1
|
Chen G, Li MY, Yang JY, Zhou ZH. Will AMPK be a potential therapeutic target for hepatocellular carcinoma? Am J Cancer Res 2024; 14:3241-3258. [PMID: 39113872 PMCID: PMC11301289 DOI: 10.62347/yavk1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer is the disease that poses the greatest threat to human health today. Among them, hepatocellular carcinoma (HCC) is particularly prominent due to its high recurrence rate and extremely low five-year postoperative survival rate. In addition to surgical treatment, radiotherapy, chemotherapy, and immunotherapy are the main methods for treating HCC. Due to the natural drug resistance of chemoradiotherapy and targeted drugs, satisfactory results have not been achieved in terms of therapeutic efficacy and cost. AMP-Activated Protein Kinase (AMPK) is a serine/threonine protein kinase. It mainly coordinates the metabolism and transformation of energy between cells, which maintaining a balance between energy supply and demand. The processes of cell growth, proliferation, autophagy, and survival all involve various reaction of cells to energy changes. The regulatory role of AMPK in cellular energy metabolism plays an important role in the occurrence, development, treatment, and prognosis of HCC. Here, we reviewed the latest progress on the regulatory role of AMPK in the occurrence and development of HCC. Firstly, the molecular structure and activation mechanism of AMPK were introduced. Secondly, the emerging regulator related to AMPK and tumors were elaborated. Next, the multitasking roles of AMPK in the occurrence and development mechanism of HCC were discussed separately. Finally, the translational implications and the challenges of AMPK-targeted therapies for HCC treatment were elaborated. In summary, these pieces of information suggest that AMPK can serve as a promising specific therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Guo Chen
- Department of Oncology, Anhui Hospital, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese MedicineHefei, Anhui, China
| | - Ming-Yuan Li
- Department of Oncology, Anhui Hospital, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese MedicineHefei, Anhui, China
| | - Jing-Yi Yang
- Department of Oncology, Feixi Hospital of Traditional Chinese MedicineFeixi, Hefei, Anhui, China
| | - Zhen-Hua Zhou
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese MedicineShanghai, China
| |
Collapse
|
2
|
Devos J, Van Dijck P, Van Genechten W. A multi-colour fluorogenic tag and its application in Candida albicans. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001451. [PMID: 38535895 PMCID: PMC10995450 DOI: 10.1099/mic.0.001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Fluorescent proteins (FPs) have always been a crucial part of molecular research in life sciences, including the research into the human fungal pathogen Candida albicans, but have obvious shortcomings such as their relatively large size and long maturation time. However, the next generation of FPs overcome these issues and rely on the binding of a fluorogen for the protein to become fluorescently active. This generation of FPs includes the improved version of Fluorescence activating and Absorption Shifting Tag (iFAST). The binding between the fluorogen and the iFAST protein is reversible, thus resulting in reversible fluorescence. The fluorogens of iFAST are analogues of 4-hydroxylbenzylidene-rhodanine (HBR). These HBR analogues differ in spectral properties depending on functional group substitutions, which gives the iFAST system flexibility in terms of absorbance and emission maxima. In this work we describe and illustrate the application of iFAST as a protein tag and its reversible multi-colour characteristics in C. albicans.
Collapse
Affiliation(s)
- Jonas Devos
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium
| | - Wouter Van Genechten
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
3
|
Chakraborty A, Blatch GL, Edkins AL. Bimolecular Fluorescence Complementation Assay to Evaluate HSP90-Client Protein Interactions in Cells. Methods Mol Biol 2023; 2693:95-103. [PMID: 37540429 DOI: 10.1007/978-1-0716-3342-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Protein-protein interactions (PPI) in cells play a pivotal role in cellular function and dynamics. Cellular proteostasis is maintained by PPI networks between molecular chaperones, co-chaperones, and client proteins. Consequently, strategies to visualize and analyze PPI in cells are useful in understanding protein homeostasis regulation. The Bimolecular Fluorescence Complementation (BiFC) assay has emerged as a useful tool for studying PPI between proteins in live or fixed cells. BiFC is based on the detection of fluorescence generated when interacting protein pairs, produced as fusion proteins with either the N- or C-terminal fragment of a fluorescent protein, are in sufficient proximity to permit reconstitution of the split fluorophore. Here, we describe the application of the BiFC assay to a model of chaperone-client interactions using Hsp90 and the validated client protein CDK4. This assay allows for the distribution and spatiotemporal analysis of HSP90-CDK4 complexes in live or fixed cells and is amenable to studying the effects of inhibitors and mutations on chaperone-client protein networks.
