1
|
Santos AS, Ramos ES, Valente-Gaiesky VLS, de Melo Sene F, Manfrin MH. Evidences of differential methylation in the genome during development in the cactophilic Drosophila species. Genesis 2024; 62:e23554. [PMID: 37750176 DOI: 10.1002/dvg.23554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
DNA methylation with 5-methylcytosine (5mC) has been reported in the genome of several eukaryotes, with marked differences between vertebrates and invertebrates. DNA methylation is poorly understood as its role in evolution in insects. Drosophila gouveai (cluster Drosophila buzzatii) presents larvae that develop obligatorily in necrotic tissues of cacti in nature, with the distribution of populations in South America, and plasticity of phenotypes in insect-plant interaction. We characterize organisms at developmental stages and analyze variations at multiple methylation-sensitive loci in pupae, and adult flies using methylation sensitive amplification polymorphism. We obtained 326 loci with CCGG targets in the genome of D. gouveai. Genomic regions with molecular lengths from 100 to 700 pb were most informative about methylation states. Multiple loci show differences in methylation-sensitive sites (MSL) concerning developmental stages, such as in pupae (MSL = 40), female reproductive tissue (MSL = 76), and male reproductive tissues (MSL = 58). Our results are the first evidence of genome-wide methylation in D. gouveai organisms.
Collapse
Affiliation(s)
- Adriano S Santos
- Programa de Pós-Graduação em Genética, Departamento de Genética, da Faculdade de Medicina de Ribeirão Preto, FMRP-USP, São Paulo, Brazil
| | - Ester S Ramos
- Programa de Pós-Graduação em Genética, Departamento de Genética, da Faculdade de Medicina de Ribeirão Preto, FMRP-USP, São Paulo, Brazil
| | - Vera L S Valente-Gaiesky
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fábio de Melo Sene
- Programa de Pós-Graduação em Genética, Departamento de Genética, da Faculdade de Medicina de Ribeirão Preto, FMRP-USP, São Paulo, Brazil
| | - Maura H Manfrin
- Programa de Pós-Graduação em Genética, Departamento de Genética, da Faculdade de Medicina de Ribeirão Preto, FMRP-USP, São Paulo, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências, e Letras de Ribeirão preto, FFCLRP-USP, São Paulo, Brazil
| |
Collapse
|
2
|
Chen P, Aravin AA. Genetic control of a sex-specific piRNA program. Curr Biol 2023; 33:1825-1835.e3. [PMID: 37059098 PMCID: PMC10431932 DOI: 10.1016/j.cub.2023.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 03/17/2023] [Indexed: 04/16/2023]
Abstract
Sexually dimorphic traits in morphologies are widely studied,1,2,3,4 but those in essential molecular pathways remain largely unexplored. Previous work showed substantial sex differences in Drosophila gonadal piRNAs,5 which guide PIWI proteins to silence selfish genetic elements, thereby safeguarding fertility.6,7,8 However, the genetic control mechanisms of piRNA sexual dimorphism remain unknown. Here, we showed that most sex differences in the piRNA program originate from the germ line rather than the gonadal somatic cells. Building on this, we dissected the contribution of sex chromosomes and cellular sexual identity toward the sex-specific germline piRNA program. We found that the presence of the Y chromosome is sufficient to recapitulate some aspects of the male piRNA program in a female cellular environment. Meanwhile, sexual identity controls the sexually divergent piRNA production from X-linked and autosomal loci, revealing a crucial input from sex determination into piRNA biogenesis. Sexual identity regulates piRNA biogenesis through Sxl, and this effect is mediated, in part, through chromatin proteins Phf7 and Kipferl. Together, our work delineated the genetic control of a sex-specific piRNA program, where sex chromosomes and sexual identity collectively sculpt an essential molecular trait.
Collapse
Affiliation(s)
- Peiwei Chen
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA.
