1
|
Lopez-Ortiz C, Reddy UK, Zhang C, Natarajan P, Nimmakayala P, Benedito VA, Fabian M, Stommel J. QTL and PACE analyses identify candidate genes for anthracnose resistance in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1200999. [PMID: 37615029 PMCID: PMC10443646 DOI: 10.3389/fpls.2023.1200999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Anthracnose, caused by the fungal pathogen Colletotrichum spp., is one of the most significant tomato diseases in the United States and worldwide. No commercial cultivars with anthracnose resistance are available, limiting resistant breeding. Cultivars with genetic resistance would significantly reduce crop losses, reduce the use of fungicides, and lessen the risks associated with chemical application. A recombinant inbred line (RIL) mapping population (N=243) has been made from a cross between the susceptible US28 cultivar and the resistant but semiwild and small-fruited 95L368 to identify quantitative trait loci (QTLs) associated with anthracnose resistance. The RIL population was phenotyped for resistance by inoculating ripe field-harvested tomato fruits with Colletotrichum coccodes for two seasons. In this study, we identified twenty QTLs underlying resistance, with a range of phenotypic variance of 4.5 to 17.2% using a skeletal linkage map and a GWAS. In addition, a QTLseq analysis was performed using deep sequencing of extreme bulks that validated QTL positions identified using traditional mapping and resolved candidate genes underlying various QTLs. We further validated AP2-like ethylene-responsive transcription factor, N-alpha-acetyltransferase (NatA), cytochrome P450, amidase family protein, tetratricopeptide repeat, bHLH transcription factor, and disease resistance protein RGA2-like using PCR allelic competitive extension (PACE) genotyping. PACE assays developed in this study will enable high-throughput screening for use in anthracnose resistance breeding in tomato.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | - Chong Zhang
- The Genetic Improvement for Fruits & Vegetables Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | | | - Matthew Fabian
- The Genetic Improvement for Fruits & Vegetables Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - John Stommel
- The Genetic Improvement for Fruits & Vegetables Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
2
|
Islam S, Reddy UK, Natarajan P, Abburi VL, Bajwa AA, Imran M, Zahoor MY, Abdullah M, Bukhari AM, Iqbal S, Ashraf K, Nadeem A, Rehman H, Rashid I, Shehzad W. Population demographic history and population structure for Pakistani Nili-Ravi breeding bulls based on SNP genotyping to identify genomic regions associated with male effects for milk yield and body weight. PLoS One 2020; 15:e0242500. [PMID: 33232358 PMCID: PMC7685427 DOI: 10.1371/journal.pone.0242500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/03/2020] [Indexed: 11/20/2022] Open
Abstract
The domestic Nili-Ravi water buffalo (Bubalus bubalis) is the best dairy animal contributing 68% to total milk production in Pakistan. In this study, we identified genome-wide single nucleotide polymorphisms (SNPs) to estimate various population genetic parameters such as diversity, pairwise population differentiation, linkage disequilibrium (LD) distribution and for genome-wide association study for milk yield and body weight traits in the Nili-Ravi dairy bulls that they may pass on to their daughters who are retained for milking purposes. The genotyping by sequencing approach revealed 13,039 reference genome-anchored SNPs with minor allele frequency of 0.05 among 167 buffalos. Population structure analysis revealed that the bulls were grouped into two clusters (K = 2), which indicates the presence of two different lineages in the Pakistani Nili-Ravi water buffalo population, and we showed the extent of admixture of these two lineages in our bull collection. LD analysis revealed 4169 significant SNP associations, with an average LD decay of 90 kb for these buffalo genome. Genome-wide association study involved a multi-locus mixed linear model for milk yield and body weight to identify genome-wide male effects. Our study further illustrates the utility of the genotyping by sequencing approach for identifying genomic regions to uncover additional demographic complexity and to improve the complex dairy traits of the Pakistani Nili-Ravi water buffalo population that would provide the lot of economic benefits to dairy industry.
