1
|
Ullah I, Lang M. Key players in the regulation of iron homeostasis at the host-pathogen interface. Front Immunol 2023; 14:1279826. [PMID: 37942316 PMCID: PMC10627961 DOI: 10.3389/fimmu.2023.1279826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Iron plays a crucial role in the biochemistry and development of nearly all living organisms. Iron starvation of pathogens during infection is a striking feature utilized by a host to quell infection. In mammals and some other animals, iron is essentially obtained from diet and recycled from erythrocytes. Free iron is cytotoxic and is readily available to invading pathogens. During infection, most pathogens utilize host iron for their survival. Therefore, to ensure limited free iron, the host's natural system denies this metal in a process termed nutritional immunity. In this fierce battle for iron, hosts win over some pathogens, but others have evolved mechanisms to overdrive the host barriers. Production of siderophores, heme iron thievery, and direct binding of transferrin and lactoferrin to bacterial receptors are some of the pathogens' successful strategies which are highlighted in this review. The intricate interplay between hosts and pathogens in iron alteration systems is crucial for understanding host defense mechanisms and pathogen virulence. This review aims to elucidate the current understanding of host and pathogen iron alteration systems and propose future research directions to enhance our knowledge in this field.
Collapse
Affiliation(s)
- Inam Ullah
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
2
|
Abstract
Iron is an essential micronutrient for all types of organisms; however, iron has chemical properties that can be harmful to cells. Because iron is both necessary and potentially damaging, insects have homeostatic processes that control the redox state, quantity, and location of iron in the body. These processes include uptake of iron from the diet, intracellular and extracellular iron transport, and iron storage. Early studies of iron-binding proteins in insects suggested that insects and mammals have surprisingly different mechanisms of iron homeostasis, including different primary mechanisms for exporting iron from cells and for transporting iron from one cell to another, and subsequent studies have continued to support this view. This review summarizes current knowledge about iron homeostasis in insects, compares insect and mammalian iron homeostasis mechanisms, and calls attention to key remaining knowledge gaps.
Collapse
Affiliation(s)
- Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA;
| |
Collapse
|
3
|
Nagy NA, Rácz R, Rimington O, Póliska S, Orozco-terWengel P, Bruford MW, Barta Z. Draft genome of a biparental beetle species, Lethrus apterus. BMC Genomics 2021; 22:301. [PMID: 33902445 PMCID: PMC8074431 DOI: 10.1186/s12864-021-07627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/13/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The lack of an understanding about the genomic architecture underpinning parental behaviour in subsocial insects displaying simple parental behaviours prevents the development of a full understanding about the evolutionary origin of sociality. Lethrus apterus is one of the few insect species that has biparental care. Division of labour can be observed between parents during the reproductive period in order to provide food and protection for their offspring. RESULTS Here, we report the draft genome of L. apterus, the first genome in the family Geotrupidae. The final assembly consisted of 286.93 Mbp in 66,933 scaffolds. Completeness analysis found the assembly contained 93.5% of the Endopterygota core BUSCO gene set. Ab initio gene prediction resulted in 25,385 coding genes, whereas homology-based analyses predicted 22,551 protein coding genes. After merging, 20,734 were found during functional annotation. Compared to other publicly available beetle genomes, 23,528 genes among the predicted genes were assigned to orthogroups of which 1664 were in species-specific groups. Additionally, reproduction related genes were found among the predicted genes based on which a reduction in the number of odorant- and pheromone-binding proteins was detected. CONCLUSIONS These genes can be used in further comparative and functional genomic researches which can advance our understanding of the genetic basis and hence the evolution of parental behaviour.
Collapse
Affiliation(s)
- Nikoletta A Nagy
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary.
