1
|
Danilova OA, Ianutsevich EA, Kochkina GA, Tereshina VM. Adaptation of the psychrophilic Mucor psychrophilus (Mucorales, Mucoromycota) to lower temperatures and under conditions of heat and osmotic shocks. Fungal Biol 2025; 129:101532. [PMID: 40023523 DOI: 10.1016/j.funbio.2024.101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 03/04/2025]
Abstract
The definitions of psychrophilia and psychrotolerance are based on the optimal temperature of growth (≤15 and 20 °C, respectively), and it is not clear whether differences exist in adaptation mechanisms. We analyzed the composition of osmolytes and membrane lipids of a true psychrophile Mucor psychrophilus during submerged cultivation at 12.5 °C and 4 °C, as well as under heat and osmotic shocks. The main osmolyte at 12.5 °C is trehalose (70 % of the total), whereas at 4 °C, comparable proportions of glycerol, glucose, and trehalose are observed. Under heat shock, the amount of trehalose increases threefold, and osmotic shock leads to an increase of the glycerol level without a reduction in the amount of trehalose. The predominant membrane lipids at both temperatures are non-bilayer phosphatidic acids (about 65 % of the sum) and phosphatidylethanolamines (20-30 %). An increase in the degree of unsaturation and a decrease in the sterols proportion are observed during growth at 4 °C, whereas at 12.5 °C, as well as under heat and osmotic shocks, the changes are insignificant. Similarity of the adaptation mechanisms of the psychrophilic and psychrotolerant fungi indicates the ambiguity of psychrophilia and psychrotolerance definitions.
Collapse
Affiliation(s)
- Olga A Danilova
- Winogradsky Institute of Microbiology, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Elena A Ianutsevich
- Winogradsky Institute of Microbiology, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Galina A Kochkina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, 142290, Russia.
| | - Vera M Tereshina
- Winogradsky Institute of Microbiology, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
2
|
Lusakunwiwat P, Thananusak R, Nopgason R, Laoteng K, Vongsangnak W. Holistic transcriptional responses of Cordyceps militaris to different culture temperatures. Gene 2024; 923:148574. [PMID: 38768876 DOI: 10.1016/j.gene.2024.148574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Cordyceps militaris is a medicinal entomopathogenic fungus containing valuable biometabolites for pharmaceutical applications. Its genetic inheritance and environmental factors play a crucial role in the production of biomass enriched with cordycepin. While temperature is a crucial controlled parameter for fungal cultivation, its impacts on growth and metabolite biosynthesis remains poorly characterized. This study aimed to investigate the metabolic responses and cordycepin production of C. militaris strain TBRC6039 under various temperature conditions through transcriptome analysis. Among 9599 expressed genes, 576 genes were significantly differentially expressed at culture temperatures of 15 and 25 °C. The changes in the transcriptional responses induced by these temperatures were found in several metabolisms involved in nutrient assimilation and energy source, including amino acids metabolism (e.g., glycine, serine and threonine metabolism) and lipid metabolism (e.g., biosynthesis of unsaturated fatty acids and steroid biosynthesis). At the lower temperature (15 °C), the biosynthetic pathways of lipids, specifically ergosterol and squalene, were the target for maintaining membrane function by transcriptional upregulation. Our study revealed the responsive mechanisms of C. militaris in acclimatization to temperature conditions that provide an insight on physiological manipulation for the production of metabolites by C. militaris.
Collapse
Affiliation(s)
| | - Roypim Thananusak
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Rujirek Nopgason
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand.
| |
Collapse
|
3
|
Gomez-Gutierrrez SV, Sic-Hernandez WR, Haridas S, LaButti K, Eichenberger J, Kaur N, Lipzen A, Barry K, Goodwin SB, Gribskov M, Grigoriev IV. Comparative genomics of the extremophile Cryomyces antarcticus and other psychrophilic Dothideomycetes. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1418145. [PMID: 39309730 PMCID: PMC11412873 DOI: 10.3389/ffunb.2024.1418145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Over a billion years of fungal evolution has enabled representatives of this kingdom to populate almost all parts of planet Earth and to adapt to some of its most uninhabitable environments including extremes of temperature, salinity, pH, water, light, or other sources of radiation. Cryomyces antarcticus is an endolithic fungus that inhabits rock outcrops in Antarctica. It survives extremes of cold, humidity and solar radiation in one of the least habitable environments on Earth. This fungus is unusual because it produces heavily melanized, meristematic growth and is thought to be haploid and asexual. Due to its growth in the most extreme environment, it has been suggested as an organism that could survive on Mars. However, the mechanisms it uses to achieve its extremophilic nature are not known. Comparative genomics can provide clues to the processes underlying biological diversity, evolution, and adaptation. This effort has been greatly facilitated by the 1000 Fungal Genomes project and the JGI MycoCosm portal where sequenced genomes have been assembled into phylogenetic and ecological groups representing different projects, lifestyles, ecologies, and evolutionary histories. Comparative genomics within and between these groups provides insights into fungal adaptations, for example to extreme environmental conditions. Here, we analyze two Cryomyces genomes in the context of additional psychrophilic fungi, as well as non-psychrophilic fungi with diverse lifestyles selected from the MycoCosm database. This analysis identifies families of genes that are expanded and contracted in Cryomyces and other psychrophiles and may explain their extremophilic lifestyle. Higher GC contents of genes and of bases in the third positions of codons may help to stabilize DNA under extreme conditions. Numerous smaller contigs in C. antarcticus suggest the presence of an alternative haplotype that could indicate the sequenced isolate is diploid or dikaryotic. These analyses provide a first step to unraveling the secrets of the extreme lifestyle of C. antarcticus.
Collapse
Affiliation(s)
| | - Wily R. Sic-Hernandez
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Joanne Eichenberger
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Navneet Kaur
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Stephen B. Goodwin
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture (USDA) - Agricultural Research Service, West Lafayette, IN, United States
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
4
|
Zhang H, Chen Z, Yu Z, Tang L, Gao W, Lu X, Yang J. Magnaporthe-Unique Gene MUG1 Is Important for Fungal Appressorial Penetration, Invasive Hyphal Extension, and Virulence in Rice Blast Fungi. J Fungi (Basel) 2024; 10:511. [PMID: 39194837 DOI: 10.3390/jof10080511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
Species-unique genes that encode specific proteins and have no homologs in other species play certain roles in the evolution of species and adaptations to external environments. Nevertheless, the biological roles of unique genes in plant pathogenic fungi remain largely unknown. Here, four Magnaporthe-unique genes (MUG1-MUG4), which were highly expressed during the early infection stages, were functionally characterized in the rice blast fungus Magnaporthe oryzae. Subcellular localization assays revealed that Mug1, Mug2, and Mug4 were localized to the cytoplasm and that Mug3 was localized into the nuclei. Furthermore, through gene knockout and phenotypic analysis, only MUG1 was found to be indispensable for fungal virulence and conidiation. Detailed microscopic analysis revealed that the deletion mutants of MUG1 clearly exhibited reduced appressorial turgor pressure and invasive hyphal development. Taken together, our findings indicate that the Magnaporthe-unique gene MUG1 plays a vital role in infection-related morphogenesis and virulence in rice blast fungi and suggest the specific and important roles of species-unique genes.
