1
|
Bekalu ZE, Panting M, Bæksted Holme I, Brinch-Pedersen H. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing. Int J Mol Sci 2023; 24:11920. [PMID: 37569295 PMCID: PMC10419073 DOI: 10.3390/ijms241511920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Currently, the development of genome editing (GE) tools has provided a wide platform for targeted modification of plant genomes. However, the lack of versatile DNA delivery systems for a large variety of crop species has been the main bottleneck for improving crops with beneficial traits. Currently, the generation of plants with heritable mutations induced by GE tools mostly goes through tissue culture. Unfortunately, current tissue culture systems restrict successful results to only a limited number of plant species and genotypes. In order to release the full potential of the GE tools, procedures need to be species and genotype independent. This review provides an in-depth summary and insights into the various in vitro tissue culture systems used for GE in the economically important crops barley, wheat, rice, sorghum, soybean, maize, potatoes, cassava, and millet and uncovers new opportunities and challenges of already-established tissue culture platforms for GE in the crops.
Collapse
|
2
|
Ali A, Altaf MT, Nadeem MA, Karaköy T, Shah AN, Azeem H, Baloch FS, Baran N, Hussain T, Duangpan S, Aasim M, Boo KH, Abdelsalam NR, Hasan ME, Chung YS. Recent advancement in OMICS approaches to enhance abiotic stress tolerance in legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:952759. [PMID: 36247536 PMCID: PMC9554552 DOI: 10.3389/fpls.2022.952759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
The world is facing rapid climate change and a fast-growing global population. It is believed that the world population will be 9.7 billion in 2050. However, recent agriculture production is not enough to feed the current population of 7.9 billion people, which is causing a huge hunger problem. Therefore, feeding the 9.7 billion population in 2050 will be a huge target. Climate change is becoming a huge threat to global agricultural production, and it is expected to become the worst threat to it in the upcoming years. Keeping this in view, it is very important to breed climate-resilient plants. Legumes are considered an important pillar of the agriculture production system and a great source of high-quality protein, minerals, and vitamins. During the last two decades, advancements in OMICs technology revolutionized plant breeding and emerged as a crop-saving tool in wake of the climate change. Various OMICs approaches like Next-Generation sequencing (NGS), Transcriptomics, Proteomics, and Metabolomics have been used in legumes under abiotic stresses. The scientific community successfully utilized these platforms and investigated the Quantitative Trait Loci (QTL), linked markers through genome-wide association studies, and developed KASP markers that can be helpful for the marker-assisted breeding of legumes. Gene-editing techniques have been successfully proven for soybean, cowpea, chickpea, and model legumes such as Medicago truncatula and Lotus japonicus. A number of efforts have been made to perform gene editing in legumes. Moreover, the scientific community did a great job of identifying various genes involved in the metabolic pathways and utilizing the resulted information in the development of climate-resilient legume cultivars at a rapid pace. Keeping in view, this review highlights the contribution of OMICs approaches to abiotic stresses in legumes. We envisage that the presented information will be helpful for the scientific community to develop climate-resilient legume cultivars.
Collapse
Affiliation(s)
- Amjad Ali
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Muhammad Tanveer Altaf
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hajra Azeem
- Department of Plant Pathology, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Nurettin Baran
- Bitkisel Uretim ve Teknolojileri Bolumu, Uygulamali Bilimler Faku Itesi, Mus Alparslan Universitesi, Mus, Turkey
| | - Tajamul Hussain
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| | - Saowapa Duangpan
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Kyung-Hwan Boo
- Subtropical/Tropical Organism Gene Bank, Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju, South Korea
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, South Korea
| |
Collapse
|
3
|
Baloglu MC, Celik Altunoglu Y, Baloglu P, Yildiz AB, Türkölmez N, Özden Çiftçi Y. Gene-Editing Technologies and Applications in Legumes: Progress, Evolution, and Future Prospects. Front Genet 2022; 13:859437. [PMID: 35836569 PMCID: PMC9275826 DOI: 10.3389/fgene.2022.859437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022] Open
Abstract
Legumes are rich in protein and phytochemicals and have provided a healthy diet for human beings for thousands of years. In recognition of the important role they play in human nutrition and agricultural production, the researchers have made great efforts to gain new genetic traits in legumes such as yield, stress tolerance, and nutritional quality. In recent years, the significant increase in genomic resources for legume plants has prepared the groundwork for applying cutting-edge breeding technologies, such as transgenic technologies, genome editing, and genomic selection for crop improvement. In addition to the different genome editing technologies including the CRISPR/Cas9-based genome editing system, this review article discusses the recent advances in plant-specific gene-editing methods, as well as problems and potential benefits associated with the improvement of legume crops with important agronomic properties. The genome editing technologies have been effectively used in different legume plants including model legumes like alfalfa and lotus, as well as crops like soybean, cowpea, and chickpea. We also discussed gene-editing methods used in legumes and the improvements of agronomic traits in model and recalcitrant legumes. Despite the immense opportunities genome editing can offer to the breeding of legumes, governmental regulatory restrictions present a major concern. In this context, the comparison of the regulatory framework of genome editing strategies in the European Union and the United States of America was also discussed. Gene-editing technologies have opened up new possibilities for the improvement of significant agronomic traits in legume breeding.
