1
|
Bullo E, Chen P, Fiala I, Smýkal V, Doležel D. Coevolution of Drosophila-type timeless with partner clock proteins. iScience 2025; 28:112338. [PMID: 40322083 PMCID: PMC12049834 DOI: 10.1016/j.isci.2025.112338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/04/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
Drosophila-type timeless (dTIM) is a key clock protein in fruit flies, regulating rhythmicity and light-mediated entrainment. However, functional experiments indicate that its contribution to the clock differs in various insects. Therefore, we conducted a comprehensive phylogenetic analysis of dTIM across animals and dated its origin, gene duplications, and losses. We identified variable and conserved protein domains and pinpointed animal lineages that underwent the biggest changes in dTIM. While dTIM modifications are only mildly affected by changes in the PER protein, even the complete loss of PER in echinoderms had no impact on dTIM. However, changes in dTIM always co-occur with the loss of CRYPTOCHROMES or JETLAG. This is exemplified by the remarkably accelerated evolution of dTIM in phylloxera and aphids. Finally, alternative d-tim splicing, characteristic of Drosophila melanogaster temperature-dependent function, is conserved to some extent in Diptera, albeit with unique alterations. Altogether, this study pinpoints major changes that shaped dTIM evolution.
Collapse
Affiliation(s)
- Enrico Bullo
- Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Ping Chen
- Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Ivan Fiala
- Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Vlastimil Smýkal
- Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - David Doležel
- Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| |
Collapse
|
2
|
Ochwedo KO, Wang X, Céspedes N, Bentil RE, Wild R, Hernandez E, Hernandez A, Kaylor HL, Debebe Y, Datta J, Robert MA, Riffell JA, Lewis EE, Luckhart S. Regulation of diel locomotor activity and retinal responses of Anopheles stephensi by ingested histamine and serotonin is temperature- and infection-dependent. PLoS Pathog 2025; 21:e1013139. [PMID: 40294029 PMCID: PMC12058162 DOI: 10.1371/journal.ppat.1013139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 05/07/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Disrupting behaviors linked to movement of primary mosquito vectors, such as diel locomotor activity and visual sensitivity, is a novel and plausible malaria control intervention. Diel locomotor activity is an output of arthropod circadian activity and is influenced by factors such as light, temperature, and infection status. The biogenic amines histamine and serotonin (5-HT) are ingested with blood and differ between healthy hosts and those with severe malaria. They regulate malaria parasite infection in Anopheles stephensi, but the degree to which aging, temperature, and infection interact with ingested biogenic amines to influence mosquito behavior was unknown prior to these studies. We provisioned A. stephensi with histamine and 5-HT at healthy- and malaria-associated levels to examine diel locomotor activity of uninfected A. stephensi across lifespan, at temperatures that A. stephensi could encounter within its range, and on Plasmodium yoelii-infected mosquitoes during sporogony. We further evaluated treatment effects on retinal sensitivity of uninfected mosquitoes during light and dark periods typically associated with low and high activity for this crepuscular species. Treatment with malaria-associated levels of histamine and 5-HT significantly increased the locomotor activity of A. stephensi across lifespan and enhanced retinal sensitivity to a broad spectrum of wavelengths at the onset of light. This treatment in combination with higher temperatures also increased activity levels and broadened the peak hours of activity of A. stephensi. Notably, these effects were infection dependent. Together, our data suggest that histaminergic and serotonergic signaling within the gut-brain axis of A. stephensi could be targeted to alter mosquito activity and visual sensitivity as the basis for novel transmission-blocking strategies for malaria control.