Collapse
Affiliation(s)
- Huixia Zhang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhiyi Chen
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zechen Yu
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Liu Tang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wenqiang Gao
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xunli Lu
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Baeza M, Sepulveda D, Cifuentes V, Alcaíno J. Codon usage bias in yeasts and its correlation with gene expression, growth temperature, and protein structure. Front Microbiol 2024; 15:1414422. [PMID: 39040903 PMCID: PMC11260810 DOI: 10.3389/fmicb.2024.1414422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Codon usage bias (CUB) has been described in viruses, prokaryotes, and eukaryotes and has been linked to several cellular and environmental factors, such as the organism's growth temperature, gene expression levels, and regulation of protein synthesis and folding. Most of the studies in this area have been conducted in bacteria and higher eukaryotes, in some cases with different results. In this study, a comparative analysis of CUB in yeasts isolated from cold and template environments was performed in order to evaluate the correlation of CUB with yeast optimal temperature of growth (OTG), gene expression levels, cellular function, and structure of encoded proteins. Among the main findings, highly expressed ORFs tend to have a more similar CUB within and between yeasts, and a direct correlation between codons ending in C and expression level was generally found. A low correspondence between CUB and OTG was observed, with an inverse correlation for some codons ending in C. The clustering of yeasts based on their CUB partially aligns with their OTG, being more consistent for yeasts with lower OTG. In most yeasts, the abundance of preferred codons was generally lower at the 5' end of ORFs, higher in segments encoding beta strand, lower in segments encoding extracellular and transmembrane regions, and higher in "translation" and "energy metabolism" pathways, especially in highly expressed ORFs. Based on our findings, it is suggested that the abundance and distribution of preferred and non-preferred codons along mRNAs contribute to proper protein folding and functionality by regulating protein synthesis rates, becoming a more important factor under conditions that require faster protein synthesis in yeasts.
Collapse
Affiliation(s)
- Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Qiu Q, Li H, Sun X, Zhang L, Tian K, Chang M, Li S, Zhou D, Huo H. Study on the estradiol degradation gene expression and resistance mechanism of Rhodococcus R-001 under low-temperature stress. CHEMOSPHERE 2024; 358:142146. [PMID: 38677604 DOI: 10.1016/j.chemosphere.2024.142146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Estradiol (E2), an endocrine disruptor, acts by mimicking or interfering with the normal physiological functions of natural hormones within organisms, leading to issues such as endocrine system disruption. Notably, seasonal fluctuations in environmental temperature may influence the degradation speed of estradiol (E2) in the natural environment, intensifying its potential health and ecological risks. Therefore, this study aims to explore how bacteria can degrade E2 under low-temperature conditions, unveiling their resistance mechanisms, with the goal of developing new strategies to mitigate the threat of E2 to health and ecological safety. In this paper, we found that Rhodococcus equi DSSKP-R-001 (R-001) can efficiently degrade E2 at 30 °C and 10 °C. Six genes in R-001 were shown to be involved in E2 degradation by heterologous expression at 30 °C. Among them, 17β-HSD, KstD2, and KstD3, were also involved in E2 degradation at 10 °C; KstD was not previously known to degrade E2. RNA-seq was used to characterize differentially expressed genes (DEGs) to explore the stress response of R-001 to low-temperature environments to elucidate the strain's adaptation mechanism. At the low temperature, R-001 cells changed from a round spherical shape to a long rod or irregular shape with elevated unsaturated fatty acids and were consistent with the corresponding genetic changes. Many differentially expressed genes linked to the cold stress response were observed. R-001 was found to upregulate genes encoding cold shock proteins, fatty acid metabolism proteins, the ABC transport system, DNA damage repair, energy metabolism and transcriptional regulators. In this study, we demonstrated six E2 degradation genes in R-001 and found for the first time that E2 degradation genes have different expression characteristics at 30 °C and 10 °C. Linking R-001 to cold acclimation provides new insights and a mechanistic basis for the simultaneous degradation of E2 under cold stress in Rhodococcus adaptation.
Collapse
Affiliation(s)
- Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Han Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Lili Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Shuaiguo Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Dandan Zhou
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
7
|
Abu Bakar N, Lau BYC, González-Aravena M, Smykla J, Krzewicka B, Karsani SA, Alias SA. Geographical Diversity of Proteomic Responses to Cold Stress in the Fungal Genus Pseudogymnoascus. MICROBIAL ECOLOGY 2023; 87:11. [PMID: 38060022 DOI: 10.1007/s00248-023-02311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
In understanding stress response mechanisms in fungi, cold stress has received less attention than heat stress. However, cold stress has shown its importance in various research fields. The following study examined the cold stress response of six Pseudogymnoascus spp. isolated from various biogeographical regions through a proteomic approach. In total, 2541 proteins were identified with high confidence. Gene Ontology enrichment analysis showed diversity in the cold stress response pathways for all six Pseudogymnoascus spp. isolates, with metabolic and translation-related processes being prominent in most isolates. 25.6% of the proteins with an increase in relative abundance were increased by more than 3.0-fold. There was no link between the geographical origin of the isolates and the cold stress response of Pseudogymnoascus spp. However, one Antarctic isolate, sp3, showed a distinctive cold stress response profile involving increased flavin/riboflavin biosynthesis and methane metabolism. This Antarctic isolate (sp3) was also the only one that showed decreased phospholipid metabolism in cold stress conditions. This work will improve our understanding of the mechanisms of cold stress response and adaptation in psychrotolerant soil microfungi, with specific attention to the fungal genus Pseudogymnoascus.
Collapse
Affiliation(s)
- Nurlizah Abu Bakar
- Institute of Ocean and Earth Sciences, C308, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, B303, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Benjamin Yii Chung Lau
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | | - Jerzy Smykla
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Krakow, Poland
| | - Beata Krzewicka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, C308, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- National Antarctic Research Centre, B303, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Abstract
Hypersaline waters and glacial ice are inhospitable environments that have low water activity and high concentrations of osmolytes. They are inhabited by diverse microbial communities, of which extremotolerant and extremophilic fungi are essential components. Some fungi are specialized in only one of these two environments and can thrive in conditions that are lethal to most other life-forms. Others are generalists, highly adaptable species that occur in both environments and tolerate a wide range of extremes. Both groups efficiently balance cellular osmotic pressure and ion concentration, stabilize cell membranes, remodel cell walls, and neutralize intracellular oxidative stress. Some species use unusual reproductive strategies. Further investigation of these adaptations with new methods and carefully designed experiments under ecologically relevant conditions will help predict the role of fungi in hypersaline and glacial environments affected by climate change, decipher their stress resistance mechanisms and exploit their biotechnological potential.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| |
Collapse
|
9
|
Wei X, Zhang M, Chi Z, Liu GL, Chi ZM. Genome-Wide Editing Provides Insights into Role of Unsaturated fatty Acids in Low Temperature Growth of the Psychrotrophic Yeast Metschnikowia bicuspidata var. australis W7-5. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:70-82. [PMID: 36418586 DOI: 10.1007/s10126-022-10182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
In order to know the function of C18:2 and C18:3 fatty acids in the cold growth of the psychrotrophic yeast M. bicuspidata var. australis W7-5, the mutant 1 without C18:2 fatty acid and the mutant 2 without C18:3 fatty acids were obtained. Only the trace amount of C18:2 fatty acid in the mutant 1 occurred while no C18:3 fatty acid in the mutant 2 was detected. The growth rate of only the mutant 1 cultured at 5 ℃ and 25 ℃ was significantly reduced compared with that of the wild-type strain W7-5. But there was no difference between the growth of the mutant 2 and that of the W7-5 strain. These meant that only C18:2 synthesized by the psychrotrophic yeast played an important role in cell growth at low temperature (5 °C) and high temperature (25 °C). Meanwhile, cell wall in the mutant 1 without C18:2 fatty acid gown at 5 and 25 °C was also negatively affected, leading to the reduced cell growth rate of the mutant 1 grown at 5 and 25 °C.