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.
| | - Rita Rácz
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | | | - Szilárd Póliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | - Zoltán Barta
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Jiménez-Morales E, Aguilar-Hernández V, Aguilar-Henonin L, Guzmán P. Molecular basis for neofunctionalization of duplicated E3 ubiquitin ligases underlying adaptation to drought tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:474-492. [PMID: 33164265 DOI: 10.1111/tpj.14938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Multigene families in plants expanded from ancestral genes via gene duplication mechanisms constitute a significant fraction of the coding genome. Although most duplicated genes are lost over time, many are retained in the genome. Clusters of tandemly arrayed genes are commonly found in the plant genome where they can promote expansion of gene families. In the present study, promoter fusion to the GUS reporter gene was used to examine the promoter architecture of duplicated E3 ligase genes that are part of group C in the Arabidopsis thaliana ATL family. Acquisition of gene expression by AtATL78, possibly generated from defective AtATL81 expression, is described. AtATL78 expression was purportedly enhanced by insertion of a TATA box within the core promoter region after a short tandem duplication that occurred during evolution of Brassicaceae lineages. This gene is associated with an adaptation to drought tolerance of A. thaliana. These findings also suggest duplicated genes could serve as a reservoir of tacit genetic information, and expression of these duplicated genes is activated upon acquisition of core promoter sequences. Remarkably, drought transcriptome profiling in response to rehydration suggests that ATL78-dependent gene expression predominantly affects genes with root-specific activities.
Collapse
Affiliation(s)
- Estela Jiménez-Morales
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Victor Aguilar-Hernández
- CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
| | - Laura Aguilar-Henonin
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| |
Collapse
|
5
|
Moore AJ, Benowitz KM. From phenotype to genotype: the precursor hypothesis predicts genetic influences that facilitate transitions in social behavior. CURRENT OPINION IN INSECT SCIENCE 2019; 34:91-96. [PMID: 31247425 PMCID: PMC7656704 DOI: 10.1016/j.cois.2019.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 05/03/2023]
Abstract
Parental care is expected to be one of the key evolutionary precursors to advanced social behavior. This suggests that there could be common genetic underpinnings to both parental care and sociality. However, little is known of the genetics underlying care. Here, we suggest that ethological predictions of behavioral precursors to care along with a genetic toolkit for behavior provide testable hypotheses and a defined approach to investigating genetics of sociality. We call this the 'precursor hypothesis'.
Collapse
Affiliation(s)
- Allen J Moore
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - Kyle M Benowitz
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
6
|
Rubenstein DR, Ågren JA, Carbone L, Elde NC, Hoekstra HE, Kapheim KM, Keller L, Moreau CS, Toth AL, Yeaman S, Hofmann HA. Coevolution of Genome Architecture and Social Behavior. Trends Ecol Evol 2019; 34:844-855. [PMID: 31130318 DOI: 10.1016/j.tree.2019.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023]
Abstract
Although social behavior can have a strong genetic component, it can also result in selection on genome structure and function, thereby influencing the evolution of the genome itself. Here we explore the bidirectional links between social behavior and genome architecture by considering variation in social and/or mating behavior among populations (social polymorphisms) and across closely related species. We propose that social behavior can influence genome architecture via associated demographic changes due to social living. We establish guidelines to exploit emerging whole-genome sequences using analytical approaches that examine genome structure and function at different levels (regulatory vs structural variation) from the perspective of both molecular biology and population genetics in an ecological context.
Collapse
Affiliation(s)
- Dustin R Rubenstein
- Columbia University, Department of Ecology, Evolution, and Environmental Biology and Center for Integrative Animal Behavior, New York, NY 10027, USA.
| | - J Arvid Ågren
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA
| | - Lucia Carbone
- Oregon Health & Science University, Department of Medicine, KCVI, Portland, OR 97239, USA; Oregon National Primate Research Center, Division of Genetics, Beaverton, OR 97006, USA
| | - Nels C Elde
- University of Utah School of Medicine, Department of Human Genetics, Salt Lake City, UT 84112, USA
| | - Hopi E Hoekstra
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA; Harvard University, Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Cambridge, MA 02138, USA
| | - Karen M Kapheim
- Utah State University, Department of Biology, Logan, UT 84322, USA
| | - Laurent Keller
- University of Lausanne, Department of Ecology and Evolution, Biophore, UNIL, 1015 Lausanne, Switzerland
| | - Corrie S Moreau
- Cornell University, Departments of Entomology and Ecology and Evolutionary Biology, Ithaca, NY 14850, USA
| | - Amy L Toth
- Iowa State University, Department of Ecology, Evolution, and Organismal Biology and Department of Entomology, Ames, IA 50011, USA
| | - Sam Yeaman
- University of Calgary, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| | - Hans A Hofmann
- The University of Texas at Austin, Department of Integrative Biology and Institute for Cellular and Molecular Biology, 2415 Speedway C-0990, Austin, TX 78712, USA.