Collapse
Affiliation(s)
- Kevin O. Ochwedo
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Xiaodi Wang
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Nora Céspedes
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Ronald E. Bentil
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Ryan Wild
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Emily Hernandez
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Amy Hernandez
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Hannah L. Kaylor
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Yared Debebe
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Jyotishka Datta
- Department of Statistics and Center of Biostatics and Health Data Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael A. Robert
- Department of Mathematics, Center for the Mathematics of Biosystems; and Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens (CeZAP), Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Edwin E. Lewis
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
3
|
Richtová J, Bazalová O, Horák A, Tomčala A, Gonepogu VG, Oborník M, Doležel D. Circadian rhythms and circadian clock gene homologs of complex alga Chromera velia. FRONTIERS IN PLANT SCIENCE 2023; 14:1226027. [PMID: 38143581 PMCID: PMC10739334 DOI: 10.3389/fpls.2023.1226027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Most organisms on Earth are affected by periodic changes in their environment. The circadian clock is an endogenous device that synchronizes behavior, physiology, or biochemical processes to an approximately 24-hour cycle, allowing organisms to anticipate the periodic changes of day and night. Although circadian clocks are widespread in organisms, the actual molecular components differ remarkably among the clocks of plants, animals, fungi, and prokaryotes. Chromera velia is the closest known photosynthetic relative of apicomplexan parasites. Formation of its motile stage, zoospores, has been described as associated with the light part of the day. We examined the effects on the periodic release of the zoospores under different light conditions and investigated the influence of the spectral composition on zoosporogenesis. We performed a genomic search for homologs of known circadian clock genes. Our results demonstrate the presence of an almost 24-hour free-running cycle of zoosporogenesis. We also identified the blue light spectra as the essential compound for zoosporogenesis. Further, we developed a new and effective method for zoospore separation from the culture and estimated the average motility speed and lifespan of the C. velia zoospores. Our genomic search identified six cryptochrome-like genes, two genes possibly related to Arabidopsis thaliana CCA/LHY, whereas no homolog of an animal, cyanobacterial, or fungal circadian clock gene was found. Our results suggest that C. velia has a functional circadian clock, probably based mainly on a yet undefined mechanism.
Collapse
Affiliation(s)
- Jitka Richtová
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czechia
| | - Olga Bazalová
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Entomology, České Budějovice, Czechia
| | - Aleš Horák
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Aleš Tomčala
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, Vodňany, Czechia
| | - Vijaya Geetha Gonepogu
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Miroslav Oborník
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - David Doležel
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Entomology, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
4
|
Thakkar N, Giesecke A, Bazalova O, Martinek J, Smykal V, Stanewsky R, Dolezel D. Evolution of casein kinase 1 and functional analysis of new doubletime mutants in Drosophila. Front Physiol 2022; 13:1062632. [PMID: 36589447 PMCID: PMC9794997 DOI: 10.3389/fphys.2022.1062632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Circadian clocks are timing devices that rhythmically adjust organism's behavior, physiology, and metabolism to the 24-h day-night cycle. Eukaryotic circadian clocks rely on several interlocked transcription-translation feedback loops, where protein stability is the key part of the delay between transcription and the appearance of the mature proteins within the feedback loops. In bilaterian animals, including mammals and insects, the circadian clock depends on a homologous set of proteins. Despite mostly conserved clock components among the fruit fly Drosophila and mammals, several lineage-specific differences exist. Here we have systematically explored the evolution and sequence variability of insect DBT proteins and their vertebrate homologs casein kinase 1 delta (CKIδ) and epsilon (CKIε), dated the origin and separation of CKIδ from CKIε, and identified at least three additional independent duplications of the CKIδ/ε gene in Petromyzon, Danio, and Xenopus. We determined conserved regions in DBT specific to Diptera, and functionally tested a subset of those in D. melanogaster. Replacement of Lysine K224 with acidic residues strongly impacts the free-running period even in heterozygous flies, whereas homozygous mutants are not viable. K224D mutants have a temperature compensation defect with longer free-running periods at higher temperatures, which is exactly the opposite trend of what was reported for corresponding mammalian mutants. All DBTs of dipteran insects contain the NKRQK motif at positions 220-224. The occurrence of this motif perfectly correlates with the presence of BRIDE OF DOUBLETIME, BDBT, in Diptera. BDBT is a non-canonical FK506-binding protein that physically interacts with Drosophila DBT. The phylogeny of FK506-binding proteins suggests that BDBT is either absent or highly modified in non-dipteran insects. In addition to in silico analysis of DBT/CKIδ/ε evolution and diversity, we have identified four novel casein kinase 1 genes specific to the Drosophila genus.
