1
|
Zeng B, Grayson H, Sun J. GATA factor Serpent promotes phagocytosis in non-professional phagocytes during Drosophila oogenesis. Development 2025; 152:dev204464. [PMID: 40136017 PMCID: PMC12070059 DOI: 10.1242/dev.204464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Clearance of dying cells is essential for tissue homeostasis and requires both professional and non-professional phagocytes; however, it is unclear what promotes phagocytosis by non-professional phagocytes. Follicle cells of Drosophila egg chambers function as non-professional phagocytes to clear large germ cell debris in mid and late oogenesis, providing an excellent model for the study of non-professional phagocytes. Here, we demonstrate that GATA factor Serpent (Srp) plays an indispensable role in promoting the phagocytic capacity of follicle cells in both processes. Srp is upregulated in follicle cells of degenerating mid-stage egg chambers, and its knockdown results in incomplete clearance of germ cell debris and premature follicle cell death. In addition, Srp is upregulated in stretch follicle cells and is essential for clearing the nurse cell nuclei in late oogenesis. Genetic analysis reveals that Srp acts downstream of JNK signaling to upregulate the expression of the phagocytic receptor Draper as well as other components in the corpse processing machinery. Our findings highlight the crucial role for Srp in non-professional phagocytes during Drosophila oogenesis, which may also be conserved across species.
Collapse
Affiliation(s)
- Baosheng Zeng
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Haley Grayson
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Jianjun Sun
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Chen X, Wang B, Sarkar A, Huang Z, Ruiz NV, Yeung AT, Chen R, Han C. Phagocytosis-driven neurodegeneration through opposing roles of an ABC transporter in neurons and phagocytes. SCIENCE ADVANCES 2025; 11:eadr5448. [PMID: 40073145 PMCID: PMC11900885 DOI: 10.1126/sciadv.adr5448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Lipid homeostasis is critical to neuronal survival. ATP-binding cassette A (ABCA) proteins are lipid transporters associated with neurodegenerative diseases. How ABCA transporters regulate lipid homeostasis in neurodegeneration is an outstanding question. Here we report that the Drosophila ABCA protein engulfment ABC transporter in the ovary (Eato) regulates phagocytosis-dependent neurodegeneration by playing opposing roles in neurons and phagocytes: In neurons, Eato prevents dendrites and axons from being attacked by neighboring phagocytes; in phagocytes, Eato sensitizes the cell for detecting neurons as engulfment targets. Thus, Eato deficiency in neurons alone causes phagocytosis-dependent neurite degeneration, but additional Eato loss from phagocytes suppresses the neurite degeneration. Mechanistically, Eato functions by removing the eat-me signal phosphatidylserine from the cell surface in both neurons and phagocytes. Multiple human and worm ABCA homologs can rescue Eato loss in phagocytes but not in neurons, suggesting both conserved and cell type-specific activities of ABCA proteins. These results imply possible mechanisms of neuron-phagocyte interactions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinchen Chen
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Nicolas Vergara Ruiz
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Chun Han
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Penunuri G, Wang P, Corbett-Detig R, Russell SL. A Structural Proteome Screen Identifies Protein Mimicry in Host-Microbe Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588793. [PMID: 38645127 PMCID: PMC11030372 DOI: 10.1101/2024.04.10.588793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Host-microbe systems are evolutionary niches that produce coevolved biological interactions and are a key component of global health. However, these systems have historically been a difficult field of biological research due to their experimental intractability. Impactful advances in global health will be obtained by leveraging in silico screens to identify genes involved in mediating interspecific interactions. These predictions will progress our understanding of these systems and lay the groundwork for future in vitro and in vivo experiments and bioengineering projects. A driver of host-manipulation and intracellular survival utilized by host-associated microbes is molecular mimicry, a critical mechanism that can occur at any level from DNA to protein structures. We applied protein structure prediction and alignment tools to explore host-associated bacterial structural proteomes for examples of protein structure mimicry. By leveraging the Legionella pneumophila proteome and its many known structural mimics, we developed and validated a screen that can be applied to virtually any host-microbe system to uncover signals of protein mimicry. These mimics represent candidate proteins that mediate host interactions in microbial proteomes. We successfully applied this screen to other microbes with demonstrated effects on global health, Helicobacter pylori and Wolbachia , identifying protein mimic candidates in each proteome. We discuss the roles these candidates may play in important Wolbachia -induced phenotypes and show that Wobachia infection can partially rescue the loss of one of these factors. This work demonstrates how a genome-wide screen for candidates of host-manipulation and intracellular survival offers an opportunity to identify functionally important genes in host-microbe systems.
