates a wide range of dependent relationships controlling chromosome movement, chromosome pairing, chromatin structure, and double-strand break (DSB) repair. In this review, we summarize our current understanding of the MCN. We discuss commonalities and differences in different experimental systems, with a particular emphasis on the emerging design principles that control and limit cross talk between signals to ultimately ensure the faithful inheritance of chromosomes by the next generation.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, New York 10003
| |
Collapse
|