Collapse
Affiliation(s)
- Saher Islam
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Purushothaman Natarajan
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Venkata Lakshmi Abburi
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Amna Arshad Bajwa
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Yasir Zahoor
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Abdullah
- Department of Livestock Production, University of Veterinary and Animal Sciences, Pattoki, Pakistan
| | - Aamir Mehmood Bukhari
- Semen Production Unit, Qadirabad, District Sahiwal, Pakistan
- Livestock and Dairy Development Department, Government of the Punjab, Lahore, Pakistan
| | - Sajid Iqbal
- Semen Production Unit, Qadirabad, District Sahiwal, Pakistan
- Livestock and Dairy Development Department, Government of the Punjab, Lahore, Pakistan
| | - Kamran Ashraf
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asif Nadeem
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Habibur Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Wasim Shehzad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
3
|
From molecules to populations: appreciating and estimating recombination rate variation. Nat Rev Genet 2020; 21:476-492. [DOI: 10.1038/s41576-020-0240-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
|
4
|
Wu S, Wang X, Reddy U, Sun H, Bao K, Gao L, Mao L, Patel T, Ortiz C, Abburi VL, Nimmakayala P, Branham S, Wechter P, Massey L, Ling K, Kousik C, Hammar SA, Tadmor Y, Portnoy V, Gur A, Katzir N, Guner N, Davis A, Hernandez AG, Wright CL, McGregor C, Jarret R, Zhang X, Xu Y, Wehner TC, Grumet R, Levi A, Fei Z. Genome of 'Charleston Gray', the principal American watermelon cultivar, and genetic characterization of 1,365 accessions in the U.S. National Plant Germplasm System watermelon collection. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2246-2258. [PMID: 31022325 PMCID: PMC6835170 DOI: 10.1111/pbi.13136] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 05/14/2023]
Abstract
Years of selection for desirable fruit quality traits in dessert watermelon (Citrullus lanatus) has resulted in a narrow genetic base in modern cultivars. Development of novel genomic and genetic resources offers great potential to expand genetic diversity and improve important traits in watermelon. Here, we report a high-quality genome sequence of watermelon cultivar 'Charleston Gray', a principal American dessert watermelon, to complement the existing reference genome from '97103', an East Asian cultivar. Comparative analyses between genomes of 'Charleston Gray' and '97103' revealed genomic variants that may underlie phenotypic differences between the two cultivars. We then genotyped 1365 watermelon plant introduction (PI) lines maintained at the U.S. National Plant Germplasm System using genotyping-by-sequencing (GBS). These PI lines were collected throughout the world and belong to three Citrullus species, C. lanatus, C. mucosospermus and C. amarus. Approximately 25 000 high-quality single nucleotide polymorphisms (SNPs) were derived from the GBS data using the 'Charleston Gray' genome as the reference. Population genomic analyses using these SNPs discovered a close relationship between C. lanatus and C. mucosospermus and identified four major groups in these two species correlated to their geographic locations. Citrullus amarus was found to have a distinct genetic makeup compared to C. lanatus and C. mucosospermus. The SNPs also enabled identification of genomic regions associated with important fruit quality and disease resistance traits through genome-wide association studies. The high-quality 'Charleston Gray' genome and the genotyping data of this large collection of watermelon accessions provide valuable resources for facilitating watermelon research, breeding and improvement.
Collapse
Affiliation(s)
- Shan Wu
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Xin Wang
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Umesh Reddy
- Department of BiologyWest Virginia State UniversityInstituteWVUSA
| | - Honghe Sun
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
- National Engineering Research Center for VegetablesBeijing Academy of Agriculture and Forestry SciencesKey Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)BeijingChina
| | - Kan Bao
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Lei Gao
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Linyong Mao
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
- Department of Biochemistry and Molecular BiologyHoward University College of MedicineWashingtonDCUSA
| | - Takshay Patel
- Horticultural Science DepartmentNorth Carolina State UniversityRaleighNCUSA
| | - Carlos Ortiz
- Department of BiologyWest Virginia State UniversityInstituteWVUSA
| | | | | | - Sandra Branham
- U.S. Department of Agriculture‐Agricultural Research ServiceU.S. Vegetable LaboratoryCharlestonSCUSA
| | - Pat Wechter
- U.S. Department of Agriculture‐Agricultural Research ServiceU.S. Vegetable LaboratoryCharlestonSCUSA
| | - Laura Massey
- U.S. Department of Agriculture‐Agricultural Research ServiceU.S. Vegetable LaboratoryCharlestonSCUSA
| | - Kai‐Shu Ling
- U.S. Department of Agriculture‐Agricultural Research ServiceU.S. Vegetable LaboratoryCharlestonSCUSA
| | - Chandrasekar Kousik
- U.S. Department of Agriculture‐Agricultural Research ServiceU.S. Vegetable LaboratoryCharlestonSCUSA
| | - Sue A. Hammar
- Department of HorticultureMichigan State UniversityEast LansingMIUSA
| | - Yaakov Tadmor
- Department of Vegetable ResearchAgricultural Research OrganizationNewe Ya'ar Research CenterRamat YishayIsrael
| | - Vitaly Portnoy
- Department of Vegetable ResearchAgricultural Research OrganizationNewe Ya'ar Research CenterRamat YishayIsrael