Collapse
Affiliation(s)
- Abir Chakraborty
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Gregory L Blatch
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa.
| |
Collapse
|
4
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
5
|
Amorim-Vaz S, Coste AT, Tran VDT, Pagni M, Sanglard D. Function Analysis of MBF1, a Factor Involved in the Response to Amino Acid Starvation and Virulence in Candida albicans. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:658899. [PMID: 37744106 PMCID: PMC10512259 DOI: 10.3389/ffunb.2021.658899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 09/26/2023]
Abstract
Candida albicans is a commensal of human mucosae, but also one of the most common fungal pathogens of humans. Systemic infections caused by this fungus, mostly affecting immunocompromised patients, are associated to fatality rates as high as 50% despite the available treatments. In order to improve this situation, it is necessary to fully understand how C. albicans is able to cause disease and how it copes with the host defenses. Our previous studies have revealed the importance of the C. albicans gene MBF1 in virulence and ability to colonize internal organs of mammalian and insect hosts. MBF1 encodes a putative transcriptional regulator, and as such it likely has an impact in the regulation of C. albicans gene expression during host infection. Here, recent advances in RNA-seq technologies were used to obtain a detailed analysis of the impact of MBF1 on C. albicans gene expression both in vitro and during infection. MBF1 was involved in the regulation of several genes with a role in glycolysis and response to stress, particularly to nutritional stress. We also investigated whether an interaction existed between MBF1 and GCN4, a master regulator of response to starvation, and found that both genes were needed for resistance to amino acid starvation, suggesting some level of interaction between the two. Reinforcing this idea, we showed that the proteins encoded by both genes could interact. Consistent with the role of MBF1 in virulence, we also established that GCN4 was necessary for virulence in the mouse model of systemic infection as well as in the Galleria mellonella infection model.
Collapse
Affiliation(s)
- Sara Amorim-Vaz
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Van Du T. Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
6
|
Presenting a codon-optimized palette of fluorescent proteins for use in Candida albicans. Sci Rep 2020; 10:6158. [PMID: 32273559 PMCID: PMC7145796 DOI: 10.1038/s41598-020-63308-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 03/27/2020] [Indexed: 11/20/2022] Open
Abstract
Fluorescent proteins with varying colors are indispensable tools for the life sciences research community. These fluorophores are often developed for use in mammalian systems, with incremental enhancements or new versions published frequently. However, the successful application of these labels in other organisms in the tree of life, such as the fungus Candida albicans, can be difficult to achieve due to the difficulty in engineering constructs for good expression in these organisms. In this contribution, we present a palette of Candida-optimized fluorescent proteins ranging from cyan to red and assess their application potential. We also compare a range of reported expression optimization techniques, and find that none of these strategies is generally applicable, and that even very closely related proteins require the application of different strategies to achieve good expression. In addition to reporting new fluorescent protein variants for applications in Candida albicans, our work highlights the ongoing challenges in optimizing protein expression in heterologous systems.
Collapse
|
7
|
Establishment of tetracycline-regulated bimolecular fluorescence complementation assay to detect protein-protein interactions in Candida albicans. Sci Rep 2020; 10:2936. [PMID: 32076074 PMCID: PMC7031294 DOI: 10.1038/s41598-020-59891-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/03/2020] [Indexed: 01/05/2023] Open
Abstract
To visualize protein-protein interactions in Candida albicans with the bimolecular fluorescence complementation (BiFC) approach, we created a Tet-on system with the plasmids pWTN1 and pWTN2. Both plasmids bear a hygromycin B-resistant marker (CaHygB) that is compatible with the original Tet-on plasmid pNIM1, which carries a nourseothricin-resistant marker (CaSAT1). By using GFPmut2 and mCherry as reporters, we found that the two complementary Tet-on plasmids act synergistically in C. albicans with doxycycline in a dose-dependent manner and that expression of the fusion proteins, CaCdc11-GFPmut2 and mCherry-CaCdc10, derived from this system, is septum targeted. Furthermore, to allow detection of protein-protein interactions with the reassembly of a split fluorescent protein, we incorporated mCherry into our system. We generated pWTN1-RN and pNIM1-RC, which express the N-terminus (amino acids 1–159) and C-terminus (amino acids 160–237) of mCherry, respectively. To verify BiFC with mCherry, we created the pWTN1-CDC42-RN (or pWTN1-RN-CDC42) and pNIM1-RC-RDI1 plasmids. C. albicans cells containing these plasmids treated with doxycycline co-expressed the N- and C-terminal fragments of mCherry either N-terminally or C-terminally fused with CaCdc42 and CaRdi1, respectively, and the CaCdc42-CaRdi1 interaction reconstituted a functional form of mCherry. The establishment of this Tet-on-based BiFC system in C. albicans should facilitate the exploration of protein-protein interactions under a variety of conditions.