Collapse
|
4
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
5
|
Heron R, Amato C, Wood W, Davidson AJ. Understanding the diversity and dynamics of in vivo efferocytosis: Insights from the fly embryo. Immunol Rev 2023; 319:27-44. [PMID: 37589239 PMCID: PMC10952863 DOI: 10.1111/imr.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
The clearance of dead and dying cells, termed efferocytosis, is a rapid and efficient process and one that is critical for organismal health. The extraordinary speed and efficiency with which dead cells are detected and engulfed by immune cells within tissues presents a challenge to researchers who wish to unravel this fascinating process, since these fleeting moments of uptake are almost impossible to catch in vivo. In recent years, the fruit fly (Drosophila melanogaster) embryo has emerged as a powerful model to circumvent this problem. With its abundance of dying cells, specialist phagocytes and relative ease of live imaging, the humble fly embryo provides a unique opportunity to catch and study the moment of cell engulfment in real-time within a living animal. In this review, we explore the recent advances that have come from studies in the fly, and how live imaging and genetics have revealed a previously unappreciated level of diversity in the efferocytic program. A variety of efferocytic strategies across the phagocytic cell population ensure efficient and rapid clearance of corpses wherever death is encountered within the varied and complex setting of a multicellular living organism.
Collapse
Affiliation(s)
- Rosalind Heron
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Clelia Amato
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Will Wood
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Andrew J. Davidson
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
- School of Cancer SciencesWolfson Wohl Cancer Research Centre, University of GlasgowGlasgowUK
| |
Collapse
|
6
|
Russell SL, Castillo JR, Sullivan WT. Wolbachia endosymbionts manipulate the self-renewal and differentiation of germline stem cells to reinforce fertility of their fruit fly host. PLoS Biol 2023; 21:e3002335. [PMID: 37874788 PMCID: PMC10597519 DOI: 10.1371/journal.pbio.3002335] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023] Open
Abstract
The alphaproteobacterium Wolbachia pipientis infects arthropod and nematode species worldwide, making it a key target for host biological control. Wolbachia-driven host reproductive manipulations, such as cytoplasmic incompatibility (CI), are credited for catapulting these intracellular bacteria to high frequencies in host populations. Positive, perhaps mutualistic, reproductive manipulations also increase infection frequencies, but are not well understood. Here, we identify molecular and cellular mechanisms by which Wolbachia influences the molecularly distinct processes of germline stem cell (GSC) self-renewal and differentiation. We demonstrate that wMel infection rescues the fertility of flies lacking the translational regulator mei-P26 and is sufficient to sustain infertile homozygous mei-P26-knockdown stocks indefinitely. Cytology revealed that wMel mitigates the impact of mei-P26 loss through restoring proper pMad, Bam, Sxl, and Orb expression. In Oregon R files with wild-type fertility, wMel infection elevates lifetime egg hatch rates. Exploring these phenotypes through dual-RNAseq quantification of eukaryotic and bacterial transcripts revealed that wMel infection rescues and offsets many gene expression changes induced by mei-P26 loss at the mRNA level. Overall, we show that wMel infection beneficially reinforces host fertility at mRNA, protein, and phenotypic levels, and these mechanisms may promote the emergence of mutualism and the breakdown of host reproductive manipulations.
Collapse
Affiliation(s)
- Shelbi L. Russell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jennie Ruelas Castillo
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - William T. Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
7
|
Xiao KR, Wu CY, Yang L, Wang J, Song QS, Stanley D, Wei SJ, Zhu JY. Comparative genomic analysis of ABC transporter genes in Tenebrio molitor and four other tenebrionid beetles (Coleoptera: Tenebrionidea). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21916. [PMID: 35584005 DOI: 10.1002/arch.21916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ATP-binding cassette (ABC) transporters, one of the largest transmembrane protein families, transport a diverse number of substate across membranes. Details of their diverse physiological functions have not been established. Here, we identified 87 ABC transporter genes in the genomes of Tenebrio molitor along with those from Asbolus verrucosus (104), Hycleus cichorii (65), and Hycleus phaleratus (80). Combining these genes (336 in total) with genes reported in Tribolium castaneum (73), we analyzed the phylogeny of ABC transporter genes in all five Tenebrionids. They are assigned into eight subfamilies (ABCA-H). In comparison to other species, the ABCC subfamily in this group of beetles appears expanded. The expression profiles of the T. molitor genes at different life stages and in various tissues were also investigated using transcriptomic analysis. Most of them display developmental specific expression patterns, suggesting to us their possible roles in development. Most of them are highly expressed in detoxification-related tissues including gut and Malpighian tubule, from which we infer their roles in insecticide resistance. We detected specific or abundant expressions of many ABC transporter genes in various tissues such as salivary gland, ovary, testis, and antenna. This new information helps generate new hypotheses on their biological significance within tissues.