| | - Amit Gur
- Department of Vegetable ResearchAgricultural Research OrganizationNewe Ya'ar Research CenterRamat YishayIsrael
| | - Nurit Katzir
- Department of Vegetable ResearchAgricultural Research OrganizationNewe Ya'ar Research CenterRamat YishayIsrael
| | | | - Angela Davis
- Sakata Seed AmericaWoodland Research StationWoodlandCAUSA
| | - Alvaro G. Hernandez
- Roy J. Carver Biotechnology CenterUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Chris L. Wright
- Roy J. Carver Biotechnology CenterUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | | | - Robert Jarret
- U.S. Department of Agriculture‐Agricultural Research ServicePlant Genetic Resources Conservation UnitGriffinGAUSA
| | | | - Yong Xu
- National Engineering Research Center for VegetablesBeijing Academy of Agriculture and Forestry SciencesKey Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)BeijingChina
| | - Todd C. Wehner
- Horticultural Science DepartmentNorth Carolina State UniversityRaleighNCUSA
| | - Rebecca Grumet
- Department of HorticultureMichigan State UniversityEast LansingMIUSA
| | - Amnon Levi
- U.S. Department of Agriculture‐Agricultural Research ServiceU.S. Vegetable LaboratoryCharlestonSCUSA
| | - Zhangjun Fei
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
- U.S. Department of Agriculture‐Agricultural Research ServiceRobert W. Holley Center for Agriculture and HealthIthacaNYUSA
| |
Collapse
|
5
|
Haplotype Networking of GWAS Hits for Citrulline Variation Associated with the Domestication of Watermelon. Int J Mol Sci 2019; 20:ijms20215392. [PMID: 31671884 PMCID: PMC6862219 DOI: 10.3390/ijms20215392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 12/30/2022] Open
Abstract
Watermelon is a good source of citrulline, a non-protein amino acid. Citrulline has several therapeutic and clinical implications as it produces nitric oxide via arginine. In plants, citrulline plays a pivotal role in nitrogen transport and osmoprotection. The purpose of this study was to identify single nucleotide polymorphism (SNP) markers associated with citrulline metabolism using a genome-wide association study (GWAS) and understand the role of citrulline in watermelon domestication. A watermelon collection consisting of 187 wild, landraces, and cultivated accessions was used to estimate citrulline content. An association analysis involved a total of 12,125 SNPs with a minor allele frequency (MAF) >0.05 in understanding the population structure and phylogeny in light of citrulline accumulation. Wild egusi types and landraces contained low to medium citrulline content, whereas cultivars had higher content, which suggests that obtaining higher content of citrulline is a domesticated trait. GWAS analysis identified candidate genes (ferrochelatase and acetolactate synthase) showing a significant association of SNPs with citrulline content. Haplotype networking indicated positive selection from wild to domesticated watermelon. To our knowledge, this is the first study showing genetic regulation of citrulline variation in plants by using a GWAS strategy. These results provide new insights into the citrulline metabolism in plants and the possibility of incorporating high citrulline as a trait in watermelon breeding programs.
Collapse
|
6
|
Subburaj S, Lee K, Jeon Y, Tu L, Son G, Choi S, Lim YP, McGregor C, Lee GJ. Whole genome resequencing of watermelons to identify single nucleotide polymorphisms related to flesh color and lycopene content. PLoS One 2019; 14:e0223441. [PMID: 31596903 PMCID: PMC6785133 DOI: 10.1371/journal.pone.0223441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/20/2019] [Indexed: 12/30/2022] Open
Abstract
Cultivated watermelon (Citrullus lanatus) is one of the most important food crops in the Cucurbitaceae family. Diversification after domestication has led cultivated watermelons to exhibit diverse fruit flesh colors, including red, yellow, and orange. Recently, there has been increased interest in red-fleshed watermelons because they contain the antioxidant cis-isomeric lycopene. We performed whole genome resequencing (WGRS) of 24 watermelons with different flesh colors to identify single-nucleotide polymorphisms (SNPs) related to high lycopene content. The resequencing data revealed 203,894-279,412 SNPs from read mapping between inbred lines and the 97103 reference genome. In total, 295,065 filtered SNPs were identified, which had an average polymorphism information content of 0.297. Most of these SNPs were intergenic (90.1%) and possessed a transversion (Tv) rate of 31.64%. Overall, 2,369 SNPs were chosen at 0.5 Mb physical intervals to analyze genetic diversity across the 24 inbred lines. A neighbor-joining dendrogram and principal coordinate analysis (PCA) based on the 2,369 SNPs revealed that the 24 inbred lines could be grouped into high and low lycopene-type watermelons. In addition, we analyzed SNPs that could discriminate high lycopene content, red-fleshed watermelon from low lycopene, yellow or orange watermelon inbred lines. For validation, 19 SNPs (designated as WMHL1-19) were chosen randomly, and cleavage amplified polymorphic sequence (CAPS) markers were designed. Genotyping of the above 24 lines and 12 additional commercial cultivars using WMHL1-19 CAPS markers resulted in match rates of over 0.92 for most validated markers in correlation with the flesh color phenotypes. Our results provide valuable genomic information regarding the high lycopene content phenotype of red-fleshed cultivated watermelons, and the identified SNPs will be useful for the development of molecular markers in the marker-assisted breeding of watermelons with high lycopene content.
