1
|
Lee S, Lee S, Desnick R, Yasuda M, Lai EC. Noncanonical role of ALAS1 as a heme-independent inhibitor of small RNA-mediated silencing. Science 2024; 386:1427-1434. [PMID: 39700288 PMCID: PMC11829814 DOI: 10.1126/science.adp9388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/18/2024] [Indexed: 12/21/2024]
Abstract
microRNAs (miRNAs) and small interfering RNAs (siRNAs) are 21- to 22-nucleotide RNAs that guide Argonaute-class effectors to targets for repression. In this work, we uncover 5-aminolevulinic acid synthase 1 (ALAS1), the initiating enzyme for heme biosynthesis, as a general repressor of miRNA accumulation. Although heme is known to be a positive cofactor for the nuclear miRNA processing machinery, ALAS1-but not other heme biosynthesis enzymes-limits the assembly and activity of Argonaute complexes under heme-replete conditions. This involves a cytoplasmic role for ALAS1, previously considered inactive outside of mitochondria. Moreover, conditional depletion of ALAS activity from mouse hepatocytes increases miRNAs and enhances siRNA-mediated knockdown. Notably, because ALAS1 is the target of a Food and Drug Administration-approved siRNA drug, agents that suppress ALAS may serve as adjuvants for siRNA therapies.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sangmi Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Makiko Yasuda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric C. Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
2
|
Wang Y, Zhao J, Chen S, Li D, Yang J, Zhao X, Qin M, Guo M, Chen C, He Z, Zhou Y, Xu L. Let-7 as a Promising Target in Aging and Aging-Related Diseases: A Promise or a Pledge. Biomolecules 2022; 12:1070. [PMID: 36008964 PMCID: PMC9406090 DOI: 10.3390/biom12081070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
The abnormal regulation and expression of microRNA (miRNA) are closely related to the aging process and the occurrence and development of aging-related diseases. Lethal-7 (let-7) was discovered in Caenorhabditis elegans (C. elegans) and plays an important role in development by regulating cell fate regulators. Accumulating evidence has shown that let-7 is elevated in aging tissues and participates in multiple pathways that regulate the aging process, including affecting tissue stem cell function, body metabolism, and various aging-related diseases (ARDs). Moreover, recent studies have found that let-7 plays an important role in the senescence of B cells, suggesting that let-7 may also participate in the aging process by regulating immune function. Therefore, these studies show the diversity and complexity of let-7 expression and regulatory functions during aging. In this review, we provide a detailed overview of let-7 expression regulation as well as its role in different tissue aging and aging-related diseases, which may provide new ideas for enriching the complex expression regulation mechanism and pathobiological function of let-7 in aging and related diseases and ultimately provide help for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ya Wang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Shipeng Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ming Qin
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Zhixu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| | - Ya Zhou
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Medical Physics, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
3
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
4
|
Ehses J, Schlegel M, Schröger L, Schieweck R, Derdak S, Bilban M, Bauer K, Harner M, Kiebler MA. The dsRBP Staufen2 governs RNP assembly of neuronal Argonaute proteins. Nucleic Acids Res 2022; 50:7034-7047. [PMID: 35687120 PMCID: PMC9262589 DOI: 10.1093/nar/gkac487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Mature microRNAs are bound by a member of the Argonaute (Ago1-4) protein family, forming the core of the RNA-induced silencing complex (RISC). Association of RISC with target mRNAs results in ribonucleoprotein (RNP) assembly involved in translational silencing or RNA degradation. Yet, the dynamics of RNP assembly and its underlying functional implications are unknown. Here, we have characterized the role of the RNA-binding protein Staufen2, a candidate Ago interactor, in RNP assembly. Staufen2 depletion resulted in the upregulation of Ago1/2 and the RISC effector proteins Ddx6 and Dcp1a. This upregulation was accompanied by the displacement of Ago1/2 from processing bodies, large RNPs implicated in RNA storage, and subsequent association of Ago2 with polysomes. In parallel, Staufen2 deficiency decreased global translation and increased dendritic branching. As the observed phenotypes can be rescued by Ago1/2 knockdown, we propose a working model in which both Staufen2 and Ago proteins depend on each other and contribute to neuronal homeostasis.
