1
|
TritiKBdb: A Functional Annotation Resource for Deciphering the Complete Interaction Networks in Wheat-Karnal Bunt Pathosystem. Int J Mol Sci 2022; 23:ijms23137455. [PMID: 35806459 PMCID: PMC9267065 DOI: 10.3390/ijms23137455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
The study of molecular interactions, especially the inter-species protein-protein interactions, is crucial for understanding the disease infection mechanism in plants. These interactions play an important role in disease infection and host immune responses against pathogen attack. Among various critical fungal diseases, the incidences of Karnal bunt (Tilletia indica) around the world have hindered the export of the crops such as wheat from infected regions, thus causing substantial economic losses. Due to sparse information on T. indica, limited insight is available with regard to gaining in-depth knowledge of the interaction mechanisms between the host and pathogen proteins during the disease infection process. Here, we report the development of a comprehensive database and webserver, TritiKBdb, that implements various tools to study the protein-protein interactions in the Triticum species-Tilletia indica pathosystem. The novel ‘interactomics’ tool allows the user to visualize/compare the networks of the predicted interactions in an enriched manner. TritiKBdb is a user-friendly database that provides functional annotations such as subcellular localization, available domains, KEGG pathways, and GO terms of the host and pathogen proteins. Additionally, the information about the host and pathogen proteins that serve as transcription factors and effectors, respectively, is also made available. We believe that TritiKBdb will serve as a beneficial resource for the research community, and aid the community in better understanding the infection mechanisms of Karnal bunt and its interactions with wheat. The database is freely available for public use at http://bioinfo.usu.edu/tritikbdb/.
Collapse
|
2
|
Saini DK, Chahal A, Pal N, Srivastava P, Gupta PK. Meta-analysis reveals consensus genomic regions associated with multiple disease resistance in wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:11. [PMID: 37309411 PMCID: PMC10248701 DOI: 10.1007/s11032-022-01282-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
In wheat, meta-QTLs (MQTLs) and candidate genes (CGs) were identified for multiple disease resistance (MDR). For this purpose, information was collected from 58 studies for mapping QTLs for resistance to one or more of the five diseases. As many as 493 QTLs were available from these studies, which were distributed in five diseases as follows: septoria tritici blotch (STB) 126 QTLs; septoria nodorum blotch (SNB), 103 QTLs; fusarium head blight (FHB), 184 QTLs; karnal bunt (KB), 66 QTLs; and loose smut (LS), 14 QTLs. Of these 493 QTLs, only 291 QTLs could be projected onto a consensus genetic map, giving 63 MQTLs. The CI of the MQTLs ranged from 0.04 to 15.31 cM with an average of 3.09 cM per MQTL. This is a ~ 4.39 fold reduction from the CI of QTLs, which ranged from 0 to 197.6 cM, with a mean of 13.57 cM. Of 63 MQTLs, 60 were anchored to the reference physical map of wheat (the physical interval of these MQTLs ranged from 0.30 to 726.01 Mb with an average of 74.09 Mb). Thirty-eight (38) of these MQTLs were verified using marker-trait associations (MTAs) derived from genome-wide association studies. As many as 874 CGs were also identified which were further investigated for differential expression using data from five transcriptome studies, resulting in 194 differentially expressed candidate genes (DECGs). Among the DECGs, 85 genes had functions previously reported to be associated with disease resistance. These results should prove useful for fine mapping and cloning of MDR genes and marker-assisted breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01282-z.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Amneek Chahal
- College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant, University of Agriculture and Technology, Pantnagar, Uttrakhand-263145 India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| |
Collapse
|
3
|
Saini DK, Chopra Y, Singh J, Sandhu KS, Kumar A, Bazzer S, Srivastava P. Comprehensive evaluation of mapping complex traits in wheat using genome-wide association studies. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:1. [PMID: 37309486 PMCID: PMC10248672 DOI: 10.1007/s11032-021-01272-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) are effectively applied to detect the marker trait associations (MTAs) using whole genome-wide variants for complex quantitative traits in different crop species. GWAS has been applied in wheat for different quality, biotic and abiotic stresses, and agronomic and yield-related traits. Predictions for marker-trait associations are controlled with the development of better statistical models taking population structure and familial relatedness into account. In this review, we have provided a detailed overview of the importance of association mapping, population design, high-throughput genotyping and phenotyping platforms, advancements in statistical models and multiple threshold comparisons, and recent GWA studies conducted in wheat. The information about MTAs utilized for gene characterization and adopted in breeding programs is also provided. In the literature that we surveyed, as many as 86,122 wheat lines have been studied under various GWA studies reporting 46,940 loci. However, further utilization of these is largely limited. The future breakthroughs in area of genomic selection, multi-omics-based approaches, machine, and deep learning models in wheat breeding after exploring the complex genetic structure with the GWAS are also discussed. This is a most comprehensive study of a large number of reports on wheat GWAS and gives a comparison and timeline of technological developments in this area. This will be useful to new researchers or groups who wish to invest in GWAS.