Collapse
Affiliation(s)
- Nirav Thakkar
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Astrid Giesecke
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - Olga Bazalova
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czechia
| | - Jan Martinek
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czechia
| | - Vlastimil Smykal
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czechia
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - David Dolezel
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
5
|
You C, Li Z, Yin Y, Na N, Gao X. Time of Day-Specific Changes in Metabolic Detoxification and Insecticide Tolerance in the House Fly, Musca domestica L. Front Physiol 2022; 12:803682. [PMID: 35069260 PMCID: PMC8777124 DOI: 10.3389/fphys.2021.803682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Both insects and mammals all exhibit a daily fluctuation of susceptibility to chemicals at different times of the day. However, this phenomenon has not been further studied in the house fly (Musca domestica L.) and a better understanding of the house fly on chronobiology should be useful for controlling this widespread disease vector. Here we explored diel time-of-day variations in insecticide susceptibility, enzyme activities, and xenobiotic-metabolizing enzyme gene expressions. The house fly was most tolerant to beta-cypermethrin in the late photophase at Zeitgeber time (ZT) 8 and 12 [i.e., 8 and 12 h after light is present in the light-dark cycle (LD)]. The activities of cytochrome P450, GST, and CarE enzymes were determined in the house flies collected at various time, indicating that rhythms occur in P450 and CarE activities. Subsequently, we observed diel rhythmic expression levels of detoxifying genes, and CYP6D1 and MdαE7 displayed similar expression patterns with enzyme activities in LD conditions, respectively. No diel rhythm was observed for CYP6D3 expression. These data demonstrated a diel rhythm of metabolic detoxification enzymes and insecticide susceptibility in M. domestica. In the future, the time-of-day insecticide efficacy could be considered into the management of the house fly.
Collapse
Affiliation(s)
- Chunmei You
- Department of Entomology, China Agricultural University, Beijing, China
| | - Zelin Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yuanzhi Yin
- Department of Entomology, China Agricultural University, Beijing, China
| | - Naretuya Na
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Netušil R, Tomanová K, Chodáková L, Chvalová D, Doležel D, Ritz T, Vácha M. Cryptochrome-dependent magnetoreception in a heteropteran insect continues even after 24 h in darkness. J Exp Biol 2021; 224:272037. [PMID: 34477876 DOI: 10.1242/jeb.243000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022]
Abstract
Sensitivity to magnetic fields is dependent on the intensity and color of light in several animal species. The light-dependent magnetoreception working model points to cryptochrome (Cry) as a protein cooperating with its co-factor flavin, which possibly becomes magnetically susceptible upon excitation by light. The type of Cry involved and what pair of magnetosensitive radicals are responsible is still elusive. Therefore, we developed a conditioning assay for the firebug Pyrrhocoris apterus, an insect species that possesses only the mammalian cryptochrome (Cry II). Here, using the engineered Cry II null mutant, we show that: (i) vertebrate-like Cry II is an essential component of the magnetoreception response, and (ii) magnetic conditioning continues even after 25 h in darkness. The light-dependent and dark-persisting magnetoreception based on Cry II may inspire new perspectives in magnetoreception and cryptochrome research.