Collapse
Affiliation(s)
- Janina Ehses
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Melina Schlegel
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Luise Schröger
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics, Medical University, of Vienna, 1090 Vienna, Austria
| | - Karl Bauer
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Max Harner
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Michael A Kiebler
- To whom correspondence should be addressed. Tel: +49 89 2180 75884; Fax: +49 89 2180 75885;
| |
Collapse
|
5
|
Mayya VK, Flamand MN, Lambert AM, Jafarnejad SM, Wohlschlegel JA, Sonenberg N, Duchaine TF. microRNA-mediated translation repression through GYF-1 and IFE-4 in C. elegans development. Nucleic Acids Res 2021; 49:4803-4815. [PMID: 33758928 PMCID: PMC8136787 DOI: 10.1093/nar/gkab162] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
microRNA (miRNA)-mediated gene silencing is enacted through the recruitment of effector proteins that direct translational repression or degradation of mRNA targets, but the relative importance of their activities for animal development remains unknown. Our concerted proteomic surveys identified the uncharacterized GYF-domain encoding protein GYF-1 and its direct interaction with IFE-4, the ortholog of the mammalian translation repressor 4EHP, as key miRNA effector proteins in Caenorhabditis elegans. Recruitment of GYF-1 protein to mRNA reporters in vitro or in vivo leads to potent translation repression without affecting the poly(A) tail or impinging on mRNA stability. Loss of gyf-1 is synthetic lethal with hypomorphic alleles of embryonic miR-35-42 and larval (L4) let-7 miRNAs, which is phenocopied through engineered mutations in gyf-1 that abolish interaction with IFE-4. GYF-1/4EHP function is cascade-specific, as loss of gyf-1 had no noticeable impact on the functions of other miRNAs, including lin-4 and lsy-6. Overall, our findings reveal the first direct effector of miRNA-mediated translational repression in C. elegans and its physiological importance for the function of several, but likely not all miRNAs.
Collapse
Affiliation(s)
- Vinay K Mayya
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Mathieu N Flamand
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Alice M Lambert
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast BT9 7AE UK
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Thomas F Duchaine
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| |
Collapse
|
6
|
let-7 microRNAs: Their Role in Cerebral and Cardiovascular Diseases, Inflammation, Cancer, and Their Regulation. Biomedicines 2021; 9:biomedicines9060606. [PMID: 34073513 PMCID: PMC8227213 DOI: 10.3390/biomedicines9060606] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
The let-7 family is among the first microRNAs found. Recent investigations have indicated that it is highly expressed in many systems, including cerebral and cardiovascular systems. Numerous studies have implicated the aberrant expression of let-7 members in cardiovascular diseases, such as stroke, myocardial infarction (MI), cardiac fibrosis, and atherosclerosis as well as in the inflammation related to these diseases. Furthermore, the let-7 microRNAs are involved in development and differentiation of embryonic stem cells in the cardiovascular system. Numerous genes have been identified as target genes of let-7, as well as a number of the let-7’ regulators. Further studies are necessary to identify the gene targets and signaling pathways of let-7 in cardiovascular diseases and inflammatory processes. The bulk of the let-7’ regulatory proteins are well studied in development, proliferation, differentiation, and cancer, but their roles in inflammation, cardiovascular diseases, and/or stroke are not well understood. Further knowledge on the regulation of let-7 is crucial for therapeutic advances. This review focuses on research progress regarding the roles of let-7 and their regulation in cerebral and cardiovascular diseases and associated inflammation.
Collapse
|
7
|
Opposing roles for Egalitarian and Staufen in transport, anchoring and localization of oskar mRNA in the Drosophila oocyte. PLoS Genet 2021; 17:e1009500. [PMID: 33798193 PMCID: PMC8046350 DOI: 10.1371/journal.pgen.1009500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/14/2021] [Accepted: 03/19/2021] [Indexed: 11/19/2022] Open
Abstract
Localization of oskar mRNA includes two distinct phases: transport from nurse cells to the oocyte, a process typically accompanied by cortical anchoring in the oocyte, followed by posterior localization within the oocyte. Signals within the oskar 3' UTR directing transport are individually weak, a feature previously hypothesized to facilitate exchange between the different localization machineries. We show that alteration of the SL2a stem-loop structure containing the oskar transport and anchoring signal (TAS) removes an inhibitory effect such that in vitro binding by the RNA transport factor, Egalitarian, is elevated as is in vivo transport from the nurse cells into the oocyte. Cortical anchoring within the oocyte is also enhanced, interfering with posterior localization. We also show that mutation of Staufen recognized structures (SRSs), predicted binding sites for Staufen, disrupts posterior localization of oskar mRNA just as in staufen mutants. Two SRSs in SL2a, one overlapping the Egalitarian binding site, are inferred to mediate Staufen-dependent inhibition of TAS anchoring activity, thereby promoting posterior localization. The other three SRSs in the oskar 3' UTR are also required for posterior localization, including two located distant from any known transport signal. Staufen, thus, plays multiple roles in localization of oskar mRNA.