Collapse
Affiliation(s)
- Kai-Ran Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Chao-Yan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jun Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
8
|
Lebo DPV, Chirn A, Taylor JD, Levan A, Doerre Torres V, Agreda E, Serizier SB, Lord AK, Jenkins VK, McCall K. An RNAi screen of the kinome in epithelial follicle cells of the Drosophila melanogaster ovary reveals genes required for proper germline death and clearance. G3-GENES GENOMES GENETICS 2021; 11:6080751. [PMID: 33693600 PMCID: PMC8022946 DOI: 10.1093/g3journal/jkaa066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Programmed cell death and cell corpse clearance are an essential part of organismal health and development. Cell corpses are often cleared away by professional phagocytes such as macrophages. However, in certain tissues, neighboring cells known as nonprofessional phagocytes can also carry out clearance functions. Here, we use the Drosophila melanogaster ovary to identify novel genes required for clearance by nonprofessional phagocytes. In the Drosophila ovary, germline cells can die at multiple time points. As death proceeds, the epithelial follicle cells act as phagocytes to facilitate the clearance of these cells. We performed an unbiased kinase screen to identify novel proteins and pathways involved in cell clearance during two death events. Of 224 genes examined, 18 demonstrated severe phenotypes during developmental death and clearance while 12 demonstrated severe phenotypes during starvation-induced cell death and clearance, representing a number of pathways not previously implicated in phagocytosis. Interestingly, it was found that several genes not only affected the clearance process in the phagocytes, but also non-autonomously affected the process by which germline cells died. This kinase screen has revealed new avenues for further exploration and investigation.
Collapse
Affiliation(s)
- Diane P V Lebo
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Alice Chirn
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jeffrey D Taylor
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Andre Levan
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | | | - Emily Agreda
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sandy B Serizier
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Allison K Lord
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
9
|
Lebo DPV, McCall K. Murder on the Ovarian Express: A Tale of Non-Autonomous Cell Death in the Drosophila Ovary. Cells 2021; 10:cells10061454. [PMID: 34200604 PMCID: PMC8228772 DOI: 10.3390/cells10061454] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
Throughout oogenesis, Drosophila egg chambers traverse the fine line between survival and death. After surviving the ten early and middle stages of oogenesis, egg chambers drastically change their size and structure to produce fully developed oocytes. The development of an oocyte comes at a cost, the price is the lives of the oocyte’s 15 siblings, the nurse cells. These nurse cells do not die of their own accord. Their death is dependent upon their neighbors—the stretch follicle cells. Stretch follicle cells are nonprofessional phagocytes that spend the final stages of oogenesis surrounding the nurse cells and subsequently forcing the nurse cells to give up everything for the sake of the oocyte. In this review, we provide an overview of cell death in the ovary, with a focus on recent findings concerning this phagocyte-dependent non-autonomous cell death.