Collapse
Affiliation(s)
- Xin Wei
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Miao Zhang
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
10
|
Turchetti B, Buzzini P, Baeza M. A genomic approach to analyze the cold adaptation of yeasts isolated from Italian Alps. Front Microbiol 2022; 13:1026102. [DOI: 10.3389/fmicb.2022.1026102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Microorganisms including yeasts are responsible for mineralization of organic matter in cold regions, and their characterization is critical to elucidate the ecology of such environments on Earth. Strategies developed by yeasts to survive in cold environments have been increasingly studied in the last years and applied to different biotechnological applications, but their knowledge is still limited. Microbial adaptations to cold include the synthesis of cryoprotective compounds, as well as the presence of a high number of genes encoding the synthesis of proteins/enzymes characterized by a reduced proline content and highly flexible and large catalytic active sites. This study is a comparative genomic study on the adaptations of yeasts isolated from the Italian Alps, considering their growth kinetics. The optimal temperature for growth (OTG), growth rate (Gr), and draft genome sizes considerably varied (OTG, 10°C–20°C; Gr, 0.071–0.0726; genomes, 20.7–21.5 Mpb; %GC, 50.9–61.5). A direct relationship was observed between calculated protein flexibilities and OTG, but not for Gr. Putative genes encoding for cold stress response were found, as well as high numbers of genes encoding for general, oxidative, and osmotic stresses. The cold response genes found in the studied yeasts play roles in cell membrane adaptation, compatible solute accumulation, RNA structure changes, and protein folding, i.e., dihydrolipoamide dehydrogenase, glycogen synthase, omega-6 fatty acid, stearoyl-CoA desaturase, ATP-dependent RNA helicase, and elongation of very-long-chain fatty acids. A redundancy for several putative genes was found, higher for P-loop containing nucleoside triphosphate hydrolase, alpha/beta hydrolase, armadillo repeat-containing proteins, and the major facilitator superfamily protein. Hundreds of thousands of small open reading frames (SmORFs) were found in all studied yeasts, especially in Phenoliferia glacialis. Gene clusters encoding for the synthesis of secondary metabolites such as terpene, non-ribosomal peptide, and type III polyketide were predicted in four, three, and two studied yeasts, respectively.
Collapse
|
11
|
El-Sayed H, Osman ME, Abdelsalam A, Boroujerdi A, Sonbol H, Elsaba YM. Morphological, Molecular and Metabolic Characterization of the Pigmented Fungus Subramaniula asteroids. J Fungi (Basel) 2022; 8:1149. [PMID: 36354915 PMCID: PMC9699277 DOI: 10.3390/jof8111149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 01/20/2025] Open
Abstract
Chaetomiaceae fungi are ascosporulating fungi whose importance as human pathogens has been frequently ignored. In the current study, a new isolate of the genus Subramaniula was described. The fungus was isolated from the soil of Wadi Om Nefa'a, Hurghada in the Red Sea Governorate, Egypt. Previously, Subramaniula were misidentified as Papulaspora spp. According to molecular analysis, the fungus was identified as Subramaniula asteroids OP484336. Remarkably, this species has been found among other fungi responsible for keratitis in humans and has been recorded for the first time in Egypt. Analysing the Subramaniula asteroids' metabolic profile was one of the objectives of the current study because little is known about this family's metabolome. The fungal extract's untargeted metabolic profiling was carried out by gas chromatography-mass spectroscopy (GC/MS), 1H and 1H-HSQC nuclear magnetic resonance (NMR) data, and their corresponding databases. In total, fifty-nine metabolites have been reported in the polar and non-polar extracts. The majority of polar metabolites are amino acids and carbohydrates. The non-polar extract's main components were 1-dodecanamine, N,N-dimethyl-, 1-tetradecanamine, N,N-dimethyl-, and 9-octadecenoic acid ethyl ester. The current study is the first to provide a metabolic profile of Subramaniula asteroids, which can be used in chemotaxonomical classification, antifungal drug development, and biological activity investigation of the studied species.
Collapse
Affiliation(s)
- Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11421, Egypt
| | - Mohamed E. Osman
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11421, Egypt
| | - Asmaa Abdelsalam
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11421, Egypt
| | | | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Yasmin M. Elsaba
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11421, Egypt
| |
Collapse
|
12
|
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. MICROBIAL ECOLOGY 2022; 84:643-675. [PMID: 34647148 DOI: 10.1007/s00248-021-01849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Uttarakhand, India
| | - Saurabh Kumar
- Division of Crop Research, Research Complex for Eastern Region, Patna, Bihar, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Arun Narayan
- Forest Research Institute, Dehradun, 2480 06, India
| | - Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
| | - Manali Singh
- Department of Biotechnology, Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, 243123, Uttar Pradesh, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
13
|
Jin S, Wang Y, Zhao X. Cold-adaptive mechanism of psychrophilic bacteria in food and its application. Microb Pathog 2022; 169:105652. [PMID: 35753601 DOI: 10.1016/j.micpath.2022.105652] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
Abstract
Psychrophilic bacteria are a type of microorganisms that normally grow in low-temperature environments. They are usually found in extremely cold environments. However, as people's demand for low-temperature storage of food becomes higher, psychrophilic bacteria have also begun to appear in cold storage and refrigerators, which has become a food safety hazard. In this paper, the optimal cooling strategies of psychrophilic bacteria are reviewed from the aspects of the cell membrane, psychrophilic enzymes, antifreeze proteins, cold shock proteins, gene regulation, metabolic levels and antifreeze agents, and the principle of psychrophilic mechanism is briefly described. The application of thermophilic bacteria and its products adapted to cold environments in food fields are analyzed. The purpose of this paper is to provide ideas for future research on psychrophilic bacteria based on the mechanism and application of psychrophilic bacteria.