Collapse
|
8
|
Greenhalgh R, Dermauw W, Glas JJ, Rombauts S, Wybouw N, Thomas J, Alba JM, Pritham EJ, Legarrea S, Feyereisen R, Van de Peer Y, Van Leeuwen T, Clark RM, Kant MR. Genome streamlining in a minute herbivore that manipulates its host plant. eLife 2020; 9:56689. [PMID: 33095158 PMCID: PMC7738191 DOI: 10.7554/elife.56689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tomato russet mite, Aculops lycopersici, is among the smallest animals on earth. It is a worldwide pest on tomato and can potently suppress the host's natural resistance. We sequenced its genome, the first of an eriophyoid, and explored whether there are genomic features associated with the mite's minute size and lifestyle. At only 32.5 Mb, the genome is the smallest yet reported for any arthropod and, reminiscent of microbial eukaryotes, exceptionally streamlined. It has few transposable elements, tiny intergenic regions, and is remarkably intron-poor, as more than 80% of coding genes are intronless. Furthermore, in accordance with ecological specialization theory, this defense-suppressing herbivore has extremely reduced environmental response gene families such as those involved in chemoreception and detoxification. Other losses associate with this species' highly derived body plan. Our findings accelerate the understanding of evolutionary forces underpinning metazoan life at the limits of small physical and genome size.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Saioa Legarrea
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, United States.,Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, United States
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Wu E, Vashisht AA, Chapat C, Flamand MN, Cohen E, Sarov M, Tabach Y, Sonenberg N, Wohlschlegel J, Duchaine TF. A continuum of mRNP complexes in embryonic microRNA-mediated silencing. Nucleic Acids Res 2018; 45:2081-2098. [PMID: 28204614 PMCID: PMC5389717 DOI: 10.1093/nar/gkw872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) impinge on the translation and stability of their target mRNAs, and play key roles in development, homeostasis and disease. The gene regulation mechanisms they instigate are largely mediated through the CCR4–NOT deadenylase complex, but the molecular events that occur on target mRNAs are poorly resolved. We observed a broad convergence of interactions of germ granule and P body mRNP components on AIN-1/GW182 and NTL-1/CNOT1 in Caenorhabditis elegans embryos. We show that the miRISC progressively matures on the target mRNA from a scanning form into an effector mRNP particle by sequentially recruiting the CCR4–NOT complex, decapping and decay, or germ granule proteins. Finally, we implicate intrinsically disordered proteins, key components in mRNP architectures, in the embryonic function of lsy-6 miRNA. Our findings define dynamic steps of effector mRNP assembly in miRNA-mediated silencing, and identify a functional continuum between germ granules and P bodies in the C. elegans embryo.
Collapse
Affiliation(s)
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Clément Chapat
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - Mathieu N Flamand
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - Emiliano Cohen
- Department of Developmental Biology and Cancer Research, The Institute For Medical Research-Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, The Institute For Medical Research-Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | |
Collapse
|
10
|
Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics 2018; 209:651-673. [PMID: 29967059 PMCID: PMC6028246 DOI: 10.1534/genetics.118.300291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are small, noncoding RNAs that regulate gene expression at the post-transcriptional level in essentially all aspects of Caenorhabditis elegans biology. More than 140 genes that encode microRNAs in C. elegans regulate development, behavior, metabolism, and responses to physiological and environmental changes. Genetic analysis of C. elegans microRNA genes continues to enhance our fundamental understanding of how microRNAs are integrated into broader gene regulatory networks to control diverse biological processes, including growth, cell division, cell fate determination, behavior, longevity, and stress responses. As many of these microRNA sequences and the related processing machinery are conserved over nearly a billion years of animal phylogeny, the assignment of their functions via worm genetics may inform the functions of their orthologs in other animals, including humans. In vivo investigations are especially important for microRNAs because in silico extrapolation of their functions using mRNA target prediction programs can easily assign microRNAs to incorrect genetic pathways. At this mezzanine level of microRNA bioinformatic sophistication, genetic analysis continues to be the gold standard for pathway assignments.