Collapse
|
10
|
Chen W, Li L, Wang J, Zhang R, Zhang T, Wu Y, Wang S, Xing D. The ABCA1-efferocytosis axis: A new strategy to protect against atherosclerosis. Clin Chim Acta 2021; 518:1-8. [PMID: 33741356 DOI: 10.1016/j.cca.2021.02.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Atherosclerosis, a disease process characterized by lipid accumulation and inflammation, is the main cause of coronary heart disease (CHD) and myocardial infarction (MI). Efferocytosis involves the clearance of apoptotic cells by phagocytes. Successful engulfment triggers the release of anti-inflammatory cytokines to suppress atherosclerosis. ABCA1 is a key mediator of cholesterol efflux to apoA-I for the generation of HDL-C in reverse cholesterol transport (RCT). Intriguingly, ABCA1 promotes not only cholesterol efflux but also efferocytosis. ABCA1 promotes efferocytosis by regulating the release of "find-me" ligands, including LPC, and the exposure, release, and expression of "eat-me" ligands, including PtdSer, ANXA1, ANXA5, MEGF10, and GULP1. ABCA1 has a pathway similar to TG2, which is an "eat-me" ligand. ABCA1 has the highest known homology to ABCA7, which controls efferocytosis as the engulfment and processing ligand. In addition, ABCA1 can form several regulatory feedback axes with ANXA1, MEGF10, GULP1, TNFα, and IL-6. Therefore, ABCA1 is the central factor that links cholesterol efflux and apoptotic cell clearance. Several drugs have been studied or approved for apoptotic cell clearance, such as CD47 antibody and PD1-/PD-L1 antibody. In this article, we review the role and mechanism of action of ABCA1 in efferocytosis and focus on new insights into the ABCA1-efferocytosis axis and its potential as a novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Lu Li
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Jie Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Tingting Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China.
| | - Shuai Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Kotlyarov SN, Kotlyarova AA. Participation of ABCA1 transporter in development of chronic obstructive pulmonary disease. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2020; 28:360-370. [DOI: 10.23888/pavlovj2020283360-370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Despite all achievements of the modern medicine, the problem of chronic obstructive pulmonary disease (COPD) does not lose its relevance. The current paradigm suggests a key role of macrophages in inflammation in COPD. Macrophages are known to be heterogeneous in their functions. This heterogeneity is determined by their immunometabolic profile and also by peculiarities of lipid homeostasis of cells.
Aim. To analyze the role of the ABCA1 transporter, a member of the ABC A subfamily, in the pathogenesis of COPD. The expression of ABCA1 in lung tissues is on the second place after the liver, which shows the important role of the carrier and of lipid homeostasis in the function of lungs. Analysis of the literature shows that participation of the transporter in inflammation consists in regulation of the content of cholesterol in the lipid rafts of the membranes, in phagocytosis and apoptosis.
Conclusion. Through regulation of the process of reverse transport of cholesterol in macrophages of lungs, ABCA1 can change their inflammatory response, which makes a significant contribution to the pathogenesis of COPD.
Collapse
|
12
|
Mondragon AA, Yalonetskaya A, Ortega AJ, Zhang Y, Naranjo O, Elguero J, Chung WS, McCall K. Lysosomal Machinery Drives Extracellular Acidification to Direct Non-apoptotic Cell Death. Cell Rep 2020; 27:11-19.e3. [PMID: 30943394 PMCID: PMC6613820 DOI: 10.1016/j.celrep.2019.03.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 02/18/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023] Open
Abstract
Cell death is a fundamental aspect of development, homeostasis, and disease; yet, our understanding of non-apoptotic forms of cell death is limited. One such form is phagoptosis, in which one cell utilizes phagocytosis machinery to kill another cell that would otherwise continue living. We have previously identified a non-autonomous requirement of phagocytosis machinery for the developmental programmed cell death of germline nurse cells in the Drosophila ovary; however, the precise mechanism of death remained elusive. Here, we show that lysosomal machinery acting in epithelial follicle cells is used to non-autonomously induce the death of nearby germline cells. Stretch follicle cells recruit V-ATPases and chloride channels to their plasma membrane to extracellularly acidify the germline and release cathepsins that destroy the nurse cells. Our results reveal a role for lysosomal machinery acting at the plasma membrane to cause the death of neighboring cells, providing insight into mechanisms driving non-autonomous cell death. Mondragon et al. show that V-ATPase proton pumps localize to the plasma membrane of follicle cells and promote extracellular acidification to eliminate adjacent nurse cells in the Drosophila ovary. The follicle cells subsequently release cathepsins by exocytosis into the nurse cells to promote their final degradation.