Collapse
Affiliation(s)
- Dinesh K. Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Yuvraj Chopra
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
| | - Anand Kumar
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, 202002 India
| | - Sumandeep Bazzer
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
4
|
Centenary of Soil and Air Borne Wheat Karnal Bunt Disease Research: A Review. BIOLOGY 2021; 10:biology10111152. [PMID: 34827145 PMCID: PMC8615050 DOI: 10.3390/biology10111152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022]
Abstract
Karnal bunt (KB) of wheat (Triticum aestivum L.), known as partial bunt has its origin in Karnal, India and is caused by Tilletia indica (Ti). Its incidence had grown drastically since late 1960s from northwestern India to northern India in early 1970s. It is a seed, air and soil borne pathogen mainly affecting common wheat, durum wheat, triticale and other related species. The seeds become inedible, inviable and infertile with the precedence of trimethylamine secreted by teliospores in the infected seeds. Initially the causal pathogen was named Tilletia indica but was later renamed Neovossia indica. The black powdered smelly spores remain viable for years in soil, wheat straw and farmyard manure as primary sources of inoculum. The losses reported were as high as 40% in India and also the cumulative reduction of national farm income in USA was USD 5.3 billion due to KB. The present review utilizes information from literature of the past 100 years, since 1909, to provide a comprehensive and updated understanding of KB, its causal pathogen, biology, epidemiology, pathogenesis, etc. Next generation sequencing (NGS) is gaining popularity in revolutionizing KB genomics for understanding and improving agronomic traits like yield, disease tolerance and disease resistance. Genetic resistance is the best way to manage KB, which may be achieved through detection of genes/quantitative trait loci (QTLs). The genome-wide association studies can be applied to reveal the association mapping panel for understanding and obtaining the KB resistance locus on the wheat genome, which can be crossed with elite wheat cultivars globally for a diverse wheat breeding program. The review discusses the current NGS-based genomic studies, assembly, annotations, resistant QTLs, GWAS, technology landscape of diagnostics and management of KB. The compiled exhaustive information can be beneficial to the wheat breeders for better understanding of incidence of disease in endeavor of quality production of the crop.