Collapse
|
11
|
Weaver BP, Han M. Tag team: Roles of miRNAs and Proteolytic Regulators in Ensuring Robust Gene Expression Dynamics. Trends Genet 2017; 34:21-29. [PMID: 29037438 DOI: 10.1016/j.tig.2017.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 09/25/2017] [Indexed: 01/18/2023]
Abstract
Lack of prominent developmental defects arising from loss of many individual miRNAs is consistent with the observations of collaborative networks between miRNAs and roles for miRNAs in regulating stress responses. However, these characteristics may only partially explain the seemingly nonessential nature of many miRNAs. Non-miRNA gene expression regulatory mechanisms also collaborate with miRNA-induced silencing complex (miRISC) to support robust gene expression dynamics. Genetic enhancer screens have revealed roles of miRNAs and other gene repressive mechanisms in development or other cellular processes that were masked by genetic redundancy. Besides discussing the breadth of the non-miRNA genes, we use LIN-28 as an example to illustrate how distinct regulatory systems, including miRNAs and multiple protein stability mechanisms, work at different levels to target expression of a given gene and provide tissue-specific and stage-specific regulation of gene expression.
Collapse
Affiliation(s)
- Benjamin P Weaver
- The Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Min Han
- The Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
12
|
Zabinsky RA, Weum BM, Cui M, Han M. RNA Binding Protein Vigilin Collaborates with miRNAs To Regulate Gene Expression for Caenorhabditis elegans Larval Development. G3 (BETHESDA, MD.) 2017; 7:2511-2518. [PMID: 28576776 PMCID: PMC5555458 DOI: 10.1534/g3.117.043414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 01/16/2023]
Abstract
Extensive studies have suggested that most miRNA functions are executed through complex miRNA-target interaction networks, and such networks function semiredundantly with other regulatory systems to shape gene expression dynamics for proper physiological functions. We found that knocking down vgln-1, which encodes a conserved RNA-binding protein associated with diverse functions, causes severe larval arrest at the early L1 stage in animals with compromised miRISC functions (an ain-2/GW182 mutant). Through an enhancer screen, we identified five specific miRNAs, and miRNA families, that act semiredundantly with VGLN-1 to regulate larval development. By RIP-Seq analysis, we identified mRNAs that are directly bound by VGLN-1, and highly enriched for miRNA binding sites, leading to a hypothesis that VGLN-1 may share common targets with miRNAs to regulate gene expression dynamics for development.
Collapse
Affiliation(s)
- Rebecca A Zabinsky
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Brett M Weum
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Mingxue Cui
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Min Han
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309
| |
Collapse
|
13
|
Di Tomasso G, Miller Jenkins LM, Legault P. ARiBo pull-down for riboproteomic studies based on label-free quantitative mass spectrometry. RNA (NEW YORK, N.Y.) 2016; 22:1760-1770. [PMID: 27659051 PMCID: PMC5066628 DOI: 10.1261/rna.057513.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
As part of their normal life cycle, most RNA molecules associate with several proteins that direct their fate and regulate their function. Here, we describe a novel method for identifying proteins that associate with a target RNA. The procedure is based on the ARiBo method for affinity purification of RNA, which was originally developed to quickly purify RNA with high yields and purity under native conditions. The ARiBo method was further optimized using in vitro transcribed RNA to capture RNA-associating proteins from cellular extracts with high yields and low background protein contamination. For these RNA pull-downs, stem-loops present in the immature forms of let-7 miRNAs (miRNA stem-loops) were used as the target RNAs. Label-free quantitative mass spectrometry analysis allowed for the reliable identification of proteins that are specific to the stem-loops present in the immature forms of two miRNAs, let-7a-1 and let-7g. Several proteins known to bind immature forms of these let-7 miRNAs were identified, but with an improved coverage compared to previous studies. In addition, several novel proteins were identified that better define the protein interactome of the let-7 miRNA stem-loops and further link let-7 biogenesis to important biological processes such as development and tumorigenesis. Thus, combining the ARiBo pull-down method with label-free quantitative mass spectrometry provides an effective proteomic approach for identification of proteins that associate with a target RNA.
Collapse
Affiliation(s)
- Geneviève Di Tomasso
- Département de biochimie et médecine moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Pascale Legault
- Département de biochimie et médecine moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|