Collapse
Affiliation(s)
- Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Pinar Baloglu
- Research and Application Center, Kastamonu University, Kastamonu, Turkey
| | - Ali Burak Yildiz
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Nil Türkölmez
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Yelda Özden Çiftçi
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
- Smart Agriculture Research and Application Center, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
4
|
Improving Protein Quantity and Quality—The Next Level of Plant Molecular Farming. Int J Mol Sci 2022; 23:ijms23031326. [PMID: 35163249 PMCID: PMC8836236 DOI: 10.3390/ijms23031326] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022] Open
Abstract
Plants offer several unique advantages in the production of recombinant pharmaceuticals for humans and animals. Although numerous recombinant proteins have been expressed in plants, only a small fraction have been successfully put into use. The hugely distinct expression systems between plant and animal cells frequently cause insufficient yield of the recombinant proteins with poor or undesired activity. To overcome the issues that greatly constrain the development of plant-produced pharmaceuticals, great efforts have been made to improve expression systems and develop alternative strategies to increase both the quantity and quality of the recombinant proteins. Recent technological revolutions, such as targeted genome editing, deconstructed vectors, virus-like particles, and humanized glycosylation, have led to great advances in plant molecular farming to meet the industrial manufacturing and clinical application standards. In this review, we discuss the technological advances made in various plant expression platforms, with special focus on the upstream designs and milestone achievements in improving the yield and glycosylation of the plant-produced pharmaceutical proteins.
Collapse
|
5
|
Li C, Nong W, Zhao S, Lin X, Xie Y, Cheung MY, Xiao Z, Wong AYP, Chan TF, Hui JHL, Lam HM. Differential microRNA expression, microRNA arm switching, and microRNA:long noncoding RNA interaction in response to salinity stress in soybean. BMC Genomics 2022; 23:65. [PMID: 35057741 PMCID: PMC8780314 DOI: 10.1186/s12864-022-08308-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Soybean is a major legume crop with high nutritional and environmental values suitable for sustainable agriculture. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are important regulators of gene functions in eukaryotes. However, the interactions between these two types of ncRNAs in the context of plant physiology, especially in response to salinity stress, are poorly understood. RESULTS Here, we challenged a cultivated soybean accession (C08) and a wild one (W05) with salt treatment and obtained their small RNA transcriptomes at six time points from both root and leaf tissues. In addition to thoroughly analyzing the differentially expressed miRNAs, we also documented the first case of miRNA arm-switching (miR166m), the swapping of dominant miRNA arm expression, in soybean in different tissues. Two arms of miR166m target different genes related to salinity stress (chloroplastic beta-amylase 1 targeted by miR166m-5p and calcium-dependent protein kinase 1 targeted by miR166m-3p), suggesting arm-switching of miR166m play roles in soybean in response to salinity stress. Furthermore, two pairs of miRNA:lncRNA interacting partners (miR166i-5p and lncRNA Gmax_MSTRG.35921.1; and miR394a-3p and lncRNA Gmax_MSTRG.18616.1) were also discovered in reaction to salinity stress. CONCLUSIONS This study demonstrates how ncRNA involves in salinity stress responses in soybean by miRNA arm switching and miRNA:lncRNA interactions. The behaviors of ncRNAs revealed in this study will shed new light on molecular regulatory mechanisms of stress responses in plants, and hence provide potential new strategies for crop improvement.
Collapse
Affiliation(s)
- Chade Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
| | - Wenyan Nong
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
| | - Shancen Zhao
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, P.R. China
| | - Xiao Lin
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
| | - Yichun Xie
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
| | - Ming-Yan Cheung
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
| | - Zhixia Xiao
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
| | - Annette Y P Wong
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
| | - Ting Fung Chan
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China.
| | - Jerome H L Hui
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China.
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China.