Collapse
|
5
|
Shafqat N, Shahzad A, Shah SH, Mahmood Z, Sajid M, Ullah F, Islam M, Masood R, Jabeen N, Zubair K. Characterization of wheat-Thinopyrum bessarabicum genetic stock for stripe rust and Karnal bunt resistance. BRAZ J BIOL 2021; 83:e246440. [PMID: 34550282 DOI: 10.1590/1519-6984.246440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/24/2021] [Indexed: 11/21/2022] Open
Abstract
Utilization of modern breeding techniques for developing high yielding and uniform plant types ultimately narrowing the genetic makeup of most crops. Narrowed genetic makeup of these crops has made them vulnerable towards disease and insect epidemics. For sustainable crop production, genetic variability of these crops must be broadened against various biotic and abiotic stresses. One of the ways to widen genetic configuration of these crops is to identify novel additional sources of durable resistance. In this regard crops wild relatives are providing valuable sources of allelic diversity towards various biotic, abiotic stress tolerance and quality components. For incorporating novel variability from wild relative's wide hybridization technique has become a promising breeding method. For this purpose, wheat-Th. bessarabicum amphiploid, addition and translocation lines have been screened in field and screen house conditions to get novel sources of yellow rust and Karnal bunt resistant. Stripe rust screening under field conditions has revealed addition lines 4JJ and 6JJ as resistant to moderately resistant while addition lines 3JJ, 5JJ, 7JJ and translocation lines Tr-3, Tr-6 as moderately resistant wheat-Thinopyrum-bessarabicum genetic stock. Karnal bunt screening depicted addition lines 5JJ and 4JJ as highly resistant genetic stock. These genetic stocks may be used to introgression novel stripe rust and Karnal bunt resistance from the tertiary gene pool into susceptible wheat backgrounds.
Collapse
Affiliation(s)
- N Shafqat
- Hazara University, Department of Agriculture, Mansehra, Pakistan
| | - A Shahzad
- National Institute for Genomics and Advanced Biotechnology - NIGAB, National Agricultural Research Centre - NARC, Islamabad, Pakistan
| | - S H Shah
- Allama Iqbal Open University, Faculty of Sciences, Department of Agricultural Sciences, Islamabad, Pakistan
| | - Z Mahmood
- National Agricultural Research Centre - NARC, Wheat Program, Islamabad, Pakistan
| | - M Sajid
- Hazara University, Department of Agriculture, Mansehra, Pakistan
| | - F Ullah
- Hazara University, Department of Agriculture, Mansehra, Pakistan
| | - M Islam
- Hazara University Mansehra, Department of Genetics, Mansehra, Pakistan
| | - R Masood
- Hazara University Mansehra, Department of Botany, Mansehra, Pakistan
| | - N Jabeen
- Hazara University, Department of Agriculture, Mansehra, Pakistan
| | - K Zubair
- Hazara University Mansehra, Department of Genetics, Mansehra, Pakistan
| |
Collapse
|
6
|
Emebiri L, Hildebrand S, Tan MK, Juliana P, Singh PK, Fuentes-Davila G, Singh RP. Pre-emptive Breeding Against Karnal Bunt Infection in Common Wheat: Combining Genomic and Agronomic Information to Identify Suitable Parents. FRONTIERS IN PLANT SCIENCE 2021; 12:675859. [PMID: 34394138 PMCID: PMC8358121 DOI: 10.3389/fpls.2021.675859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Wheat (Triticum aestivum L.) is the most widely grown cereal crop in the world and is staple food to half the world's population. The current world population is expected to reach 9.8 billion people by 2050, but food production is not expected to keep pace with demand in developing countries. Significant opportunities exist for traditional grain exporters to produce and export greater amounts of wheat to fill the gap. Karnal bunt, however, is a major threat, due to its use as a non-tariff trade barrier by several wheat-importing countries. The cultivation of resistant varieties remains the most cost-effective approach to manage the disease, but in countries that are free of the disease, genetic improvement is difficult due to quarantine restrictions. Here we report a study on pre-emptive breeding designed to identify linked molecular markers, evaluate the prospects of genomic selection as a tool, and prioritise wheat genotypes suitable for use as parents. In a genome-wide association (GWAS) study, we identified six DArTseq markers significantly linked to Karnal bunt resistance, which explained between 7.6 and 29.5% of the observed phenotypic variation. The accuracy of genomic prediction was estimated to vary between 0.53 and 0.56, depending on whether it is based solely on the identified Quantitative trait loci (QTL) markers or the use of genome-wide markers. As genotypes used as parents would be required to possess good yield and phenology, further research was conducted to assess the agronomic value of Karnal bunt resistant germplasm from the International Maize and Wheat Improvement Center (CIMMYT). We identified an ideal genotype, ZVS13_385, which possessed similar agronomic attributes to the highly successful Australian wheat variety, Mace. It is phenotypically resistant to Karnal bunt infection (<1% infection) and carried all the favourable alleles detected for resistance in this study. The identification of a genotype combining Karnal bunt resistance with adaptive agronomic traits overcomes the concerns of breeders regarding yield penalty in the absence of the disease.