Collapse
Affiliation(s)
- Shanshan Jin
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yizhe Wang
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
14
|
Sannino C, Cannone N, D'Alò F, Franzetti A, Gandolfi I, Pittino F, Turchetti B, Mezzasoma A, Zucconi L, Buzzini P, Guglielmin M, Onofri S. Fungal communities in European alpine soils are not affected by short-term in situ simulated warming than bacterial communities. Environ Microbiol 2022; 24:4178-4192. [PMID: 35691701 DOI: 10.1111/1462-2920.16090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
The impact of global warming on biological communities colonizing European alpine ecosystems was recently studied. Hexagonal open top chambers (OTCs) were used for simulating a short-term in situ warming (estimated around 1°C) in some alpine soils to predict the impact of ongoing climate change on resident microbial communities. Total microbial DNA was extracted from soils collected either inside or outside the OTCs over 3 years of study. Bacterial and fungal rRNA copies were quantified by qPCR. Metabarcoding sequencing of taxonomy target genes was performed (Illumina MiSeq) and processed by bioinformatic tools. Alpha- and beta-diversity were used to evaluate the structure of bacterial and fungal communities. qPCR suggests that, although fluctuations have been observed between soils collected either inside and outside the OTCs, the simulated warming induced a significant (p < 0.05) shift only for bacterial abundance. Likewise, significant (p < 0.05) changes in bacterial community structure were detected in soils collected inside the OTCs, with a clear increase of oligotrophic taxa. On the contrary, fungal diversity of soils collected either inside and outside the OTCs did not exhibit significant (p < 0.05) differences, suggesting that the temperature increase in OTCs compared to ambient conditions was not sufficient to change fungal communities.
Collapse
Affiliation(s)
- Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Nicoletta Cannone
- Department of Theoretical and Applied Sciences, Insubria University, Varese, Italy
| | - Federica D'Alò
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Isabella Gandolfi
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Francesca Pittino
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Ambra Mezzasoma
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Mauro Guglielmin
- Department of Theoretical and Applied Sciences, Insubria University, Varese, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
15
|
Baeza M, Zúñiga S, Peragallo V, Gutierrez F, Barahona S, Alcaino J, Cifuentes V. Response to Cold: A Comparative Transcriptomic Analysis in Eight Cold-Adapted Yeasts. Front Microbiol 2022; 13:828536. [PMID: 35283858 PMCID: PMC8905146 DOI: 10.3389/fmicb.2022.828536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/19/2022] [Indexed: 02/03/2023] Open
Abstract
Microorganisms have evolved to colonize all biospheres, including extremely cold environments, facing several stressor conditions, mainly low/freezing temperatures. In general, terms, the strategies developed by cold-adapted microorganisms include the synthesis of cryoprotectant and stress-protectant molecules, cold-active proteins, especially enzymes, and membrane fluidity regulation. The strategy could differ among microorganisms and concerns the characteristics of the cold environment of the microorganism, such as seasonal temperature changes. Microorganisms can develop strategies to grow efficiently at low temperatures or tolerate them and grow under favorable conditions. These differences can be found among the same kind of microorganisms and from the same cold habitat. In this work, eight cold-adapted yeasts isolated from King George Island, subAntarctic region, which differ in their growth properties, were studied about their response to low temperatures at the transcriptomic level. Sixteen ORFeomes were assembled and used for gene prediction and functional annotation, determination of gene expression changes, protein flexibilities of translated genes, and codon usage bias. Putative genes related to the response to all main kinds of stress were found. The total number of differentially expressed genes was related to the temperature variation that each yeast faced. The findings from multiple comparative analyses among yeasts based on gene expression changes and protein flexibility by cellular functions and codon usage bias raise significant differences in response to cold among the studied Antarctic yeasts. The way a yeast responds to temperature change appears to be more related to its optimal temperature for growth (OTG) than growth velocity. Yeasts with higher OTG prepare to downregulate their metabolism to enter the dormancy stage. In comparison, yeasts with lower OTG perform minor adjustments to make their metabolism adequate and maintain their growth at lower temperatures.
Collapse
Affiliation(s)
- Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sergio Zúñiga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente Peragallo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Gutierrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaino
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Transcriptomic Analysis Reveals that Changes in Gene Expression Contribute to Microbacterium sediminis YLB-01 Adaptation at Low Temperature Under High Hydrostatic Pressure. Curr Microbiol 2022; 79:95. [PMID: 35150317 DOI: 10.1007/s00284-022-02786-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
Abstract
Microbes living in extreme environments often adopt strategies for survival, however, only a few studies have examined the adaptive mechanism of deep-sea bacteria in in-situ environments. In this study, transcriptomic data of the deep-sea piezotolerant and psychrotolerant actinomycete Microbacterium sediminis YLB-01 under the conditions of NPNT (normal temperature and pressure: 28 °C, 0.1 MPa), HPNT (normal temperature and high pressure: 28 °C, 30 MPa), NPLT (low temperature and atmospheric pressure: 4 °C, 0.1 MPa) and HPLT (low temperature and high pressure: 4 °C, 30 MPa) were examined and compared. Transcriptome results showed that M. sediminis YLB-01 responds to deep-sea low temperature under high-pressure environments by upregulating the ABC transport system, DNA damage repair response, pentose phosphate pathway, amino acid metabolism and fatty acid metabolism, while down-regulating division, oxidative phosphorylation, the TCA cycle, pyruvate metabolism, ion transport and peptidoglycan biosynthesis. Seven key genes specifically expressed under HPLT conditions were screened, and these genes are present in many strains that are tolerant to low temperatures and high pressures. This study provides transcription level insights into the tolerance mechanisms of M. sediminis YLB-01 in a simulated deep-sea in situ environment.
Collapse
|
17
|
Cvetkovska M, Zhang X, Vakulenko G, Benzaquen S, Szyszka-Mroz B, Malczewski N, Smith DR, Hüner NPA. A constitutive stress response is a result of low temperature growth in the Antarctic green alga Chlamydomonas sp. UWO241. PLANT, CELL & ENVIRONMENT 2022; 45:156-177. [PMID: 34664276 DOI: 10.1111/pce.14203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The Antarctic green alga Chlamydomonas sp. UWO241 is an obligate psychrophile that thrives in the cold (4-6°C) but is unable to survive at temperatures ≥18°C. Little is known how exposure to heat affects its physiology or whether it mounts a heat stress response in a manner comparable to mesophiles. Here, we dissect the responses of UWO241 to temperature stress by examining its growth, primary metabolome and transcriptome under steady-state low temperature and heat stress conditions. In comparison with Chlamydomonas reinhardtii, UWO241 constitutively accumulates metabolites and proteins commonly considered as stress markers, including soluble sugars, antioxidants, polyamines, and heat shock proteins to ensure efficient protein folding at low temperatures. We propose that this results from life at extreme conditions. A shift from 4°C to a non-permissive temperature of 24°C alters the UWO241 primary metabolome and transcriptome, but growth of UWO241 at higher permissive temperatures (10 and 15°C) does not provide enhanced heat protection. UWO241 also fails to induce the accumulation of HSPs when exposed to heat, suggesting that it has lost the ability to fine-tune its heat stress response. Our work adds to the growing body of research on temperature stress in psychrophiles, many of which are threatened by climate change.