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China.
| |
Collapse
|
6
|
Yan Y, Zhang K, Zhou G, Hu W. MicroRNAs Responding to Space Radiation. Int J Mol Sci 2020; 21:ijms21186603. [PMID: 32917057 PMCID: PMC7555309 DOI: 10.3390/ijms21186603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
High-energy and high-atom-number (HZE) space radiation poses an inevitable potential threat to astronauts on deep space exploration missions. Compared with low-LET radiation, high-energy and high-LET radiation in space is more efficient in inducing clustered DNA damage with more serious biological consequences, such as carcinogenesis, central nervous system injury and degenerative disease. Space radiation also causes epigenetic changes in addition to inducing damage at the DNA level. Considering the important roles of microRNAs in the regulation of biological responses of radiation, we systematically reviewed both expression profiling and functional studies relating to microRNAs responding to space radiation as well as to space compound environment. Finally, the directions for improvement of the research related to microRNAs responding to space radiation are proposed. A better understanding of the functions and underlying mechanisms of the microRNAs responding to space radiation is of significance to both space radiation risk assessment and therapy development for lesions caused by space radiation.
Collapse
Affiliation(s)
| | | | - Guangming Zhou
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| | - Wentao Hu
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| |
Collapse
|
7
|
Curtin SJ, Xiong Y, Michno J, Campbell BW, Stec AO, Čermák T, Starker C, Voytas DF, Eamens AL, Stupar RM. CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1125-1137. [PMID: 29087011 PMCID: PMC5978873 DOI: 10.1111/pbi.12857] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 05/14/2023]
Abstract
Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 reagent was used to create a bi-allelic double mutant for the two soya bean paralogous Double-stranded RNA-binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer1 (MtHen1) gene, were determined to be germ-line transmissible. Furthermore, TALENs were used to generate a mutation within the soya bean Dicer-like2 gene. CRISPR/Cas9 mutagenesis of the soya bean Dicer-like3 gene and the GmHen1a gene was observed in the T0 generation, but these mutations failed to transmit to the T1 generation. The irregular transmission of induced mutations and the corresponding transgenes was investigated by whole-genome sequencing to reveal a spectrum of non-germ-line-targeted mutations and multiple transgene insertion events. Finally, a suite of combinatorial mutant plants were generated by combining the previously reported Gmdcl1a, Gmdcl1b and Gmdcl4b mutants with the Gmdrb2ab double mutant. Altogether, this study demonstrates the synergistic use of different genome engineering platforms to generate a collection of useful mutant plant lines for future study of small RNA processing in legume crops.
Collapse
Affiliation(s)
- Shaun J. Curtin
- Department of Plant PathologyUniversity of MinnesotaSt. PaulMNUSA
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
- Present address:
Plant Science Research UnitAgricultural Research ServiceUnited States Department of AgricultureSt PaulMNUSA
| | - Yer Xiong
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Jean‐Michel Michno
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
- Bioinformatics and Computational Biology Graduate ProgramUniversity of MinnesotaMinneapolisMNUSA
| | | | - Adrian O. Stec
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Tomas Čermák
- Department of Genetics, Cell Biology & DevelopmentCenter for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Present address:
Agricultural Research ServiceInari Agriculture, Inc.CambridgeMAUSA
| | - Colby Starker
- Department of Genetics, Cell Biology & DevelopmentCenter for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology & DevelopmentCenter for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Andrew L. Eamens
- School of Environmental and Life SciencesThe University of NewcastleCallaghanNew South WalesAustralia
| | - Robert M. Stupar
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
- Bioinformatics and Computational Biology Graduate ProgramUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
8
|
Paicu C, Mohorianu I, Stocks M, Xu P, Coince A, Billmeier M, Dalmay T, Moulton V, Moxon S. miRCat2: accurate prediction of plant and animal microRNAs from next-generation sequencing datasets. Bioinformatics 2017; 33:2446-2454. [PMID: 28407097 PMCID: PMC5870699 DOI: 10.1093/bioinformatics/btx210] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION MicroRNAs are a class of ∼21-22 nt small RNAs which are excised from a stable hairpin-like secondary structure. They have important gene regulatory functions and are involved in many pathways including developmental timing, organogenesis and development in eukaryotes. There are several computational tools for miRNA detection from next-generation sequencing datasets. However, many of these tools suffer from high false positive and false negative rates. Here we present a novel miRNA prediction algorithm, miRCat2. miRCat2 incorporates a new entropy-based approach to detect miRNA loci, which is designed to cope with the high sequencing depth of current next-generation sequencing datasets. It has a user-friendly interface and produces graphical representations of the hairpin structure and plots depicting the alignment of sequences on the secondary structure. RESULTS We test miRCat2 on a number of animal and plant datasets and present a comparative analysis with miRCat, miRDeep2, miRPlant and miReap. We also use mutants in the miRNA biogenesis pathway to evaluate the predictions of these tools. Results indicate that miRCat2 has an improved accuracy compared with other methods tested. Moreover, miRCat2 predicts several new miRNAs that are differentially expressed in wild-type versus mutants in the miRNA biogenesis pathway. AVAILABILITY AND IMPLEMENTATION miRCat2 is part of the UEA small RNA Workbench and is freely available from http://srna-workbench.cmp.uea.ac.uk/. CONTACT v.moulton@uea.ac.uk or s.moxon@uea.ac.uk. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Claudia Paicu