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA.
| |
Collapse
|
3
|
Yan Y, Hosseini B, Scheld A, Pasham S, Rehling T, Schetelig MF. Effects of antibiotics on the in vitro expression of tetracycline-off constructs and the performance of Drosophila suzukii female-killing strains. Front Bioeng Biotechnol 2023; 11:876492. [PMID: 36865029 PMCID: PMC9971817 DOI: 10.3389/fbioe.2023.876492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Genetic control strategies such as the Release of Insects Carrying a Dominant Lethal (RIDL) gene and Transgenic Embryonic Sexing System (TESS) have been demonstrated in the laboratory and/or deployed in the field. These strategies are based on tetracycline-off (Tet-off) systems which are regulated by antibiotics such as Tet and doxycycline (Dox). Here, we generated several Tet-off constructs carrying a reporter gene cassette mediated by a 2A peptide. Different concentrations (0.1, 10, 100, 500, and 1,000 μg/mL) and types (Tet or Dox) of antibiotics were used to evaluate their effects on the expression of the Tet-off constructs in the Drosophila S2 cells. One or both of the two concentrations, 100 and 250 μg/mL, of Tet or Dox were used to check the influence on the performances of a Drosophila suzukii wild-type strain and female-killing (FK) strains employing TESS. Specifically, the Tet-off construct for these FK strains contains a Drosophila suzukii nullo promoter to regulate the tetracycline transactivator gene and a sex-specifically spliced pro-apoptotic gene hid Ala4 to eliminate females. The results suggested that the in vitro expression of the Tet-off constructs was controlled by antibiotics in a dose-dependent manner. ELISA experiments were carried out identifying Tet at 34.8 ng/g in adult females that fed on food supplemented with Tet at 100 μg/mL. However, such method did not detect Tet in the eggs produced by antibiotic-treated flies. Additionally, feeding Tet to the parents showed negative impact on the fly development but not the survival in the next generation. Importantly, we demonstrated that under certain antibiotic treatments females could survive in the FK strains with different transgene activities. For the strain V229_M4f1 which showed moderate transgene activity, feeding Dox to fathers or mothers suppressed the female lethality in the next generation and feeding Tet or Dox to mothers generated long-lived female survivors. For the strain V229_M8f2 which showed weak transgene activity, feeding Tet to mothers delayed the female lethality for one generation. Therefore, for genetic control strategies employing the Tet-off system, the parental and transgenerational effects of antibiotics on the engineered lethality and insect fitness must be carefully evaluated for a safe and efficient control program.
Collapse
Affiliation(s)
- Ying Yan
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany,*Correspondence: Ying Yan,
| | - Bashir Hosseini
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Annemarie Scheld
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Srilakshmi Pasham
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tanja Rehling
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marc F. Schetelig
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany,Liebig Centre for Agroecology and Climate Impact Research, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Brown EJ, Nguyen AH, Bachtrog D. The Drosophila Y Chromosome Affects Heterochromatin Integrity Genome-Wide. Mol Biol Evol 2021; 37:2808-2824. [PMID: 32211857 PMCID: PMC7530609 DOI: 10.1093/molbev/msaa082] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Drosophila Y chromosome is gene poor and mainly consists of silenced, repetitive DNA. Nonetheless, the Y influences expression of hundreds of genes genome-wide, possibly by sequestering key components of the heterochromatin machinery away from other positions in the genome. To test the influence of the Y chromosome on the genome-wide chromatin landscape, we assayed the genomic distribution of histone modifications associated with gene activation (H3K4me3) or heterochromatin (H3K9me2 and H3K9me3) in fruit flies with varying sex chromosome complements (X0, XY, and XYY males; XX and XXY females). Consistent with the general deficiency of active chromatin modifications on the Y, we find that Y gene dose has little influence on the genomic distribution of H3K4me3. In contrast, both the presence and the number of Y chromosomes strongly influence genome-wide enrichment patterns of repressive chromatin modifications. Highly repetitive regions such as the pericentromeres, the dot, and the Y chromosome (if present) are enriched for heterochromatic modifications in wildtype males and females, and even more strongly in X0 flies. In contrast, the additional Y chromosome in XYY males and XXY females diminishes the heterochromatic signal in these normally silenced, repeat-rich regions, which is accompanied by an increase in expression of Y-linked repeats. We find hundreds of genes that are expressed differentially between individuals with aberrant sex chromosome karyotypes, many of which also show sex-biased expression in wildtype Drosophila. Thus, Y chromosomes influence heterochromatin integrity genome-wide, and differences in the chromatin landscape of males and females may also contribute to sex-biased gene expression and sexual dimorphisms.