Collapse
Affiliation(s)
- Marina Cvetkovska
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Xi Zhang
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - Galyna Vakulenko
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Samuel Benzaquen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Beth Szyszka-Mroz
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - Nina Malczewski
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - David R Smith
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - Norman P A Hüner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
18
|
Fujiu S, Ito M, Kobayashi E, Hanada Y, Yoshida M, Kudoh S, Hoshino T. Basidiomycetous Yeast, Glaciozyma antarctica, Forming Frost-Columnar Colonies on Frozen Medium. Microorganisms 2021; 9:microorganisms9081679. [PMID: 34442759 PMCID: PMC8398550 DOI: 10.3390/microorganisms9081679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
The basidiomycetous yeast, Glaciozyma antarctica, was isolated from various terrestrial materials collected from the Sôya coast, East Antarctica, and formed frost-columnar colonies on agar plates frozen at −1 °C. Thawed colonies were highly viscous, indicating that the yeast produced a large number of extracellular polysaccharides (EPS). G. antarctica was then cultured on frozen media containing red food coloring to observe the dynamics of solutes in unfrozen water; pigments accumulated in frozen yeast colonies, indicating that solutes were concentrated in unfrozen water of yeast colonies. Moreover, the yeast produced a small quantity of ice-binding proteins (IBPs) which inhibited ice crystal growth. Solutes in unfrozen water were considered to accumulate in the pore of frozen colonies. The extracellular IBPs may have held an unfrozen state of medium water after accumulation in the frost-columnar colony.
Collapse
Affiliation(s)
- Seiichi Fujiu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-higashi, Toyohira-ku, Sapporo 062-8517, Hokkaido, Japan; (S.F.); (M.I.); (E.K.); (Y.H.)
- Graduate School of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo 060-0810, Hokkaido, Japan
- School of Biological Sciences, Tokai University, 1-1-1, Minaminosawa 5, Minami-ku, Sapporo 005-0825, Hokkaido, Japan
| | - Masanobu Ito
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-higashi, Toyohira-ku, Sapporo 062-8517, Hokkaido, Japan; (S.F.); (M.I.); (E.K.); (Y.H.)
- School of Biological Sciences, Tokai University, 1-1-1, Minaminosawa 5, Minami-ku, Sapporo 005-0825, Hokkaido, Japan
| | - Eriko Kobayashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-higashi, Toyohira-ku, Sapporo 062-8517, Hokkaido, Japan; (S.F.); (M.I.); (E.K.); (Y.H.)
- School of Biological Sciences, Tokai University, 1-1-1, Minaminosawa 5, Minami-ku, Sapporo 005-0825, Hokkaido, Japan
| | - Yuichi Hanada
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-higashi, Toyohira-ku, Sapporo 062-8517, Hokkaido, Japan; (S.F.); (M.I.); (E.K.); (Y.H.)
- Graduate School of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo 060-0810, Hokkaido, Japan
| | - Midori Yoshida
- Hokkaido Agricultural Research Center, NARO, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Hokkaido, Japan;
| | - Sakae Kudoh
- Biology Group, National Institute of Polar Research, 10-3, Midori-cho, Tachikawa, Tokyo 190-8518, Japan
- Correspondence: (S.K.); (T.H.); Tel.: +81-42-512-0739 (S.K.); +81-178-25-8174 (T.H.); Fax: +81-42-528-3492 (S.K.); +81-178-25-6825 (T.H.)
| | - Tamotsu Hoshino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-higashi, Toyohira-ku, Sapporo 062-8517, Hokkaido, Japan; (S.F.); (M.I.); (E.K.); (Y.H.)
- Department of Life and Environmental Science, Faculty of Engineering, Hachinohe Institute of Technology, Obiraki 88-1, Myo, Hachinohe 031-8501, Aomori, Japan
- Correspondence: (S.K.); (T.H.); Tel.: +81-42-512-0739 (S.K.); +81-178-25-8174 (T.H.); Fax: +81-42-528-3492 (S.K.); +81-178-25-6825 (T.H.)
| |
Collapse
|
19
|
Yusof NA, Hashim NHF, Bharudin I. Cold Adaptation Strategies and the Potential of Psychrophilic Enzymes from the Antarctic Yeast, Glaciozyma antarctica PI12. J Fungi (Basel) 2021; 7:jof7070528. [PMID: 34209103 PMCID: PMC8306469 DOI: 10.3390/jof7070528] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Psychrophilic organisms possess several adaptive strategies which allow them to sustain life at low temperatures between −20 to 20 °C. Studies on Antarctic psychrophiles are interesting due to the multiple stressors that exist on the permanently cold continent. These organisms produce, among other peculiarities, cold-active enzymes which not only have tremendous biotechnological potential but are valuable models for fundamental research into protein structure and function. Recent innovations in omics technologies such as genomics, transcriptomics, proteomics and metabolomics have contributed a remarkable perspective of the molecular basis underpinning the mechanisms of cold adaptation. This review critically discusses similar and different strategies of cold adaptation in the obligate psychrophilic yeast, Glaciozyma antarctica PI12 at the molecular (genome structure, proteins and enzymes, gene expression) and physiological (antifreeze proteins, membrane fluidity, stress-related proteins) levels. Our extensive studies on G. antarctica have revealed significant insights towards the innate capacity of- and the adaptation strategies employed by this psychrophilic yeast for life in the persistent cold. Furthermore, several cold-active enzymes and proteins with biotechnological potential are also discussed.
Collapse
Affiliation(s)
- Nur Athirah Yusof
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Noor Haza Fazlin Hashim
- Water Quality Laboratory, National Water Research Institute Malaysia (NAHRIM), Ministry of Environment and Water, Jalan Putra Permai, Seri Kembangan 43300, Selangor, Malaysia;
| | - Izwan Bharudin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
20
|
Gao J, Li Q, Li D. Novel Proteome and N-Glycoproteome of the Thermophilic Fungus Chaetomium thermophilum in Response to High Temperature. Front Microbiol 2021; 12:644984. [PMID: 34163440 PMCID: PMC8216556 DOI: 10.3389/fmicb.2021.644984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/22/2021] [Indexed: 11/26/2022] Open
Abstract
Thermophilic fungi are eukaryotic species that grow at high temperatures, but little is known about the underlying basis of thermophily at cell and molecular levels. Here the proteome and N-glycoproteome of Chaetomium thermophilum at varying culture temperatures (30, 50, and 55°C) were studied using hydrophilic interaction liquid chromatography enrichment and high-resolution liquid chromatography–tandem mass spectroscopy analysis. With respect to the proteome, the numbers of differentially expressed proteins were 1,274, 1,374, and 1,063 in T50/T30, T55/T30, and T55/T50, respectively. The upregulated proteins were involved in biological processes, such as protein folding and carbohydrate metabolism. Most downregulated proteins were involved in molecular functions, including structural constituents of the ribosome and other protein complexes. For the N-glycoproteome, the numbers of differentially expressed N-glycoproteins were 160, 176, and 128 in T50/T30, T55/T30, and T55/T50, respectively. The differential glycoproteins were mainly involved in various types of N-glycan biosynthesis, mRNA surveillance pathway, and protein processing in the endoplasmic reticulum. These results indicated that an efficient protein homeostasis pathway plays an essential role in the thermophily of C. thermophilum, and N-glycosylation is involved by affecting related proteins. This is the novel study to reveal thermophilic fungi’s physiological response to high-temperature adaptation using omics analysis, facilitating the exploration of the thermophily mechanism of thermophilic fungi.