Collapse
Affiliation(s)
- Saminathan Subburaj
- Department of Horticulture, Chungnam National University, Daejeon, Republic of Korea
| | - Kayoun Lee
- Department of Horticulture, Chungnam National University, Daejeon, Republic of Korea
| | - Yongsam Jeon
- Department of Horticulture, Chungnam National University, Daejeon, Republic of Korea
| | - Luhua Tu
- Department of Horticulture, Chungnam National University, Daejeon, Republic of Korea
| | - Gilwoo Son
- Breeding Institute, Hyundai Seed Co Ltd., Yeoju, Gyeonggi, Republic of Korea
| | - SuBok Choi
- Asia Seed, Co., Ltd., Seoul, Republic of Korea
| | - Yong-Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon, Republic of Korea
| | - Cecilia McGregor
- Department of Horticulture, University of Georgia, Athens, GA, United States of America
| | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Li B, Lu X, Dou J, Aslam A, Gao L, Zhao S, He N, Liu W. Construction of A High-Density Genetic Map and Mapping of Fruit Traits in Watermelon ( Citrullus Lanatus L.) Based on Whole-Genome Resequencing. Int J Mol Sci 2018; 19:ijms19103268. [PMID: 30347873 PMCID: PMC6214002 DOI: 10.3390/ijms19103268] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022] Open
Abstract
Watermelon (Citrullus lanatus L.) is an important horticultural crop that is grown worldwide and has a high economic value. To dissect the loci associated with important horticultural traits and to analyze the genetic and genomic information of this species, a high-density genetic map was constructed based on whole-genome resequencing (WGR), a powerful high-resolution method for single-nucleotide polymorphism (SNP) marker development, genetic map construction, and gene mapping. Resequencing of both parental lines and 126 recombinant inbred lines (RIL) resulted in the detection of 178,762 single-nucleotide polymorphism (SNP) markers in the parental lines at a sequencing depth greater than four-fold. Additionally, 2132 recombination bin markers comprising 103,029 SNP markers were mapped onto 11 linkage groups (LGs). Substantially more SNP markers were mapped to the genetic map compared with other recent studies. The total length of the linkage map was 1508.94 cM, with an average distance of 0.74 cM between adjacent bin markers. Based on this genetic map, one locus for fruit bitterness, one locus for rind color, and one locus for seed coat color with high LOD scores (58.361, 18.353, 26.852) were identified on chromosome 1, chromosome 8, and chromosome 3, respectively. These prominent loci were identified in a region of 6.16 Mb, 2.07 Mb, and 0.37 Mb, respectively. On the basis of current research, the high-density map and mapping results will provide a valuable tool for identifying candidate genes, map-based gene cloning, comparative mapping, and marker-assisted selection (MAS) in watermelon breeding.
Collapse
Affiliation(s)
- Bingbing Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Junling Dou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Ali Aslam
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Lei Gao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| |
Collapse
|
8
|
Weigand H, Leese F. Detecting signatures of positive selection in non-model species using genomic data. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Hannah Weigand
- Aquatic Ecosystem Research, University of Duisburg-Essen, Universitätsstraße, Essen, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Universitätsstraße, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße, Essen, Germany
| |
Collapse
|
9
|
N’Diaye A, Haile JK, Fowler DB, Ammar K, Pozniak CJ. Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms. FRONTIERS IN PLANT SCIENCE 2017; 8:1434. [PMID: 28878789 PMCID: PMC5572363 DOI: 10.3389/fpls.2017.01434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/03/2017] [Indexed: 05/28/2023]
Abstract
Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly.
Collapse
Affiliation(s)
- Amidou N’Diaye
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, SaskatoonSK, Canada
| | - Jemanesh K. Haile
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, SaskatoonSK, Canada
| | - D. Brian Fowler
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, SaskatoonSK, Canada
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco, Mexico
| | - Curtis J. Pozniak
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, SaskatoonSK, Canada
| |
Collapse
|
10
|
Building Ultra-High-Density Linkage Maps Based on Efficient Filtering of Trustable Markers. Genetics 2017; 206:1285-1295. [PMID: 28512186 DOI: 10.1534/genetics.116.197491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/09/2017] [Indexed: 12/18/2022] Open
Abstract
The study is focused on addressing the problem of building genetic maps in the presence of ∼103-104 of markers per chromosome. We consider a spectrum of situations with intrachromosomal heterogeneity of recombination rate, different level of genotyping errors, and missing data. In the ideal scenario of the absence of errors and missing data, the majority of markers should appear as groups of cosegregating markers ("twins") representing no challenge for map construction. The central aspect of the proposed approach is to take into account the structure of the marker space, where each twin group (TG) and singleton markers are represented as points of this space. The confounding effect of genotyping errors and missing data leads to reduction of TG size, but upon a low level of these effects surviving TGs can still be used as a source of reliable skeletal markers. Increase in the level of confounding effects results in a considerable decrease in the number or even disappearance of usable TGs and, correspondingly, of skeletal markers. Here, we show that the paucity of informative markers can be compensated by detecting kernels of markers in the marker space using a clustering procedure, and demonstrate the utility of this approach for high-density genetic map construction on simulated and experimentally obtained genotyping datasets.