Collapse
Affiliation(s)
- Emily J Brown
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - Alison H Nguyen
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| |
Collapse
|
5
|
Amiri A, Bandani AR. Facultative deuterotokous parthenogenesis in Callosobruchus maculatus. ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Hellmann JK, Carlson ER, Bell AM. Sex-specific plasticity across generations II: Grandpaternal effects are lineage specific and sex specific. J Anim Ecol 2020; 89:2800-2812. [PMID: 33191513 PMCID: PMC7902365 DOI: 10.1111/1365-2656.13365] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Transgenerational plasticity (TGP) occurs when the environment encountered by one generation (F0) alters the phenotypes of one or more future generations (e.g. F1 and F2). Sex selective TGP, via specific lineages or to only male or female descendants, has been underexplored in natural systems, and may be adaptive if it allows past generations to fine-tune the phenotypes of future generations in response to sex-specific life-history strategies. We sought to understand if exposing males to predation risk can influence grandoffspring via sperm in three-spined stickleback Gasterosteus aculeatus. We specifically tested the hypothesis that grandparental effects are transmitted in a sex-specific way down the male lineage, from paternal grandfathers to F2 males. We reared F1 offspring of unexposed and predator-exposed F0 males under 'control' conditions and used them to generate F2s with control grandfathers, a predator-exposed maternal grandfather (i.e. predator-exposed F0 males to F1 daughters to F2s), a predator-exposed paternal grandfather (i.e. predator-exposed F0 males to F1 sons to F2s) or two predator-exposed grandfathers. We then assayed male and female F2s for a variety of traits related to antipredator defence. We found little evidence that transgenerational effects were mediated to only male descendants via the paternal lineage. Instead, grandpaternal effects depended on lineage and were mediated largely across sexes, from F1 males to F2 females and from F1 females to F2 males. When their paternal grandfather was exposed to predation risk, female F2s were heavier and showed a reduced change in behaviour in response to a simulated predator attack relative to grandoffspring of control, unexposed grandparents. In contrast, male F2s showed reduced antipredator behaviour when their maternal grandfather was exposed to predation risk. However, these patterns were only evident when one grandfather, but not both grandfathers, was exposed to predation risk, suggesting the potential for non-additive interactions across lineages. If sex-specific and lineage effects are common, then grandparental effects are likely underestimated in the literature. These results draw attention to the importance of sex-selective inheritance of environmental effects and raise new questions about the proximate and ultimate causes of selective transmission across generations.