Collapse
Affiliation(s)
- Jinpeng Gao
- Department of Mycology, Shandong Agricultural University, Taian, China
| | - Qingchao Li
- Department of Mycology, Shandong Agricultural University, Taian, China
| | - Duochuan Li
- Department of Mycology, Shandong Agricultural University, Taian, China
| |
Collapse
|
21
|
Transcriptomic time-series analysis of cold- and heat-shock response in psychrotrophic lactic acid bacteria. BMC Genomics 2021; 22:28. [PMID: 33413101 PMCID: PMC7788899 DOI: 10.1186/s12864-020-07338-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Psychrotrophic lactic acid bacteria (LAB) species are the dominant species in the microbiota of cold-stored modified-atmosphere-packaged food products and are the main cause of food spoilage. Despite the importance of psychrotrophic LAB, their response to cold or heat has not been studied. Here, we studied the transcriptome-level cold- and heat-shock response of spoilage lactic acid bacteria with time-series RNA-seq for Le. gelidum, Lc. piscium, and P. oligofermentans at 0 °C, 4 °C, 14 °C, 25 °C, and 28 °C. RESULTS We observed that the cold-shock protein A (cspA) gene was the main cold-shock protein gene in all three species. Our results indicated that DEAD-box RNA helicase genes (cshA, cshB) also play a critical role in cold-shock response in psychrotrophic LAB. In addition, several RNase genes were involved in cold-shock response in Lc. piscium and P. oligofermentans. Moreover, gene network inference analysis provided candidate genes involved in cold-shock response. Ribosomal proteins, tRNA modification, rRNA modification, and ABC and efflux MFS transporter genes clustered with cold-shock response genes in all three species, indicating that these genes could be part of the cold-shock response machinery. Heat-shock treatment caused upregulation of Clp protease and chaperone genes in all three species. We identified transcription binding site motifs for heat-shock response genes in Le. gelidum and Lc. piscium. Finally, we showed that food spoilage-related genes were upregulated at cold temperatures. CONCLUSIONS The results of this study provide new insights on the cold- and heat-shock response of psychrotrophic LAB. In addition, candidate genes involved in cold- and heat-shock response predicted using gene network inference analysis could be used as targets for future studies.
Collapse
|
22
|
Eun Kang J, Ciampi A, Hijri M. SeSaMe PS Function: Functional Analysis of the Whole Metagenome Sequencing Data of the Arbuscular Mycorrhizal Fungi. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:613-623. [PMID: 33346085 PMCID: PMC8377382 DOI: 10.1016/j.gpb.2018.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 07/07/2018] [Accepted: 07/27/2018] [Indexed: 11/29/2022]
Abstract
In this study, we introduce a novel bioinformatics program, Spore-associated Symbiotic Microbes Position-specific Function (SeSaMe PS Function), for position-specific functional analysis of short sequences derived from metagenome sequencing data of the arbuscular mycorrhizal fungi. The unique advantage of the program lies in databases created based on genus-specific sequence properties derived from protein secondary structure, namely amino acid usages, codon usages, and codon contexts of 3-codon DNA 9-mers. SeSaMe PS Function searches a query sequence against reference sequence database, identifies 3-codon DNA 9-mers with structural roles, and creates a comparative dataset containing the codon usage biases of the 3-codon DNA 9-mers from 54 bacterial and fungal genera. The program applies correlation principal component analysis in conjunction with K-means clustering method to the comparative dataset. 3-codon DNA 9-mers clustered as a sole member or with only a few members are often structurally and functionally distinctive sites that provide useful insights into important molecular interactions. The program provides a versatile means for studying functions of short sequences from metagenome sequencing and has a wide spectrum of applications. SeSaMe PS Function is freely accessible at www.fungalsesame.org.
Collapse
Affiliation(s)
- Jee Eun Kang
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, QC H1X 2B2, Canada.
| | - Antonio Ciampi
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC H3A 1A2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, QC H1X 2B2, Canada.
| |
Collapse
|
23
|
Muggia L, Ametrano CG, Sterflinger K, Tesei D. An Overview of Genomics, Phylogenomics and Proteomics Approaches in Ascomycota. Life (Basel) 2020; 10:E356. [PMID: 33348904 PMCID: PMC7765829 DOI: 10.3390/life10120356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/26/2022] Open
Abstract
Fungi are among the most successful eukaryotes on Earth: they have evolved strategies to survive in the most diverse environments and stressful conditions and have been selected and exploited for multiple aims by humans. The characteristic features intrinsic of Fungi have required evolutionary changes and adaptations at deep molecular levels. Omics approaches, nowadays including genomics, metagenomics, phylogenomics, transcriptomics, metabolomics, and proteomics have enormously advanced the way to understand fungal diversity at diverse taxonomic levels, under changeable conditions and in still under-investigated environments. These approaches can be applied both on environmental communities and on individual organisms, either in nature or in axenic culture and have led the traditional morphology-based fungal systematic to increasingly implement molecular-based approaches. The advent of next-generation sequencing technologies was key to boost advances in fungal genomics and proteomics research. Much effort has also been directed towards the development of methodologies for optimal genomic DNA and protein extraction and separation. To date, the amount of proteomics investigations in Ascomycetes exceeds those carried out in any other fungal group. This is primarily due to the preponderance of their involvement in plant and animal diseases and multiple industrial applications, and therefore the need to understand the biological basis of the infectious process to develop mechanisms for biologic control, as well as to detect key proteins with roles in stress survival. Here we chose to present an overview as much comprehensive as possible of the major advances, mainly of the past decade, in the fields of genomics (including phylogenomics) and proteomics of Ascomycota, focusing particularly on those reporting on opportunistic pathogenic, extremophilic, polyextremotolerant and lichenized fungi. We also present a review of the mostly used genome sequencing technologies and methods for DNA sequence and protein analyses applied so far for fungi.