Collapse
|
11
|
Branham SE, Levi A, Farnham MW, Patrick Wechter W. A GBS-SNP-based linkage map and quantitative trait loci (QTL) associated with resistance to Fusarium oxysporum f. sp. niveum race 2 identified in Citrullus lanatus var. citroides. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:319-330. [PMID: 27803951 DOI: 10.1007/s00122-016-2813-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/08/2016] [Indexed: 05/27/2023]
Abstract
A major QTL for resistance to Fusarium oxysporum f. sp. niveum race 2 was mapped to a narrow 1.2 Mb interval using a high-density GBS-SNP linkage map, the first map of Citrullus lanatus var. citroides. Fusarium wilt, a fungal disease caused by Fusarium oxysporum f. sp. niveum (Fon), devastates watermelon crop production worldwide. Several races, which are differentiated by host range, of the pathogen exist. Resistance to Fon race 2, a particularly virulent strain prevalent in the United States, does not exist in edible cultivars of the sweet cultivated watermelon Citrullus lanatus var. lanatus (Cll) and has been well described in a few plant introductions of the wild subspecies of watermelon, C. lanatus var. citroides (Clc). Clc provides a vital source of genetic diversity, as well as resistance to numerous diseases. Unfortunately, both genetic diversity and disease resistance are lacking in Cll due to the narrow genetic base. Despite the importance of Clc to continued watermelon improvement, intra-variety genetic studies are lacking. Here, we present the first Clc genetic linkage map, generated with 2495 single nucleotide polymorphisms developed through genotyping-by-sequencing, and use it to identify quantitative trait loci associated with Fon race 2 resistance. Multiple QTL mapping in a Clc F2:3 population (N = 173) identified one major and four minor QTL. The major QTL explained 43% of the variation in Fon race 2 resistance and was delimited to a 1.2-Mb interval on chromosome 9, a region spanning 44 genes.
Collapse
Affiliation(s)
- Sandra E Branham
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Amnon Levi
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Mark W Farnham
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - W Patrick Wechter
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA.
| |
Collapse
|
12
|
Reddy UK, Nimmakayala P, Abburi VL, Reddy CVCM, Saminathan T, Percy RG, Yu JZ, Frelichowski J, Udall JA, Page JT, Zhang D, Shehzad T, Paterson AH. Genome-wide divergence, haplotype distribution and population demographic histories for Gossypium hirsutum and Gossypium barbadense as revealed by genome-anchored SNPs. Sci Rep 2017; 7:41285. [PMID: 28128280 PMCID: PMC5269598 DOI: 10.1038/srep41285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/19/2016] [Indexed: 11/08/2022] Open
Abstract
Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using the SNPs distributed genome-wide, we examined genetic diversity, haplotype distribution and linkage disequilibrium patterns in the G. hirsutum and G. barbadense genomes to clarify population demographic history. Diversity and identity-by-state analyses have revealed little sharing of alleles between the two cultivated allotetraploid genomes, with a few exceptions that indicated sporadic gene flow. We found a high number of new alleles, representing increased nucleotide diversity, on chromosomes 1 and 2 in cultivated G. hirsutum as compared with low nucleotide diversity on these chromosomes in landrace G. hirsutum. In contrast, G. barbadense chromosomes showed negative Tajima's D on several chromosomes for both cultivated and landrace types, which indicate that speciation of G. barbadense itself, might have occurred with relatively narrow genetic diversity. The presence of conserved linkage disequilibrium (LD) blocks and haplotypes between G. hirsutum and G. barbadense provides strong evidence for comparable patterns of evolution in their domestication processes. Our study illustrates the potential use of population genetic techniques to identify genomic regions for domestication.
Collapse
Affiliation(s)
- Umesh K. Reddy
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Padma Nimmakayala
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Venkata Lakshmi Abburi
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - C. V. C. M. Reddy
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Thangasamy Saminathan
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Richard G. Percy
- USDA–ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA
| | - John Z. Yu
- USDA–ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA
| | - James Frelichowski
- USDA–ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA
| | - Joshua A. Udall
- WIDB, Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| | - Justin T. Page
- WIDB, Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| | - Dong Zhang
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Room 228, Athens, GA 30605, USA
| | - Tariq Shehzad
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Room 228, Athens, GA 30605, USA
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Room 228, Athens, GA 30605, USA
| |
Collapse
|
13
|
|
14
|
Nimmakayala P, Abburi VL, Saminathan T, Alaparthi SB, Almeida A, Davenport B, Nadimi M, Davidson J, Tonapi K, Yadav L, Malkaram S, Vajja G, Hankins G, Harris R, Park M, Choi D, Stommel J, Reddy UK. Genome-wide Diversity and Association Mapping for Capsaicinoids and Fruit Weight in Capsicum annuum L. Sci Rep 2016; 6:38081. [PMID: 27901114 PMCID: PMC5128918 DOI: 10.1038/srep38081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022] Open
Abstract
Accumulated capsaicinoid content and increased fruit size are traits resulting from Capsicum annuum domestication. In this study, we used a diverse collection of C. annuum to generate 66,960 SNPs using genotyping by sequencing. The study identified 1189 haplotypes containing 3413 SNPs. Length of individual linkage disequilibrium (LD) blocks varied along chromosomes, with regions of high and low LD interspersed with an average LD of 139 kb. Principal component analysis (PCA), Bayesian model based population structure analysis and an Euclidean tree built based on identity by state (IBS) indices revealed that the clustering pattern of diverse accessions are in agreement with capsaicin content (CA) and fruit weight (FW) classifications indicating the importance of these traits in shaping modern pepper genome. PCA and IBS were used in a mixed linear model of capsaicin and dihydrocapsaicin content and fruit weight to reduce spurious associations because of confounding effects of subpopulations in genome-wide association study (GWAS). Our GWAS results showed SNPs in Ankyrin-like protein, IKI3 family protein, ABC transporter G family and pentatricopeptide repeat protein are the major markers for capsaicinoids and of 16 SNPs strongly associated with FW in both years of the study, 7 are located in known fruit weight controlling genes.