Collapse
Affiliation(s)
- Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Erika R Carlson
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
- Program in Ecology, Evolution and Conservation, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| |
Collapse
|
7
|
Dor L, Shirak A, Curzon AY, Rosenfeld H, Ashkenazi IM, Nixon O, Seroussi E, Weller JI, Ron M. Preferential Mapping of Sex-Biased Differentially-Expressed Genes of Larvae to the Sex-Determining Region of Flathead Grey Mullet ( Mugil cephalus). Front Genet 2020; 11:839. [PMID: 32973865 PMCID: PMC7472742 DOI: 10.3389/fgene.2020.00839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
Flathead gray mullet (Mugil cephalus) is a cosmopolitan mugilid species popular in fishery and aquaculture with an economic preference for all-female population. However, it displays neither sexual dimorphisms nor heteromorphic sex chromosomes. We have previously presented a microsatellite-based linkage map for this species locating a single sex determination region (SDR) on linkage group 9 (LG9) with evidence for XX/XY sex determination (SD) mechanism. In this work, we refine the critical SDR on LG9, and propose positional- and functional- candidate genes for SD. To elucidate the genetic mechanism of SD, we assembled and compared male and female genomic sequences of 19 syntenic genes within the putative SDR on mullet's LG9, based on orthology to tilapia's LG8 (tLG8) physical map. A total of 25 sequence-based markers in 12 genes were developed. For all markers, we observed association with sex in at least one of the two analyzed M. cephalus full-sib families, but not in the wild-type population. Recombination events were inferred within families thus setting the SDR boundaries to a region orthologous to ∼0.9 Mbp with 27 genes on tLG8. As the sexual phenotype is evident only in adults, larvae were assigned into two putative sex-groups according to their paternal haplotypes, following a model of XY/XX SD-system. A total of 107 sex-biased differentially expressed genes in larvae were observed, of which 51 were mapped to tLG8 (48% enrichment), as compared to 5% in random control. Furthermore, 23 of the 107 genes displayed sex-specific expression; and 22 of these genes were positioned to tLG8, indicating 96% enrichment. Of the 27 SDR genes, BCCIP, DHX32A, DOCK1, and FSHR (GTH-RI) are suggested as positional and functional gene candidates for SD.
Collapse
Affiliation(s)
- Lior Dor
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Andrey Shirak
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Arie Y. Curzon
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hana Rosenfeld
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, Israel
| | - Iris M. Ashkenazi
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, Israel
| | - Oriya Nixon
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, Israel
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
| | - Joel I. Weller
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
8
|
Emborski C, Mikheyev AS. Ancestral diet transgenerationally influences offspring in a parent-of-origin and sex-specific manner. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180181. [PMID: 30966955 PMCID: PMC6365861 DOI: 10.1098/rstb.2018.0181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parent-of-origin effects, whereby specific phenotypes are differentially inherited paternally or maternally, provide useful clues to better understand transgenerational effect transmission. Ancestral diet influences offspring phenotypes, including body composition and fitness. However, the specific role that mothers and fathers play in the transmission of altered phenotypes to male and female offspring remains unclear. We investigated the influence of the parent-of-origin's diet on adult progeny phenotypes and reproductive output for three generations in fruit flies (Drosophila melanogaster). Males and females reared on a control diet were exposed to the control diet or one of two altered (no- or high-) sugar treatment diets for a single generation. Flies from one of the two altered diet treatments were then mated to control flies in a full-factorial design to produce F1 offspring and kept on control media for each following generation. We found parent-of-origin (triglyceride) and non-parent-of-origin (sugar) body composition effects, which were transgenerational and sex-specific. Additionally, we observed a negative correlation between intergenerational maternal reproductive output and triglyceride levels, suggesting that ancestral diet may affect fitness. This work demonstrates that ancestral diet can transmit altered phenotypes in a parent-of-origin and sex-specific manner and highlights that mechanisms regulating such transmission have been greatly overlooked. This article is part of the theme issue ‘The role of plasticity in phenotypic adaptation to rapid environmental change’.