Collapse
Affiliation(s)
- Lucia Muggia
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Claudio G. Ametrano
- Grainger Bioinformatics Center, Department of Science and Education, The Field Museum, Chicago, IL 60605, USA;
| | - Katja Sterflinger
- Academy of Fine Arts Vienna, Institute of Natual Sciences and Technology in the Arts, 1090 Vienna, Austria;
| | - Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
24
|
Abu Bakar N, Karsani SA, Alias SA. Fungal survival under temperature stress: a proteomic perspective. PeerJ 2020; 8:e10423. [PMID: 33362961 PMCID: PMC7747687 DOI: 10.7717/peerj.10423] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Increases in knowledge of climate change generally, and its impact on agricultural industries specifically, have led to a greater research effort aimed at improving understanding of the role of fungi in various fields. Fungi play a key role in soil ecosystems as the primary agent of decomposition, recycling of organic nutrients. Fungi also include important pathogens of plants, insects, bacteria, domestic animals and humans, thus highlighting their importance in many contexts. Temperature directly affects fungal growth and protein dynamics, which ultimately will cascade through to affect crop performance. To study changes in the global protein complement of fungi, proteomic approaches have been used to examine links between temperature stress and fungal proteomic profiles. SURVEY METHODOLOGY AND OBJECTIVES A traditional rather than a systematic review approach was taken to focus on fungal responses to temperature stress elucidated using proteomic approaches. The effects of temperature stress on fungal metabolic pathways and, in particular, heat shock proteins (HSPs) are discussed. The objective of this review is to provide an overview of the effects of temperature stress on fungal proteomes. CONCLUDING REMARKS Elucidating fungal proteomic response under temperature stress is useful in the context of increasing understanding of fungal sensitivity and resilience to the challenges posed by contemporary climate change processes. Although useful, a more thorough work is needed such as combining data from multiple -omics platforms in order to develop deeper understanding of the factor influencing and controlling cell physiology. This information can be beneficial to identify potential biomarkers for monitoring environmental changes in soil, including the agricultural ecosystems vital to human society and economy.
Collapse
Affiliation(s)
- Nurlizah Abu Bakar
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Osborne P, Hall LJ, Kronfeld-Schor N, Thybert D, Haerty W. A rather dry subject; investigating the study of arid-associated microbial communities. ENVIRONMENTAL MICROBIOME 2020; 15:20. [PMID: 33902728 PMCID: PMC8067391 DOI: 10.1186/s40793-020-00367-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/12/2020] [Indexed: 05/08/2023]
Abstract
Almost one third of Earth's land surface is arid, with deserts alone covering more than 46 million square kilometres. Nearly 2.1 billion people inhabit deserts or drylands and these regions are also home to a great diversity of plant and animal species including many that are unique to them. Aridity is a multifaceted environmental stress combining a lack of water with limited food availability and typically extremes of temperature, impacting animal species across the planet from polar cold valleys, to Andean deserts and the Sahara. These harsh environments are also home to diverse microbial communities, demonstrating the ability of bacteria, fungi and archaea to settle and live in some of the toughest locations known. We now understand that these microbial ecosystems i.e. microbiotas, the sum total of microbial life across and within an environment, interact across both the environment, and the macroscopic organisms residing in these arid environments. Although multiple studies have explored these microbial communities in different arid environments, few studies have examined the microbiota of animals which are themselves arid-adapted. Here we aim to review the interactions between arid environments and the microbial communities which inhabit them, covering hot and cold deserts, the challenges these environments pose and some issues arising from limitations in the field. We also consider the work carried out on arid-adapted animal microbiotas, to investigate if any shared patterns or trends exist, whether between organisms or between the animals and the wider arid environment microbial communities. We determine if there are any patterns across studies potentially demonstrating a general impact of aridity on animal-associated microbiomes or benefits from aridity-adapted microbiomes for animals. In the context of increasing desertification and climate change it is important to understand the connections between the three pillars of microbiome, host genome and environment.
Collapse
Affiliation(s)
- Peter Osborne
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK.
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, 85354, Freising, Germany
| | | | - David Thybert
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK
| |
Collapse
|
26
|
Jiang B, Xing Y, Li G, Zhang N, Lian L, Sun G, Zhang D. iTRAQ-Based Comparative Proteomic Analysis of Acinetobacter baylyi ADP1 Under DNA Damage in Relation to Different Carbon Sources. Front Microbiol 2020; 10:2906. [PMID: 31993023 PMCID: PMC6971185 DOI: 10.3389/fmicb.2019.02906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022] Open
Abstract
DNA damage response allows microorganisms to repair or bypass DNA damage and maintain the genome integrity. It has attracted increasing attention but the underlying influential factors affecting DNA damage response are still unclear. In this work, isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analysis was used to investigate the influence of carbon sources on the translational response of Acinetobacter baylyi ADP1 to DNA damage. After cultivating in a nutrient-rich medium (LB) and defined media supplemented with four different carbon sources (acetate, citrate, pyruvate, and succinate), a total of 2807 proteins were identified. Among them, 84 proteins involved in stress response were significantly altered, indicating the strong influence of carbon source on the response of A. baylyi ADP1 to DNA damage and other stresses. As the first study on the comparative global proteomic changes in A. baylyi ADP1 under DNA damage across nutritional environments, our findings revealed that DNA damage response in A. baylyi ADP1 at the translational level is significantly altered by carbon source, providing an insight into the complex protein interactions across carbon sources and offering theoretical clues for further study to elucidate their general regulatory mechanism to adapt to different nutrient environments.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Nana Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Luning Lian
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Guangdong Sun
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Wong CMVL, Boo SY, Voo CLY, Zainuddin N, Najimudin N. A comparative transcriptomic analysis provides insights into the cold-adaptation mechanisms of a psychrophilic yeast, Glaciozyma antarctica PI12. Polar Biol 2019. [DOI: 10.1007/s00300-018-02443-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Arai T, Fukami D, Hoshino T, Kondo H, Tsuda S. Ice-binding proteins from the fungus Antarctomyces psychrotrophicus possibly originate from two different bacteria through horizontal gene transfer. FEBS J 2018; 286:946-962. [PMID: 30548092 DOI: 10.1111/febs.14725] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/03/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
Various microbes, including fungi and bacteria, that live in cold environments produce ice-binding proteins (IBPs) that protect them from freezing. Ascomycota and Basidiomycota are two major phyla of fungi, and Antarctomyces psychrotrophicus is currently designated as the sole ascomycete that produces IBP (AnpIBP). However, its complete amino acid sequence, ice-binding property, and evolutionary history have not yet been clarified. Here, we determined the peptide sequences of three new AnpIBP isoforms by total cDNA analysis and compared them with those of other microbial IBPs. The AnpIBP isoforms and ascomycete-putative IBPs were found to be phylogenetically close to the bacterial ones but far from the basidiomycete ones, which is supported by the higher sequence identities to bacterial IBPs than basidiomycete IBPs, although ascomycetes are phylogenetically distant from bacteria. In addition, two of the isoforms of AnpIBP share low sequence identity and are not close in the phylogenetic tree. It is hence presumable that these two AnpIBP isoforms were independently acquired from different bacteria through horizontal gene transfer (HGT), which implies that ascomycetes and bacteria frequently exchange their IBP genes. The non-colligative freezing-point depression ability of AnpIBP was not very high, whereas it exhibited significant abilities of ice recrystallization inhibition, ice shaping, and cryo-protection against freeze-thaw cycles even at submicromolar concentrations. These results suggest that HGT is crucial for the cold-adaptive evolution of ascomycetes, and their IBPs offer freeze resistance to organisms to enable them to inhabit the icy environments of Antarctica. DATABASES: Nucleotide sequence data are available in the DDBJ database under the accession numbers LC378707, LC378707, LC378707 for AnpIBP1a, AnpIBP1b, AnpIBP2, respectively.