Collapse
Affiliation(s)
- Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Venkata L Abburi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Thangasamy Saminathan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Suresh B Alaparthi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Aldo Almeida
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Brittany Davenport
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Marjan Nadimi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Joshua Davidson
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Krittika Tonapi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Lav Yadav
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Sridhar Malkaram
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Gopinath Vajja
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Gerald Hankins
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Robert Harris
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Minkyu Park
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-321, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-321, Republic of Korea
| | - John Stommel
- Genetic Improvement of Fruits and Vegetables Laboratory (USDA, ARS), Beltsville, MD-20705, USA
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| |
Collapse
|
15
|
Anderson C, Khan MA, Catanzariti AM, Jack CA, Nemri A, Lawrence GJ, Upadhyaya NM, Hardham AR, Ellis JG, Dodds PN, Jones DA. Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini. BMC Genomics 2016; 17:667. [PMID: 27550217 PMCID: PMC4994203 DOI: 10.1186/s12864-016-3011-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/11/2016] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Rust fungi are an important group of plant pathogens that cause devastating losses in agricultural, silvicultural and natural ecosystems. Plants can be protected from rust disease by resistance genes encoding receptors that trigger a highly effective defence response upon recognition of specific pathogen avirulence proteins. Identifying avirulence genes is crucial for understanding how virulence evolves in the field. RESULTS To facilitate avirulence gene cloning in the flax rust fungus, Melampsora lini, we constructed a high-density genetic linkage map using single nucleotide polymorphisms detected in restriction site-associated DNA sequencing (RADseq) data. The map comprises 13,412 RADseq markers in 27 linkage groups that together span 5860 cM and contain 2756 recombination bins. The marker sequences were used to anchor 68.9 % of the M. lini genome assembly onto the genetic map. The map and anchored assembly were then used to: 1) show that M. lini has a high overall meiotic recombination rate, but recombination distribution is uneven and large coldspots exist; 2) show that substantial genome rearrangements have occurred in spontaneous loss-of-avirulence mutants; and 3) identify the AvrL2 and AvrM14 avirulence genes by map-based cloning. AvrM14 is a dual-specificity avirulence gene that encodes a predicted nudix hydrolase. AvrL2 is located in the region of the M. lini genome with the lowest recombination rate and encodes a small, highly-charged proline-rich protein. CONCLUSIONS The M. lini high-density linkage map has greatly advanced our understanding of virulence mechanisms in this pathogen by providing novel insights into genome variability and enabling identification of two new avirulence genes.
Collapse
Affiliation(s)
- Claire Anderson
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| | - Muhammad Adil Khan
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
- Current address: ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Ann-Maree Catanzariti
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| | - Cameron A. Jack
- ANU Bioinformatics Consulting Unit, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Acton, ACT 2601 Australia
| | - Adnane Nemri
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601 Australia
- Current address: KWS SAAT SE, Grimsehlstraße 31, Einbeck, 37574 Germany
| | | | | | - Adrienne R. Hardham
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| | | | - Peter N. Dodds
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601 Australia
| | - David A. Jones
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| |
Collapse
|
16
|
Liu S, Gao P, Zhu Q, Luan F, Davis AR, Wang X. Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome re-sequencing data. BREEDING SCIENCE 2016; 66:244-59. [PMID: 27162496 PMCID: PMC4785002 DOI: 10.1270/jsbbs.66.244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/26/2015] [Indexed: 05/06/2023]
Abstract
Cleaved amplified polymorphic sequence (CAPS) markers are useful tools for detecting single nucleotide polymorphisms (SNPs). This study detected and converted SNP sites into CAPS markers based on high-throughput re-sequencing data in watermelon, for linkage map construction and quantitative trait locus (QTL) analysis. Two inbred lines, Cream of Saskatchewan (COS) and LSW-177 had been re-sequenced and analyzed by Perl self-compiled script for CAPS marker development. 88.7% and 78.5% of the assembled sequences of the two parental materials could map to the reference watermelon genome, respectively. Comparative assembled genome data analysis provided 225,693 and 19,268 SNPs and indels between the two materials. 532 pairs of CAPS markers were designed with 16 restriction enzymes, among which 271 pairs of primers gave distinct bands of the expected length and polymorphic bands, via PCR and enzyme digestion, with a polymorphic rate of 50.94%. Using the new CAPS markers, an initial CAPS-based genetic linkage map was constructed with the F2 population, spanning 1836.51 cM with 11 linkage groups and 301 markers. 12 QTLs were detected related to fruit flesh color, length, width, shape index, and brix content. These newly CAPS markers will be a valuable resource for breeding programs and genetic studies of watermelon.