Collapse
Affiliation(s)
- Radek Netušil
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Kateřina Tomanová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Lenka Chodáková
- Biology Centre of the Czech Academy of Sciences, České Budějovice 37005, Czech Republic
| | - Daniela Chvalová
- Biology Centre of the Czech Academy of Sciences, České Budějovice 37005, Czech Republic
| | - David Doležel
- Biology Centre of the Czech Academy of Sciences, České Budějovice 37005, Czech Republic
| | - Thorsten Ritz
- Department of Physics and Astronomy, University of California Irvine, Irvine, CA 92697, USA
| | - Martin Vácha
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
7
|
Beer K, Helfrich-Förster C. Model and Non-model Insects in Chronobiology. Front Behav Neurosci 2020; 14:601676. [PMID: 33328925 PMCID: PMC7732648 DOI: 10.3389/fnbeh.2020.601676] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, Am Hubland, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
8
|
Kaniewska MM, Vaněčková H, Doležel D, Kotwica-Rolinska J. Light and Temperature Synchronizes Locomotor Activity in the Linden Bug, Pyrrhocoris apterus. Front Physiol 2020; 11:242. [PMID: 32300305 PMCID: PMC7142227 DOI: 10.3389/fphys.2020.00242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Circadian clocks are synchronized with the external environment by light and temperature. The effect of these cues on behavior is well-characterized in Drosophila, however, little is known about synchronization in non-model insect species. Therefore, we explored entrainment of locomotor activity by light and temperature in the linden bug Pyrrhocoris apterus (Heteroptera), an insect species with a strong seasonal response (reproductive diapause), which is triggered by both photoperiod and thermoperiod. Our results show that either light or temperature cycles are strong factors entraining P. apterus locomotor activity. Pyrrhocoris is able to be partially synchronized by cycles with temperature amplitude as small as 3°C and more than 50% of bugs is synchronized by 5°C steps. If conflicting zeitgebers are provided, light is the stronger signal. Linden bugs lack light-sensitive (Drosophila-like) cryptochrome. Notably, a high percentage of bugs is rhythmic even in constant light (LL) at intensity ∼400 lux, a condition which induces 100% arrhythmicity in Drosophila. However, the rhythmicity of bugs is still reduced in LL conditions, whereas rhythmicity remains unaffected in constant dark (DD). Interestingly, a similar phenomenon is observed after temperature cycles entrainment. Bugs released to constant thermophase and DD display weak rhythmicity, whereas strong rhythmicity is observed in bugs released to constant cryophase and DD. Our study describes the daily and circadian behavior of the linden bug as a response to photoperiodic and thermoperiodic entraining cues. Although the molecular mechanism of the circadian clock entrainment in the linden bug is virtually unknown, our study contributes to the knowledge of the insect circadian clock features beyond Drosophila research.
Collapse
Affiliation(s)
- Magdalena Maria Kaniewska
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Hana Vaněčková
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - David Doležel
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Joanna Kotwica-Rolinska
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| |
Collapse
|
9
|
Helfrich‐Förster C, Bertolini E, Menegazzi P. Flies as models for circadian clock adaptation to environmental challenges. Eur J Neurosci 2020; 51:166-181. [PMID: 30269385 PMCID: PMC7027873 DOI: 10.1111/ejn.14180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/02/2023]
Abstract
Life on earth is assumed to have developed in tropical regions that are characterized by regular 24 hr cycles in irradiance and temperature that remain the same throughout the seasons. All organisms developed circadian clocks that predict these environmental cycles and prepare the organisms in advance for them. A central question in chronobiology is how endogenous clocks changed in order to anticipate very different cyclical environmental conditions such as extremely short and long photoperiods existing close to the poles. Flies of the family Drosophilidae can be found all over the world-from the tropics to subarctic regions-making them unprecedented models for studying the evolutionary processes that underlie the adaptation of circadian clocks to different latitudes. This review summarizes our current understanding of these processes. We discuss evolutionary changes in the clock genes and in the clock network in the brain of different Drosophilids that may have caused behavioural adaptations to high latitudes.