Collapse
Affiliation(s)
- Carmen Emborski
- 1 The Institute of Environmental and Human Health, Texas Tech University , Lubbock, TX 79416 , USA.,2 Okinawa Institute of Science and Technology , 1919-1 Tancha, Onna, Kunigami District, Okinawa Prefecture 904-0495 , Japan
| | - Alexander S Mikheyev
- 2 Okinawa Institute of Science and Technology , 1919-1 Tancha, Onna, Kunigami District, Okinawa Prefecture 904-0495 , Japan.,3 Research School of Biology, Australia National University , 134 Linnaeus Way, Acton, Australian Capital Territory 2601 , Australia
| |
Collapse
|
9
|
Sun S, Zhu J, Mozaffari S, Ober C, Chen M, Zhou X. Heritability estimation and differential analysis of count data with generalized linear mixed models in genomic sequencing studies. Bioinformatics 2019; 35:487-496. [PMID: 30020412 PMCID: PMC6361238 DOI: 10.1093/bioinformatics/bty644] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/24/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Motivation Genomic sequencing studies, including RNA sequencing and bisulfite sequencing studies, are becoming increasingly common and increasingly large. Large genomic sequencing studies open doors for accurate molecular trait heritability estimation and powerful differential analysis. Heritability estimation and differential analysis in sequencing studies requires the development of statistical methods that can properly account for the count nature of the sequencing data and that are computationally efficient for large datasets. Results Here, we develop such a method, PQLseq (Penalized Quasi-Likelihood for sequencing count data), to enable effective and efficient heritability estimation and differential analysis using the generalized linear mixed model framework. With extensive simulations and comparisons to previous methods, we show that PQLseq is the only method currently available that can produce unbiased heritability estimates for sequencing count data. In addition, we show that PQLseq is well suited for differential analysis in large sequencing studies, providing calibrated type I error control and more power compared to the standard linear mixed model methods. Finally, we apply PQLseq to perform gene expression heritability estimation and differential expression analysis in a large RNA sequencing study in the Hutterites. Availability and implementation PQLseq is implemented as an R package with source code freely available at www.xzlab.org/software.html and https://cran.r-project.org/web/packages/PQLseq/index.html. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shiquan Sun
- Department of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jiaqiang Zhu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Sahar Mozaffari
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Mengjie Chen
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Branco AT, Brito RM, Lemos B. Sex-specific adaptation and genomic responses to Y chromosome presence in female reproductive and neural tissues. Proc Biol Sci 2018; 284:rspb.2017.2062. [PMID: 29237855 DOI: 10.1098/rspb.2017.2062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Y chromosomes typically harbour a small number of genes and an abundance of repetitive sequences. In Drosophila, the Y chromosome comprises multimegabase long segments of repetitive DNA and a handful of protein-coding genes. In mammals, the Y chromosome also harbours a disproportionally high abundance of repeats. Here, we built on a Drosophila melanogaster model in which the Y chromosome is decoupled from sexual determination. Genotypes were genetically identical for the autosomes, X chromosome, and mitochondria, but differ by the presence or dose of the Y chromosome. Addition of an extra Y chromosome had limited impact in males. However, the presence of a Y chromosome in females induced a disproportionate response in genes expressed in the ovaries as well as genes encoded by the mitochondrial genome. Furthermore, the data revealed significant consequences of Y chromosome presence in larvae neuronal tissue. This included the repression of genes implicated in reproductive behaviour, courtship, mating and synaptic function. Our findings exhibit the Y chromosome as a hotspot for sex-specific adaptation. They suggest roles for natural selection on Y-linked genetic elements exerting impact on sex-specific tissues as well as somatic tissues shared by males and females.
Collapse
Affiliation(s)
- Alan T Branco
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, 02115, Boston, MA, USA
| | - Rute M Brito
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, 02115, Boston, MA, USA
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, 02115, Boston, MA, USA
| |
Collapse
|
11
|
Alam SMI, Sarre SD, Gleeson D, Georges A, Ezaz T. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution? Genes (Basel) 2018; 9:E239. [PMID: 29751579 PMCID: PMC5977179 DOI: 10.3390/genes9050239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 02/02/2023] Open
Abstract
Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata) which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways.
Collapse
Affiliation(s)
| | - Stephen D Sarre
- Institute for Applied Ecology, University of Canberra, Canberra 2616, Australia.
| | - Dianne Gleeson
- Institute for Applied Ecology, University of Canberra, Canberra 2616, Australia.
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra 2616, Australia.