- The Earlham Institute, Norwich Research Park, Norwich, UK
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Irina Mohorianu
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Matthew Stocks
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ping Xu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Aurore Coince
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Martina Billmeier
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
9
|
Cho YB, Jones SI, Vodkin LO. Mutations in Argonaute5 Illuminate Epistatic Interactions of the K1 and I Loci Leading to Saddle Seed Color Patterns in Glycine max. THE PLANT CELL 2017; 29:708-725. [PMID: 28351993 PMCID: PMC5435447 DOI: 10.1105/tpc.17.00162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 05/18/2023]
Abstract
The soybean (Glycine max) seed coat has distinctive, genetically programmed patterns of pigmentation, and the recessive k1 mutation can epistatically overcome the dominant I and ii alleles, which inhibit seed color by producing small interfering RNAs (siRNAs) targeting chalcone synthase (CHS) mRNAs. Small RNA sequencing of dissected regions of immature seed coats demonstrated that CHS siRNA levels cause the patterns produced by the ii and ik alleles of the I locus, which restrict pigment to the hilum or saddle region of the seed coat, respectively. To identify the K1 locus, we compared RNA-seq data from dissected regions of two Clark isolines having similar saddle phenotypes mediated by CHS siRNAs but different genotypes (homozygous ik K1 versus homozygous ii k1). By examining differentially expressed genes, mapping information, and genome resequencing, we identified a 129-bp deletion in Glyma.11G190900 encoding Argonaute5 (AGO5), a member of the Argonaute family. Amplicon sequencing of several independent saddle pattern mutants from different genetic backgrounds revealed independent lesions affecting AGO5, thus establishing Glyma.11G190900 as the K1 locus. Nonfunctional AGO5 from k1 alleles leads to altered distributions of CHS siRNAs, thus explaining how the k1 mutation reverses the phenotype of the seed coat regions from yellow to pigmented, even in the presence of the normally dominant I or ii alleles.
Collapse
Affiliation(s)
- Young B Cho
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| | - Sarah I Jones
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| | - Lila O Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
10
|
Hilscher J, Bürstmayr H, Stoger E. Targeted modification of plant genomes for precision crop breeding. Biotechnol J 2017; 12. [PMID: 27726285 DOI: 10.1002/biot.201600173] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/22/2016] [Accepted: 09/09/2016] [Indexed: 02/03/2023]
Abstract
The development of gene targeting and gene editing techniques based on programmable site-directed nucleases (SDNs) has increased the precision of genome modification and made the outcomes more predictable and controllable. These approaches have achieved rapid advances in plant biotechnology, particularly the development of improved crop varieties. Here, we review the range of alterations which have already been implemented in plant genomes, and summarize the reported efficiencies of precise genome modification. Many crop varieties are being developed using SDN technologies and although their regulatory status in the USA is clear there is still a decision pending in the EU. DNA-free genome editing strategies are briefly discussed because they also present a unique regulatory challenge. The potential applications of genome editing in plant breeding and crop improvement are highlighted by drawing examples from the recent literature.
Collapse
Affiliation(s)
- Julia Hilscher
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hermann Bürstmayr
- Institute for Biotechnology in Plant Production (IFA Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
11
|
Whitham SA, Qi M, Innes RW, Ma W, Lopes-Caitar V, Hewezi T. Molecular Soybean-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:443-68. [PMID: 27359370 DOI: 10.1146/annurev-phyto-080615-100156] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Soybean hosts a wide variety of pathogens that cause significant yield losses. The importance of soybean as a major oilseed crop has led to research focused on its interactions with pathogens, such as Soybean mosaic virus, Pseudomonas syringae, Phytophthora sojae, Phakopsora pachyrhizi, and Heterodera glycines. Pioneering work on soybean's interactions with these organisms, which represent the five major pathogen groups (viruses, bacteria, oomycetes, fungi, and nematodes), has contributed to our understanding of the molecular mechanisms underlying virulence and immunity. These mechanisms involve conserved and unique features that validate the need for research in both soybean and homologous model systems. In this review, we discuss identification of effectors and their functions as well as resistance gene-mediated recognition and signaling. We also point out areas in which model systems and recent advances in resources and tools have provided opportunities to gain deeper insights into soybean-pathogen interactions.