Collapse
Affiliation(s)
- Shi Liu
- Horticulture College, Northeast Agricultural University,
No. 59 Mucai Street Harbin, Heilongjiang Province, 150030,
China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture,
No. 59 Mucai Street Harbin, Heilongjiang Province, 150030,
China
| | - Peng Gao
- Horticulture College, Northeast Agricultural University,
No. 59 Mucai Street Harbin, Heilongjiang Province, 150030,
China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture,
No. 59 Mucai Street Harbin, Heilongjiang Province, 150030,
China
| | - Qianglong Zhu
- Horticulture College, Northeast Agricultural University,
No. 59 Mucai Street Harbin, Heilongjiang Province, 150030,
China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture,
No. 59 Mucai Street Harbin, Heilongjiang Province, 150030,
China
| | - Feishi Luan
- Horticulture College, Northeast Agricultural University,
No. 59 Mucai Street Harbin, Heilongjiang Province, 150030,
China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture,
No. 59 Mucai Street Harbin, Heilongjiang Province, 150030,
China
- Corresponding author (e-mail: )
| | - Angela R. Davis
- South Central Agricultural Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture. Currently with HM. Clause,
9241 Mace Blvd, Davis, CA 95618,
USA
| | - Xiaolu Wang
- Horticulture College, Northeast Agricultural University,
No. 59 Mucai Street Harbin, Heilongjiang Province, 150030,
China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture,
No. 59 Mucai Street Harbin, Heilongjiang Province, 150030,
China
| |
Collapse
|
17
|
Nimmakayala P, Abburi VL, Saminathan T, Almeida A, Davenport B, Davidson J, Reddy CVCM, Hankins G, Ebert A, Choi D, Stommel J, Reddy UK. Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms. FRONTIERS IN PLANT SCIENCE 2016; 7:1646. [PMID: 27857720 PMCID: PMC5093146 DOI: 10.3389/fpls.2016.01646] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/18/2016] [Indexed: 05/03/2023]
Abstract
Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to characterize population structure and species domestication of these two important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima's D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum, indicating a population bottleneck during domestication of C. baccatum. In contrast, C. annuum chromosomes showed positive π and Tajima's D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum, 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index (FST ) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9-2 SNPs per haplotype). Genome-wide association study (GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 significantly associated genome-wide SNPs. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future GWAS of economically important traits in C. baccatum peppers.
Collapse
Affiliation(s)
- Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
| | - Venkata L. Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
| | - Thangasamy Saminathan
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
| | - Aldo Almeida
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
| | - Brittany Davenport
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
| | - Joshua Davidson
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
| | | | - Gerald Hankins
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
| | - Andreas Ebert
- Genetic Resources and Seed Unit, Asian Vegetable Research and Development Center-The World Vegetable CenterTainan, Taiwan
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - John Stommel
- Genetic Improvement of Fruits and Vegetables Laboratory (United States Department of Agriculture, Agricultural Research Service)Beltsville, MD, USA
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
- *Correspondence: Umesh K. Reddy
| |
Collapse
|
18
|
Nimmakayala P, Tomason YR, Abburi VL, Alvarado A, Saminathan T, Vajja VG, Salazar G, Panicker GK, Levi A, Wechter WP, McCreight JD, Korol AB, Ronin Y, Garcia-Mas J, Reddy UK. Genome-Wide Differentiation of Various Melon Horticultural Groups for Use in GWAS for Fruit Firmness and Construction of a High Resolution Genetic Map. FRONTIERS IN PLANT SCIENCE 2016; 7:1437. [PMID: 27713759 PMCID: PMC5031849 DOI: 10.3389/fpls.2016.01437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/08/2016] [Indexed: 05/06/2023]
Abstract
Melon (Cucumis melo L.) is a phenotypically diverse eudicot diploid (2n = 2x = 24) has climacteric and non-climacteric morphotypes and show wide variation for fruit firmness, an important trait for transportation and shelf life. We generated 13,789 SNP markers using genotyping-by-sequencing (GBS) and anchored them to chromosomes to understand genome-wide fixation indices (Fst) between various melon morphotypes and genomewide linkage disequilibrium (LD) decay. The FST between accessions of cantalupensis and inodorus was 0.23. The FST between cantalupensis and various agrestis accessions was in a range of 0.19-0.53 and between inodorus and agrestis accessions was in a range of 0.21-0.59 indicating sporadic to wide ranging introgression. The EM (Expectation Maximization) algorithm was used for estimation of 1436 haplotypes. Average genome-wide LD decay for the melon genome was noted to be 9.27 Kb. In the current research, we focused on the genome-wide divergence underlying diverse melon horticultural groups. A high-resolution genetic map with 7153 loci was constructed. Genome-wide segregation distortion and recombination rate across various chromosomes were characterized. Melon has climacteric and non-climacteric morphotypes and wide variation for fruit firmness, a very important trait for transportation and shelf life. Various levels of QTLs were identified with high to moderate stringency and linked to fruit firmness using both genome-wide association study (GWAS) and biparental mapping. Gene annotation revealed some of the SNPs are located in β-D-xylosidase, glyoxysomal malate synthase, chloroplastic anthranilate phosphoribosyltransferase, and histidine kinase, the genes that were previously characterized for fruit ripening and softening in other crops.