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra 2616, Australia.
| |
Collapse
|
12
|
De Donato M, Hussain T, Rodulfo H, Peters SO, Imumorin IG, Thomas BN. Conservation of Repeats at the Mammalian KCNQ1OT1-CDKN1C Region Suggests a Role in Genomic Imprinting. Evol Bioinform Online 2017; 13:1176934317715238. [PMID: 28659711 PMCID: PMC5476424 DOI: 10.1177/1176934317715238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/23/2017] [Indexed: 12/19/2022] Open
Abstract
KCNQ1OT1 is located in the region with the highest number of genes showing genomic imprinting, but the mechanisms controlling the genes under its influence have not been fully elucidated. Therefore, we conducted a comparative analysis of the KCNQ1/KCNQ1OT1-CDKN1C region to study its conservation across the best assembled eutherian mammalian genomes sequenced to date and analyzed potential elements that may be implicated in the control of genomic imprinting in this region. The genomic features in these regions from human, mouse, cattle, and dog show a higher number of genes and CpG islands (detected using cpgplot from EMBOSS), but lower number of repetitive elements (including short interspersed nuclear elements and long interspersed nuclear elements), compared with their whole chromosomes (detected by RepeatMasker). The KCNQ1OT1-CDKN1C region contains the highest number of conserved noncoding sequences (CNS) among mammals, where we found 16 regions containing about 38 different highly conserved repetitive elements (using mVista), such as LINE1 elements: L1M4, L1MB7, HAL1, L1M4a, L1Med, and an LTR element: MLT1H. From these elements, we found 74 CNS showing high sequence identity (>70%) between human, cattle, and mouse, from which we identified 13 motifs (using Multiple Em for Motif Elicitation/Motif Alignment and Search Tool) with a significant probability of occurrence, 3 of which were the most frequent and were used to find transcription factor-binding sites. We detected several transcription factors (using JASPAR suite) from the families SOX, FOX, and GATA. A phylogenetic analysis of these CNS from human, marmoset, mouse, rat, cattle, dog, horse, and elephant shows branches with high levels of support and very similar phylogenetic relationships among these groups, confirming previous reports. Our results suggest that functional DNA elements identified by comparative genomics in a region densely populated with imprinted mammalian genes may be related to the regulation of imprinted gene expression.
Collapse
Affiliation(s)
- Marcos De Donato
- Animal Genetics and Genomics Laboratory, Office of International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.,Escuela de Bioingenierias, Tecnologico de Monterrey, Campus Querétaro, Santiago de Querétaro, Mexico
| | - Tanveer Hussain
- Animal Genetics and Genomics Laboratory, Office of International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.,Department Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Hectorina Rodulfo
- Escuela de Bioingenierias, Tecnologico de Monterrey, Campus Querétaro, Santiago de Querétaro, Mexico
| | - Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA, USA
| | - Ikhide G Imumorin
- Animal Genetics and Genomics Laboratory, Office of International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.,African Institute for Biosciences Research and Training, Ibadan, Nigeria.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bolaji N Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
13
|
Sun S, Hood M, Scott L, Peng Q, Mukherjee S, Tung J, Zhou X. Differential expression analysis for RNAseq using Poisson mixed models. Nucleic Acids Res 2017; 45:e106. [PMID: 28369632 PMCID: PMC5499851 DOI: 10.1093/nar/gkx204] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/02/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Abstract
Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independence. Previous count-based methods rely on simple hierarchical Poisson models (e.g. negative binomial) to model independent over-dispersion, but do not account for sample non-independence due to relatedness, population structure and/or hidden confounders. Here, we present a Poisson mixed model with two random effects terms that account for both independent over-dispersion and sample non-independence. We also develop a scalable sampling-based inference algorithm using a latent variable representation of the Poisson distribution. With simulations, we show that our method properly controls for type I error and is generally more powerful than other widely used approaches, except in small samples (n <15) with other unfavorable properties (e.g. small effect sizes). We also apply our method to three real datasets that contain related individuals, population stratification or hidden confounders. Our results show that our method increases power in all three data compared to other approaches, though the power gain is smallest in the smallest sample (n = 6). Our method is implemented in MACAU, freely available at www.xzlab.org/software.html.