Collapse
Affiliation(s)
- Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521;
| | - Valéria Lopes-Caitar
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| |
Collapse
|
12
|
Campbell BW, Stupar RM. Soybean (Glycine max) Mutant and Germplasm Resources: Current Status and Future Prospects. ACTA ACUST UNITED AC 2016; 1:307-327. [PMID: 30775866 DOI: 10.1002/cppb.20015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genetic bottlenecks during domestication and modern breeding limited the genetic diversity of soybean (Glycine max (L.) Merr.). Therefore, expanding and diversifying soybean genetic resources is a major priority for the research community. These resources, consisting of natural and induced genetic variants, are valuable tools for improving soybean and furthering soybean biological knowledge. During the twentieth century, researchers gathered a wealth of genetic variation in the forms of landraces, Glycine soja accessions, Glycine tertiary germplasm, and the U.S. Department of Agriculture (USDA) Type and Isoline Collections. During the twenty-first century, soybean researchers have added several new genetic and genomic resources. These include the reference genome sequence, genotype data for the USDA soybean germplasm collection, next-generation mapping populations, new irradiation and transposon-based mutagenesis populations, and designer nuclease platforms for genome engineering. This paper briefly surveys the publicly accessible soybean genetic resources currently available or in development and provides recommendations for developing such genetic resources in the future. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Benjamin W Campbell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
13
|
Anderson JE, Michno JM, Kono TJY, Stec AO, Campbell BW, Curtin SJ, Stupar RM. Genomic variation and DNA repair associated with soybean transgenesis: a comparison to cultivars and mutagenized plants. BMC Biotechnol 2016; 16:41. [PMID: 27176220 PMCID: PMC4866027 DOI: 10.1186/s12896-016-0271-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/04/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The safety of mutagenized and genetically transformed plants remains a subject of scrutiny. Data gathered and communicated on the phenotypic and molecular variation induced by gene transfer technologies will provide a scientific-based means to rationally address such concerns. In this study, genomic structural variation (e.g. large deletions and duplications) and single nucleotide polymorphism rates were assessed among a sample of soybean cultivars, fast neutron-derived mutants, and five genetically transformed plants developed through Agrobacterium based transformation methods. RESULTS On average, the number of genes affected by structural variations in transgenic plants was one order of magnitude less than that of fast neutron mutants and two orders of magnitude less than the rates observed between cultivars. Structural variants in transgenic plants, while rare, occurred adjacent to the transgenes, and at unlinked loci on different chromosomes. DNA repair junctions at both transgenic and unlinked sites were consistent with sequence microhomology across breakpoints. The single nucleotide substitution rates were modest in both fast neutron and transformed plants, exhibiting fewer than 100 substitutions genome-wide, while inter-cultivar comparisons identified over one-million single nucleotide polymorphisms. CONCLUSIONS Overall, these patterns provide a fresh perspective on the genomic variation associated with high-energy induced mutagenesis and genetically transformed plants. The genetic transformation process infrequently results in novel genetic variation and these rare events are analogous to genetic variants occurring spontaneously, already present in the existing germplasm, or induced through other types of mutagenesis. It remains unclear how broadly these results can be applied to other crops or transformation methods.
Collapse
Affiliation(s)
- Justin E Anderson
- Department of Agronomy & Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, St. Paul, MN 55108, USA
| | - Jean-Michel Michno
- Department of Agronomy & Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, St. Paul, MN 55108, USA
| | - Thomas J Y Kono
- Department of Agronomy & Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, St. Paul, MN 55108, USA
| | - Adrian O Stec
- Department of Agronomy & Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, St. Paul, MN 55108, USA
| | - Benjamin W Campbell
- Department of Agronomy & Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, St. Paul, MN 55108, USA
| | - Shaun J Curtin
- Department of Agronomy & Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, St. Paul, MN 55108, USA
| | - Robert M Stupar
- Department of Agronomy & Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, St. Paul, MN 55108, USA.
| |
Collapse
|