| |
Collapse
|
7
|
Kronauer DJ, Libbrecht R. Back to the roots: the importance of using simple insect societies to understand the molecular basis of complex social life. CURRENT OPINION IN INSECT SCIENCE 2018; 28:33-39. [PMID: 30551765 DOI: 10.1016/j.cois.2018.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 06/09/2023]
Abstract
The evolutionary trajectories toward insect eusociality come in two broad forms. In species like wasps, bees, and ants, the first helpers remained at the nest primarily to help with brood care. In species like aphids and termites, on the other hand, nest defense was initially the primary ecological driving force. To better understand the molecular basis of these two alternative evolutionary trajectories, it is therefore important to study the mechanistic basis of brood care and nest defense behavior. So far, most studies have compared morphologically distinct castes in advanced eusocial species of ants, bees, wasps, and termites. However, the interpretation of such comparisons is limited by multiple confounding factors and the fact that castes are typically fixed and cannot be manipulated at the adult stage. In this review, we argue that conducting molecular studies of brood care and nest defense in simpler, more flexible insect societies may complement studies of advanced eusocial insects and provide avenues toward more functional analyses. We review the available literature and propose candidate study systems for future molecular investigations of brood care and nest defense in social insects.
Collapse
Affiliation(s)
- Daniel Jc Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, USA
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
8
|
Trumbo ST. Juvenile hormone and parental care in subsocial insects: implications for the role of juvenile hormone in the evolution of sociality. CURRENT OPINION IN INSECT SCIENCE 2018; 28:13-18. [PMID: 30551762 DOI: 10.1016/j.cois.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 06/09/2023]
Abstract
Juvenile hormone (JH) has both gonadotropic and non-gonadotropic roles in eusocial insects. There is controversy over whether the non-gonadotropic role is novel, related specifically to social evolution, or is a second conserved role. Study of subsocial insects suggests that when JH is non-gonadotropic, the specific associations of high JH, low vitellogenin, suppressed ovarian development and elevated metabolism may parallel those in workers of eusocial insects. This suggests that a more fundamental understanding of JH in insect biology is required.
Collapse
Affiliation(s)
- Stephen T Trumbo
- Department of Ecology and Evolutionary Biology, University of Connecticut, Waterbury, CT 06710, USA
| |
Collapse
|
9
|
Tsujimoto H, Anderson MAE, Myles KM, Adelman ZN. Identification of Candidate Iron Transporters From the ZIP/ZnT Gene Families in the Mosquito Aedes aegypti. Front Physiol 2018; 9:380. [PMID: 29706902 PMCID: PMC5906682 DOI: 10.3389/fphys.2018.00380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/28/2018] [Indexed: 12/21/2022] Open
Abstract
Mosquito-transmitted viral pathogens, such as dengue and Zika, afflict tens of thousands of people every year. These viruses are transmitted during the blood-feeding process that is required for mosquito reproduction, the most important vector being Aedes aegypti. While vertebrate blood is rich in protein, its high iron content is potentially toxic to mosquitoes. Although iron transport and sequestration are essential in the reproduction of vector mosquitoes, we discovered that culicine mosquitoes lack homologs of the common iron transporter NRAMP. Using a novel cell-based screen, we identified two ZIP and one ZnT genes as candidate iron transporters in the mosquito A. aegypti, the vector of dengue, Zika, and chikungunya. We determined the organ-specific expression pattern of these genes at critical time points in early reproduction. The result indicates modulation of these genes upon blood feeding, especially a ZIP13 homolog that is highly up-regulated after blood feeding, suggesting its importance in iron mobilization during blood digestion and reproduction. Gene silencing resulted in differential iron accumulation in the midgut and ovaries. This study sets a foundation for further investigation of iron transport and control strategies of this viral vector.
Collapse
Affiliation(s)
- Hitoshi Tsujimoto
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, United States
| | - Michelle A E Anderson
- Department of Entomology and Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, United States
| | - Kevin M Myles
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, United States
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, United States
| |
Collapse
|