Collapse
Affiliation(s)
- Shiquan Sun
- Systems Engineering Institute, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michelle Hood
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura Scott
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qinke Peng
- Systems Engineering Institute, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China
| | - Sayan Mukherjee
- Departments of Statistical Science, Mathematics, and Computer Science, Duke University, Durham, NC 27708, USA
| | - Jenny Tung
- Departments of Evolutionary Anthropology and Biology, Duke University, Durham, NC 27708, USA
- Duke University Population Research Institute, Duke University, Durham, NC 27708, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Araripe LO, Tao Y, Lemos B. Interspecific Y chromosome variation is sufficient to rescue hybrid male sterility and is influenced by the grandparental origin of the chromosomes. Heredity (Edinb) 2016; 116:516-22. [PMID: 26980343 DOI: 10.1038/hdy.2016.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/25/2015] [Accepted: 12/29/2015] [Indexed: 12/15/2022] Open
Abstract
Y chromosomes display population variation within and between species. Co-evolution within populations is expected to produce adaptive interactions between Y chromosomes and the rest of the genome. One consequence is that Y chromosomes from disparate populations could disrupt harmonious interactions between co-evolved genetic elements and result in reduced male fertility, sterility or inviability. Here we address the contribution of 'heterospecific Y chromosomes' to fertility in hybrid males carrying a homozygous region of Drosophila mauritiana introgressed in the Drosophila simulans background. In order to detect Y chromosome-autosome interactions, which may go unnoticed in a single-species background of autosomes, we constructed hybrid genotypes involving three sister species: Drosophila simulans, D. mauritiana, and D. sechellia. These engineered strains varied due to: (i) species origin of the Y chromosome (D. simulans or D. sechellia); (ii) location of the introgressed D. mauritiana segment on the D. simulans third chromosome, and (iii) grandparental genomic background (three genotypes of D. simulans). We find complex interactions between the species origin of the Y chromosome, the identity of the D. mauritiana segment and the grandparental genetic background donating the chromosomes. Unexpectedly, the interaction of the Y chromosome and one segment of D. mauritiana drastically reduced fertility in the presence of Ysim, whereas the fertility is partially rescued by the Y chromosome of D. sechellia when it descends from a specific grandparental genotype. The restoration of fertility occurs in spite of an autosomal and X-linked genome that is mostly of D. simulans origin. These results illustrate the multifactorial basis of genetic interactions involving the Y chromosome. Our study supports the hypothesis that the Y chromosome can contribute significantly to the evolution of reproductive isolation and highlights the conditional manifestation of infertility in specific genotypic combinations.
Collapse
Affiliation(s)
- L O Araripe
- Laboratório de Biologia Molecular de Insetos, Fundação Oswaldo Cruz, IOC, Rio de Janeiro, Brasil
| | - Y Tao
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | - B Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
15
|
Cousminer DL, Widén E, Palmert MR. The genetics of pubertal timing in the general population: recent advances and evidence for sex-specificity. Curr Opin Endocrinol Diabetes Obes 2016; 23:57-65. [PMID: 26574646 PMCID: PMC4734379 DOI: 10.1097/med.0000000000000213] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This article overviews advances in the genetics of puberty based on studies in the general population, describes evidence for sex-specific genetic effects on pubertal timing, and briefly reviews possible mechanisms mediating sexually dimorphic genetic effects. RECENT FINDINGS Pubertal timing is highly polygenic, and many loci are conserved among ethnicities. A number of identified loci underlie both pubertal timing and related traits such as height and BMI. It is increasingly apparent that understanding the factors modulating the onset of puberty is important because the timing of this developmental stage is associated with a wider range of adult health outcomes than previously appreciated. Although most of the genetic effects underlying the timing of puberty are common between boys and girls, some effects show sex-specificity and many are epigenetically modulated. Several potential mechanisms, including hormone-independent ones, may be responsible for observed sex differences. SUMMARY Studies of pubertal timing in the general population have provided new knowledge about the genetic architecture of this complex trait. Increasing attention paid to sex-specific effects may provide key insights into the sexual dimorphism in pubertal timing and even into the associations between puberty and adult health risks by identifying common underlying biological pathways.