Collapse
Affiliation(s)
- Albert A Mondragon
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Alla Yalonetskaya
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Anthony J Ortega
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Yuanhang Zhang
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Oandy Naranjo
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Johnny Elguero
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Won-Suk Chung
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - Kimberly McCall
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Davidson AJ, Wood W. Phagocyte Responses to Cell Death in Flies. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036350. [PMID: 31501193 DOI: 10.1101/cshperspect.a036350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multicellular organisms are not created through cell proliferation alone. It is through cell death that an indefinite cellular mass is pared back to reveal its true form. Cells are also lost throughout life as part of homeostasis and through injury. This detritus represents a significant burden to the living organism and must be cleared, most notably through the use of specialized phagocytic cells. Our understanding of these phagocytes and how they engulf cell corpses has been greatly aided by studying the fruit fly, Drosophila melanogaster Here we review the contribution of Drosophila research to our understanding of how phagocytes respond to cell death. We focus on the best studied phagocytes in the fly: the glia of the central nervous system, the ovarian follicle cells, and the macrophage-like hemocytes. Each is explored in the context of the tissue they maintain as well as how they function during development and in response to injury.
Collapse
Affiliation(s)
- Andrew J Davidson
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Will Wood
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
14
|
Kerr CH, Dalwadi U, Scott NE, Yip CK, Foster LJ, Jan E. Transmission of Cricket paralysis virus via exosome-like vesicles during infection of Drosophila cells. Sci Rep 2018; 8:17353. [PMID: 30478341 PMCID: PMC6255767 DOI: 10.1038/s41598-018-35717-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023] Open
Abstract
Viruses are classically characterized as being either enveloped or nonenveloped depending on the presence or absence of a lipid bi-layer surrounding their proteinaceous capsid. In recent years, many studies have challenged this view by demonstrating that some nonenveloped viruses (e.g. hepatitis A virus) can acquire an envelope during infection by hijacking host cellular pathways. In this study, we examined the role of exosome-like vesicles (ELVs) during infection of Drosophilia melanogaster S2 cells by Cricket paralysis virus (CrPV). Utilizing quantitative proteomics, we demonstrated that ELVs can be isolated from both mock- and CrPV-infected S2 cells that contain distinct set of proteins compared to the cellular proteome. Moreover, 40 proteins increased in abundance in ELVs derived from CrPV-infected cells compared to mock, suggesting specific factors associate with ELVs during infection. Interestingly, peptides from CrPV capsid proteins (ORF2) and viral RNA were detected in ELVs from infected cells. Finally, ELVs from CrPV-infected cells are infectious suggesting that CrPV may hijack ELVs to acquire an envelope during infection of S2 cells. This study further demonstrates the diverse strategies of nonenveloped viruses from invertebrates to vertebrates to acquire an envelope in order to evade the host response or facilitate transmission.
Collapse
Affiliation(s)
- Craig H Kerr
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver BC, V6T 1Z3, Melbourne, Australia
| | - Udit Dalwadi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver BC, V6T 1Z3, Canada.
- Michael Smith Laboratories, University of British Columbia, Vancouver BC, V6T 1Z3, Melbourne, Australia.
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver BC, V6T 1Z3, Canada.
| |
Collapse
|
15
|
Yalonetskaya A, Mondragon AA, Elguero J, McCall K. I Spy in the Developing Fly a Multitude of Ways to Die. J Dev Biol 2018; 6:E26. [PMID: 30360387 PMCID: PMC6316796 DOI: 10.3390/jdb6040026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022] Open
Abstract
Cell proliferation and cell death are two opposing, yet complementary fundamental processes in development. Cell proliferation provides new cells, while developmental programmed cell death adjusts cell numbers and refines structures as an organism grows. Apoptosis is the best-characterized form of programmed cell death; however, there are many other non-apoptotic forms of cell death that occur throughout development. Drosophila is an excellent model for studying these varied forms of cell death given the array of cellular, molecular, and genetic techniques available. In this review, we discuss select examples of apoptotic and non-apoptotic cell death that occur in different tissues and at different stages of Drosophila development. For example, apoptosis occurs throughout the nervous system to achieve an appropriate number of neurons. Elsewhere in the fly, non-apoptotic modes of developmental cell death are employed, such as in the elimination of larval salivary glands and midgut during metamorphosis. These and other examples discussed here demonstrate the versatility of Drosophila as a model organism for elucidating the diverse modes of programmed cell death.
Collapse
Affiliation(s)
- Alla Yalonetskaya
- Cell and Molecular Biology Program, Department of Biology, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| | - Albert A Mondragon
- Molecular Biology, Cell Biology, and Biochemistry Program, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| | - Johnny Elguero
- Cell and Molecular Biology Program, Department of Biology, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| | - Kimberly McCall
- Cell and Molecular Biology Program, Department of Biology, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
- Molecular Biology, Cell Biology, and Biochemistry Program, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| |
Collapse
|