Collapse
Affiliation(s)
- Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State UniversityInstitute, WV, USA
| | - Yan R. Tomason
- Gus R. Douglass Institute and Department of Biology, West Virginia State UniversityInstitute, WV, USA
- Department of Selection and Seed Production, Dnepropetrovsk State Agrarian and Economic UniversityDnepropetrovsk, Ukraine
| | - Venkata L. Abburi
- Gus R. Douglass Institute and Department of Biology, West Virginia State UniversityInstitute, WV, USA
| | - Alejandra Alvarado
- Gus R. Douglass Institute and Department of Biology, West Virginia State UniversityInstitute, WV, USA
| | - Thangasamy Saminathan
- Gus R. Douglass Institute and Department of Biology, West Virginia State UniversityInstitute, WV, USA
| | - Venkata G. Vajja
- Gus R. Douglass Institute and Department of Biology, West Virginia State UniversityInstitute, WV, USA
| | - Germania Salazar
- Department of Agriculture, Alcorn State UniversityLorman, MS, USA
| | | | - Amnon Levi
- U.S. Vegetable Laboratory, United States Department of Agriculture, Agricultural Research ServiceCharleston, SC, USA
| | - William P. Wechter
- U.S. Vegetable Laboratory, United States Department of Agriculture, Agricultural Research ServiceCharleston, SC, USA
| | | | - Abraham B. Korol
- Department of Evolutionary and Environmental Biology, Haifa UniversityHaifa, Israel
| | - Yefim Ronin
- Department of Evolutionary and Environmental Biology, Haifa UniversityHaifa, Israel
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institute for Food and Agricultural Research and Technology-Universitat Autònoma de Barcelona-Universitat de BarcelonaBarcelona, Spain
| | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State UniversityInstitute, WV, USA
- *Correspondence: Umesh K. Reddy
| |
Collapse
|
19
|
Major Quantitative Trait Loci and Putative Candidate Genes for Powdery Mildew Resistance and Fruit-Related Traits Revealed by an Intraspecific Genetic Map for Watermelon (Citrullus lanatus var. lanatus). PLoS One 2015; 10:e0145665. [PMID: 26700647 PMCID: PMC4689417 DOI: 10.1371/journal.pone.0145665] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/07/2015] [Indexed: 12/21/2022] Open
Abstract
An intraspecific genetic map for watermelon was constructed using an F2 population derived from ‘Arka Manik’ × ‘TS34’ and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits.
Collapse
|
20
|
Saminathan T, Nimmakayala P, Manohar S, Malkaram S, Almeida A, Cantrell R, Tomason Y, Abburi L, Rahman MA, Vajja VG, Khachane A, Kumar B, Rajasimha HK, Levi A, Wehner T, Reddy UK. Differential gene expression and alternative splicing between diploid and tetraploid watermelon. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1369-85. [PMID: 25520388 PMCID: PMC4438448 DOI: 10.1093/jxb/eru486] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits.
Collapse
Affiliation(s)
- Thangasamy Saminathan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Sumanth Manohar
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Sridhar Malkaram
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Aldo Almeida
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Robert Cantrell
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Yan Tomason
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Lavanya Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Mohammad A Rahman
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Venkata G Vajja
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Amit Khachane
- Genome International Corporation, 8000 Excelsior Drive, Suite 202, Madison, WI 53717, USA
| | - Brajendra Kumar
- Genome International Corporation, 8000 Excelsior Drive, Suite 202, Madison, WI 53717, USA
| | - Harsha K Rajasimha
- Genome International Corporation, 8000 Excelsior Drive, Suite 202, Madison, WI 53717, USA
| | - Amnon Levi
- US Vegetable Laboratory, USDA-ARS, 2875 Savannah Highway, Charleston, SC 29414, USA
| | - Todd Wehner
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| |
Collapse
|