Collapse
Affiliation(s)
- Diana L. Cousminer
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisabeth Widén
- Institute for Molecular Medicine, Finland, University of Helsinki, Helsinki, Finland
| | - Mark R. Palmert
- Division of Endocrinology, the Hospital for Sick Children
- The Departments of Pediatrics and Physiology, University of Toronto, Canada
| |
Collapse
|
16
|
Manzi M, Lado J, Rodrigo MJ, Zacarías L, Arbona V, Gómez-Cadenas A. Root ABA Accumulation in Long-Term Water-Stressed Plants is Sustained by Hormone Transport from Aerial Organs. PLANT & CELL PHYSIOLOGY 2015; 56:2457-66. [PMID: 26542111 DOI: 10.1093/pcp/pcv161] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/22/2015] [Indexed: 05/10/2023]
Abstract
The reduced pool of the ABA precursors, β,β-carotenoids, in roots does not account for the substantial increase in ABA content in response to water stress (WS) conditions, suggesting that ABA could be transported from other organs. Basipetal transport was interrupted by stem-girdling, and ABA levels were determined in roots after two cycles of WS induced by transplanting plants to dry perlite. Leaf applications of isotope-labeled ABA and reciprocal grafting of ABA-deficient tomato mutants were used to confirm the involvement of aerial organs on root ABA accumulation. Disruption of basipetal transport reduced ABA accumulation in roots, and this decrease was more severe after two consecutive WS periods. This effect was linked to a sharp decrease in the β,β-carotenoid pool in roots in response to water deficit. Significant levels of isotope-labeled ABA were transported from leaves to roots, mainly in plants subjected to water dehydration. Furthermore, the use of different ABA-deficient tomato mutants in reciprocal grafting combinations with wild-type genotypes confirmed the involvement of aerial organs in the ABA accumulation in roots. In conclusion, accumulation of ABA in roots after long-term WS periods largely relies on the aerial organs, suggesting a reduced ability of the roots to synthesize ABA from carotenoids. Furthermore, plants are able to transport ABA basipetally to sustain high hormone levels in roots.
Collapse
Affiliation(s)
- Matías Manzi
- Ecofisiología y Biotecnología, Departamento de Ciències Agraries i del Medi Natural, Universitat Jaume I, E-12071 Castellón de la Plana, Spain
| | - Joanna Lado
- Instituto Nacional de Investigación Agropecuaria (INIA), Salto, Uruguay Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - María Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Vicent Arbona
- Ecofisiología y Biotecnología, Departamento de Ciències Agraries i del Medi Natural, Universitat Jaume I, E-12071 Castellón de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Ecofisiología y Biotecnología, Departamento de Ciències Agraries i del Medi Natural, Universitat Jaume I, E-12071 Castellón de la Plana, Spain
| |
Collapse
|
17
|
Francisco FO, Lemos B. How do y-chromosomes modulate genome-wide epigenetic States: genome folding, chromatin sinks, and gene expression. J Genomics 2014; 2:94-103. [PMID: 25057325 PMCID: PMC4105431 DOI: 10.7150/jgen.8043] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Y chromosomes of Drosophila melanogaster and D. simulans contain only a handful of protein-coding genes, which are related to sperm mobility and reproductive fitness. Despite low or absent protein coding polymorphism, the Drosophila Y chromosome has been associated with natural phenotypic variation, including variation in the expression of hundreds to thousands of genes located on autosomes and on the X chromosome. Polymorphisms present in the large blocks of heterochromatin and consisting of differences in the amounts and kinds of sequences for satellite DNA and transposable elements may be the source of this modulation. Here we review the evidence and discuss mechanisms for global epigenetic regulation by repetitious elements in the Y chromosome. We also discuss how the discovery of this new function impacts the current knowledge about Y chromosome origin, its current dynamics, and future fate.
Collapse
Affiliation(s)
- Flávio O Francisco
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
18
|
Endogenously imprinted genes in Drosophila melanogaster. Mol Genet Genomics 2014; 289:653-73. [DOI: 10.1007/s00438-014-0840-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 03/04/2014] [Indexed: 12/21/2022]
|