Collapse
Affiliation(s)
| | - Enrico Bertolini
- Neurobiology and GeneticsTheodor‐Boveri InstituteBiocentre, University of WürzburgWürzburgGermany
| | - Pamela Menegazzi
- Neurobiology and GeneticsTheodor‐Boveri InstituteBiocentre, University of WürzburgWürzburgGermany
| |
Collapse
|
10
|
Singh S, Giesecke A, Damulewicz M, Fexova S, Mazzotta GM, Stanewsky R, Dolezel D. New Drosophila Circadian Clock Mutants Affecting Temperature Compensation Induced by Targeted Mutagenesis of Timeless. Front Physiol 2019; 10:1442. [PMID: 31849700 PMCID: PMC6901700 DOI: 10.3389/fphys.2019.01442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Drosophila melanogaster has served as an excellent genetic model to decipher the molecular basis of the circadian clock. Two key proteins, PERIOD (PER) and TIMELESS (TIM), are particularly well explored and a number of various arrhythmic, slow, and fast clock mutants have been identified in classical genetic screens. Interestingly, the free running period (tau, τ) is influenced by temperature in some of these mutants, whereas τ is temperature-independent in other mutant lines as in wild-type flies. This, so-called "temperature compensation" ability is compromised in the mutant timeless allele "ritsu" (tim rit ), and, as we show here, also in the tim blind allele, mapping to the same region of TIM. To test if this region of TIM is indeed important for temperature compensation, we generated a collection of new mutants and mapped functional protein domains involved in the regulation of τ and in general clock function. We developed a protocol for targeted mutagenesis of specific gene regions utilizing the CRISPR/Cas9 technology, followed by behavioral screening. In this pilot study, we identified 20 new timeless mutant alleles with various impairments of temperature compensation. Molecular characterization revealed that the mutations included short in-frame insertions, deletions, or substitutions of a few amino acids resulting from the non-homologous end joining repair process. Our protocol is a fast and cost-efficient systematic approach for functional analysis of protein-coding genes and promoter analysis in vivo. Interestingly, several mutations with a strong temperature compensation defect map to one specific region of TIM. Although the exact mechanism of how these mutations affect TIM function is as yet unknown, our in silico analysis suggests they affect a putative nuclear export signal (NES) and phosphorylation sites of TIM. Immunostaining for PER was performed on two TIM mutants that display longer τ at 25°C and complete arrhythmicity at 28°C. Consistently with the behavioral phenotype, PER immunoreactivity was reduced in circadian clock neurons of flies exposed to elevated temperatures.
Collapse
Affiliation(s)
- Samarjeet Singh
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Astrid Giesecke
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - Milena Damulewicz
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Silvie Fexova
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - Gabriella M. Mazzotta
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia
- Department of Biology, University of Padua, Padua, Italy
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - David Dolezel
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| |
Collapse
|
11
|
Bertolini E, Kistenpfennig C, Menegazzi P, Keller A, Koukidou M, Helfrich-Förster C. The characterization of the circadian clock in the olive fly Bactrocera oleae (Diptera: Tephritidae) reveals a Drosophila-like organization. Sci Rep 2018; 8:816. [PMID: 29339768 PMCID: PMC5770390 DOI: 10.1038/s41598-018-19255-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
The olive fruit fly, Bactrocera oleae, is the single most important pest for the majority of olive plantations. Oxitec's self-limiting olive fly technology (OX3097D-Bol) offers an alternative management approach to this insect pest. Because of previously reported asynchrony in the mating time of wild and laboratory strains, we have characterized the olive fly circadian clock applying molecular, evolutionary, anatomical and behavioural approaches. Here we demonstrate that the olive fly clock relies on a Drosophila melanogaster-like organization and that OX3097D-Bol carries a functional clock similar to wild-type strains, confirming its suitability for operational use.
Collapse
Affiliation(s)
- Enrico Bertolini
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074, Würzburg, Germany
| | | | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074, Würzburg, Germany
| | - Alexander Keller
- Center for Computation and Theoretical Biology and Department of Bioinformatics, Biocentre, University of Würzburg, 97074, Würzburg, Germany
| | | | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|