Collapse
|
8
|
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi. These receptors have an important role in the transduction of extracellular signals into intracellular sites in response to diverse stimuli. They enable fungi to coordinate cell function and metabolism, thereby promoting their survival and propagation, and sense certain fundamentally conserved elements, such as nutrients, pheromones, and stress, for adaptation to their niches, environmental stresses, and host environment, causing disease and pathogen virulence. This chapter highlights the role of GPCRs in fungi in coordinating cell function and metabolism. Fungal cells sense the molecular interactions between extracellular signals. Their respective sensory systems are described here in detail.
Collapse
Affiliation(s)
- Abd El-Latif Hesham
- Department of Genetics Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | | | | | - Vijai Kumar Gupta
- AgroBioSciences and Chemical & Biochemical Sciences Department, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
9
|
Schoeters F, Van Dijck P. Protein-Protein Interactions in Candida albicans. Front Microbiol 2019; 10:1792. [PMID: 31440220 PMCID: PMC6693483 DOI: 10.3389/fmicb.2019.01792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
Despite being one of the most important human fungal pathogens, Candida albicans has not been studied extensively at the level of protein-protein interactions (PPIs) and data on PPIs are not readily available in online databases. In January 2018, the database called "Biological General Repository for Interaction Datasets (BioGRID)" that contains the most PPIs for C. albicans, only documented 188 physical or direct PPIs (release 3.4.156) while several more can be found in the literature. Other databases such as the String database, the Molecular INTeraction Database (MINT), and the Database for Interacting Proteins (DIP) database contain even fewer interactions or do not even include C. albicans as a searchable term. Because of the non-canonical codon usage of C. albicans where CUG is translated as serine rather than leucine, it is often problematic to use the yeast two-hybrid system in Saccharomyces cerevisiae to study C. albicans PPIs. However, studying PPIs is crucial to gain a thorough understanding of the function of proteins, biological processes and pathways. PPIs can also be potential drug targets. To aid in creating PPI networks and updating the BioGRID, we performed an exhaustive literature search in order to provide, in an accessible format, a more extensive list of known PPIs in C. albicans.
Collapse
Affiliation(s)
- Floris Schoeters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
11
|
Schoeters F, Munro CA, d'Enfert C, Van Dijck P. A High-Throughput Candida albicans Two-Hybrid System. mSphere 2018; 3:e00391-18. [PMID: 30135223 PMCID: PMC6106057 DOI: 10.1128/msphere.00391-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a human fungal pathogen that does not follow the universal codon usage, as it translates the CUG codon into serine rather than leucine. This makes it difficult to study protein-protein interactions using the standard yeast two-hybrid (Y2H) system in the model organism Saccharomyces cerevisiae Due to the lack of adapted tools, only a small number of protein-protein interactions (PPIs) have been detected or studied using C. albicans-optimized tools despite the importance of PPIs to understand cell biology. However, with the sequencing of the whole genome of C. albicans, the availability of an ORFeome collection containing 5,099 open reading frames (ORFs) in Gateway-adapted donor vectors, and the creation of a Gateway-compatible C. albicans-specific two-hybrid (C2H) system, it became possible to study protein-protein interactions on a larger scale using C. albicans itself as the model organism. Erroneous translations are hereby eliminated compared to using the S. cerevisiae Y2H system. Here, we describe the technical adaptations and the first application of the C2H system for a high-throughput screen, thus making it possible to screen thousands of PPIs at once in C. albicans itself. This first, small-scale high-throughput screen, using Pho85 as a bait protein against 1,646 random prey proteins, yielded one interacting partner (Pcl5). The interaction found with the high-throughput setup was further confirmed with a low-throughput C2H experiment and with a coimmunoprecipitation (co-IP) experiment.IMPORTANCECandida albicans is a major fungal pathogen, and due to the rise of fungal infections and emerging resistance to the limited antifungals available, it is important to develop novel and more specific antifungals. Protein-protein interactions (PPIs) can be applied as very specific drug targets. However, because of the aberrant codon usage of C. albicans, the traditional yeast two-hybrid system in Saccharomyces cerevisiae is difficult to use, and only a limited number of PPIs have been described in C. albicans To overcome this, a C. albicans two-hybrid (C2H) system was developed in 2010. The current work describes, for the first time, the application of the C2H system in a high-throughput setup. We hereby show the usefulness of the C2H system to investigate and detect PPIs in C. albicans, making it possible to further elucidate protein networks in C. albicans, which has the potential to lead to the development of novel antifungals which specifically disrupt PPIs important for virulence.
Collapse
Affiliation(s)
- Floris Schoeters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| | - Carol A Munro
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Christophe d'Enfert
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| |
Collapse
|