Collapse
Affiliation(s)
- Livinus Emebiri
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia
| | - Shane Hildebrand
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Mui-Keng Tan
- NSW Department of Primary Industries, Menangle, NSW, Australia
| | - Philomin Juliana
- International Maize and Wheat Improvement Center, Mexico City, Mexico
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center, Mexico City, Mexico
| | | | - Ravi P. Singh
- International Maize and Wheat Improvement Center, Mexico City, Mexico
| |
Collapse
|
7
|
Mores A, Borrelli GM, Laidò G, Petruzzino G, Pecchioni N, Amoroso LGM, Desiderio F, Mazzucotelli E, Mastrangelo AM, Marone D. Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies. Int J Mol Sci 2021; 22:5423. [PMID: 34063853 PMCID: PMC8196592 DOI: 10.3390/ijms22115423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Plant diseases are responsible for substantial crop losses each year and affect food security and agricultural sustainability. The improvement of crop resistance to pathogens through breeding represents an environmentally sound method for managing disease and minimizing these losses. The challenge is to breed varieties with a stable and broad-spectrum resistance. Different approaches, from markers to recent genomic and 'post-genomic era' technologies, will be reviewed in order to contribute to a better understanding of the complexity of host-pathogen interactions and genes, including those with small phenotypic effects and mechanisms that underlie resistance. An efficient combination of these approaches is herein proposed as the basis to develop a successful breeding strategy to obtain resistant crop varieties that yield higher in increasing disease scenarios.
Collapse
Affiliation(s)
- Antonia Mores
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Grazia Maria Borrelli
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Giovanni Laidò
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Giuseppe Petruzzino
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | | | - Francesca Desiderio
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (F.D.); (E.M.)
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (F.D.); (E.M.)
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Daniela Marone
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| |
Collapse
|
8
|
Singh S, Sehgal D, Kumar S, Arif MAR, Vikram P, Sansaloni CP, Fuentes-Dávila G, Ortiz C. GWAS revealed a novel resistance locus on chromosome 4D for the quarantine disease Karnal bunt in diverse wheat pre-breeding germplasm. Sci Rep 2020; 10:5999. [PMID: 32265455 PMCID: PMC7138846 DOI: 10.1038/s41598-020-62711-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/11/2020] [Indexed: 11/09/2022] Open
Abstract
This study was initiated to identify genomic regions conferring resistance to Karnal Bunt (KB) disease in wheat through a genome-wide association study (GWAS) on a set of 179 pre-breeding lines (PBLs). A GWAS of 6,382 high-quality DArTseq SNPs revealed 15 significant SNPs (P-value <10-3) on chromosomes 2D, 3B, 4D and 7B that were associated with KB resistance in individual years. In particular, two SNPs (chromosome 4D) had the maximum R2 values: SNP 1114200 | F | 0-63:T > C at 1.571 cM and R2 of 12.49% and SNP 1103052 | F | 0-61:C > A at 1.574 cM and R2 of 9.02%. These two SNPs displayed strong linkage disequilibrium (LD). An in silico analysis of SNPs on chromosome 4D identified two candidate gene hits, TraesCS4D02G352200 (TaNox8; an NADPH oxidase) and TraesCS4D02G350300 (a rhomboid-like protein belonging to family S54), with SNPs 1103052 | F | 0-61:C > A and 1101835 | F | 0-5:C > A, respectively, both of which function in biotic stress tolerance. The epistatic interaction analysis revealed significant interactions among 4D and 7B loci. A pedigree analysis of confirmed resistant PBLs revealed that Aegilops species is one of the parents and contributed the D genome in these resistant PBLs. These identified lines can be crossed with any elite cultivar across the globe to incorporate novel KB resistance identified on 4B.