Collapse
Affiliation(s)
- Tatsuya Arai
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Daichi Fukami
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Tamotsu Hoshino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Hidemasa Kondo
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Sakae Tsuda
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
29
|
Lou X, Wang H, Ni X, Gao Z, Iqbal S. Integrating proteomic and transcriptomic analyses of loquat (Eriobotrya japonica Lindl.) in response to cold stress. Gene 2018; 677:57-65. [PMID: 30017739 DOI: 10.1016/j.gene.2018.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
The expression levels of many genes and the related proteins change and regulate physiological and metabolic processes that help the plant survive harsh environmental conditions under cold stress. Damage due to cold and freezing conditions often causes dynamic loss of loquat fruits in cultivated parts of northern China. To illustrate the mechanism of cold tolerance in the loquat, we combined the transcriptomic analysis with isobaric tags for relative and absolute quantification (iTRAQ) and RNA sequencing (RNA-Seq) data from loquat leaves under 4 °C treatment. The results showed 122,081 genes and 1210 differentially expressed genes (DEGs), while only 4582 proteins and 300 differential proteins (DEPs) were identified. Functional annotation and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis indicated that metabolic pathways and biosynthesis of secondary metabolites were the two most common pathways in transcriptional and translational processes in this study. Comparison analysis of the transcriptomic and proteomic profiles, only 27 of 3620 genes were found to be shared both in DEGs and DEPs. Further validation with Real-Time Quantitative RT-PCR analysis showed that the genes expression of NADP-dependent D-sorbitol-6-phosphate dehydrogenase, anthocyanin synthase and phenylalanine ammonia-lyase were consistent with the pattern of transcriptome profile, which suggested that these three genes might play vital roles in cold tolerance in loquat.
Collapse
Affiliation(s)
- Xiaoming Lou
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, PR China; Suzhou Polytechnic Institute of Agriculture, No.279 Xiyuan Road, Suzhou 215008, PR China
| | - Huakun Wang
- Extension Center for Evergreen Fruit Tree of Jiangsu Taihu, No.4 Xijing Road, Suzhou 215107, PR China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, Jiangsu, PR China
| | - Xiaopeng Ni
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, PR China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, PR China.
| | - Shahid Iqbal
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, PR China
| |
Collapse
|
30
|
Cuartas JH, Alzate JF, Moreno-Herrera CX, Marquez EJ. Metagenomic analysis of orange colored protrusions from the muscle of Queen Conch Lobatus gigas (Linnaeus, 1758). PeerJ 2018; 6:e4307. [PMID: 29472996 PMCID: PMC5816965 DOI: 10.7717/peerj.4307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/10/2018] [Indexed: 11/25/2022] Open
Abstract
The endangered marine gastropod, Lobatus gigas, is an important fishery resource in the Caribbean region. Microbiological and parasitological research of this species have been poorly addressed despite its role in ecological fitness, conservation status and prevention of potential pathogenic infections. This study identified taxonomic groups associated with orange colored protrusions in the muscle of queen conchs using histological analysis, 454 pyrosequencing, and a combination of PCR amplification and automated Sanger sequencing. The molecular approaches indicate that the etiological agent of the muscle protrusions is a parasite belonging to the subclass Digenea. Additionally, the scope of the molecular technique allowed the detection of bacterial and fungi clades in the assignment analysis. This is the first evidence of a digenean infection in the muscle of this valuable Caribbean resource.
Collapse
Affiliation(s)
- Jaison H. Cuartas
- Facultad de Ciencias, Laboratorio de Biología Molecular y Celular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Juan F. Alzate
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Claudia X. Moreno-Herrera
- Facultad de Ciencias, Laboratorio de Biología Molecular y Celular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Edna J. Marquez
- Facultad de Ciencias, Laboratorio de Biología Molecular y Celular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| |
Collapse
|
31
|
Wang M, Tian J, Xiang M, Liu X. Living strategy of cold-adapted fungi with the reference to several representative species. Mycology 2017; 8:178-188. [PMID: 30123638 PMCID: PMC6059074 DOI: 10.1080/21501203.2017.1370429] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022] Open
Abstract
Our planet is dominant with cold environments that harbour enormously diverse cold-adapted fungi comprising representatives of all phyla. Investigation based on culture-dependent and independent methods has demonstrated that cold-adapted fungi are cosmopolitan and occur in diverse habitants and substrates. They live as saprobes, symbionts, plant and animal parasites and pathogens to perform crucial functions in different ecosystems. Pseudogymnoascus destructans caused bat white-nose syndrome and Ophiocordyceps sinensis as Chinese medicine are the representative species that have significantly ecological and economic significance. Adaptation to cold niches has made this group of fungi a fascinating resource for the discovery of novel enzymes and secondary metabolites for biotechnological and pharmaceutical uses. This review provides the current understanding of living strategy and ecological functions of cold-adapted fungi, with particular emphasis on how those fungi overcome the extreme low temperature and perform their ecological function.
Collapse
Affiliation(s)
- Manman Wang
- College of Life Science, Hebei University, Baoding, China
| | - Jianqing Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Tian J, Qiao Y, Wu B, Chen H, Li W, Jiang N, Zhang X, Liu X. Ecological Succession Pattern of Fungal Community in Soil along a Retreating Glacier. Front Microbiol 2017; 8:1028. [PMID: 28649234 PMCID: PMC5465267 DOI: 10.3389/fmicb.2017.01028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/22/2017] [Indexed: 01/12/2023] Open
Abstract
Accelerated by global climate changing, retreating glaciers leave behind soil chronosequences of primary succession. Current knowledge of primary succession is mainly from studies of vegetation dynamics, whereas information about belowground microbes remains unclear. Here, we combined shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. We investigated fungal succession and community assembly via high-throughput sequencing along a well-established glacier forefront chronosequence that spans 2-188 years of deglaciation. Shannon diversity and evenness peaked at a distance of 370 m and declined afterwards. The response of fungal diversity to distance varied in different phyla. Basidiomycota Shannon diversity significantly decreased with distance, while the pattern of Rozellomycota Shannon diversity was unimodal. Abundance of most frequencies OTU2 (Cryptococcus terricola) increased with successional distance, whereas that of OTU65 (Tolypocladium tundrense) decreased. Based on null deviation analyses, composition of the fungal community was initially governed by deterministic processes strongly but later less deterministic processes. Our results revealed that distance, altitude, soil microbial biomass carbon, soil microbial biomass nitrogen and [Formula: see text]-N significantly correlated with fungal community composition along the chronosequence. These results suggest that the drivers of fungal community are dynamics in a glacier chronosequence, that may relate to fungal ecophysiological traits and adaptation in an evolving ecosystem. The information will provide understanding the mechanistic underpinnings of microbial community assembly during ecosystem succession under different scales and scenario.
Collapse
Affiliation(s)
- Jianqing Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Yuchen Qiao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
- Beijing Radiation Centre, Beijing Academy of Science and TechnologyBeijing, China
| | - Bing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Huai Chen
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation, Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
- Zoige Peatland and Global Change Research Station, Chengdu Institute of Biology, Chinese Academy of SciencesHongyuan, China
| | - Wei Li
- School of Ecology and Environmental Science, Yunnan UniversityKunming, China
| | - Na Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Xiaoling Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|