Collapse
Affiliation(s)
- Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, Texcoco, C.P. 56237, México. .,Geneshifters, 222 Mary Jena Lane, Pullman, WA, 99163, USA.
| | - D Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, Texcoco, C.P. 56237, México
| | - S Kumar
- Centre of Excellence in Biotechnology, Anand Agricultural University (AAU), Anand, Gujarat, 388 110, India
| | - M A R Arif
- Nuclear Institute for Agriculture and Biology, Faislabad, 38000, Pakistan
| | - P Vikram
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, Texcoco, C.P. 56237, México
| | - C P Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, Texcoco, C.P. 56237, México
| | - G Fuentes-Dávila
- INIFAP-CIRNO, Campo Experimental Norman E. Borlaug, Apdo. Postal 155, Km 12 Norman E. Borlaug, Cd. Obregon, Sonora, CP 85000, Mexico
| | - C Ortiz
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, Texcoco, C.P. 56237, México
| |
Collapse
|
9
|
Bishnoi SK, He X, Phuke RM, Kashyap PL, Alakonya A, Chhokar V, Singh RP, Singh PK. Karnal Bunt: A Re-Emerging Old Foe of Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:569057. [PMID: 33133115 PMCID: PMC7550625 DOI: 10.3389/fpls.2020.569057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/09/2020] [Indexed: 05/18/2023]
Abstract
Wheat (Triticum aestivum L.) crop health assumes unprecedented significance in being the second most important staple crop of the world. It is host to an array of fungal pathogens attacking the plant at different developmental stages and accrues various degrees of yield losses owing to these. Tilletia indica that causes Karnal bunt (KB) disease in wheat is one such fungal pathogen of high quarantine importance restricting the free global trade of wheat besides the loss of grain yield as well as quality. With global climate change, the disease appears to be shifting from its traditional areas of occurrence with reports of increased vulnerabilities of new areas across the continents. This KB vulnerability of new geographies is of serious concern because once established, the disease is extremely difficult to eradicate and no known instance of its complete eradication using any management strategy has been reported yet. The host resistance to KB is the most successful as well as preferred strategy for its mitigation and control. However, breeding of KB resistant wheat cultivars has proven to be not so easy, and the low success rate owes to the scarcity of resistance sources, extremely laborious and regulated field screening protocols delaying identification/validation of putative resistance sources, and complex quantitative nature of resistance with multiple genes conferring only partial resistance. Moreover, given a lack of comprehensive understanding of the KB disease epidemiology, host-pathogen interaction, and pathogen evolution. Here, in this review, we attempt to summarize the progress made and efforts underway toward a holistic understanding of the disease itself with a specific focus on the host-pathogen interaction between T. indica and wheat as key elements in the development of resistant germplasm. In this context, we emphasize the tools and techniques being utilized in development of KB resistant germplasm by illuminating upon the genetics concerning the host responses to the KB pathogen including a future course. As such, this article could act as a one stop information primer on this economically important and re-emerging old foe threatening to cause devastating impacts on food security and well-being of communities that rely on wheat.
Collapse
Affiliation(s)
| | - Xinyao He
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | | | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Amos Alakonya
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Vinod Chhokar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | | | - Pawan Kumar Singh
- International Maize and Wheat Improvement Center, Texcoco, Mexico
- *Correspondence: Pawan Kumar Singh,
| |
Collapse
|
10
|
Genome Wide Association Study of Karnal Bunt Resistance in a Wheat Germplasm Collection from Afghanistan. Int J Mol Sci 2019; 20:ijms20133124. [PMID: 31247965 PMCID: PMC6651844 DOI: 10.3390/ijms20133124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 01/22/2023] Open
Abstract
Karnal bunt disease of wheat, caused by the fungus Neovossia indica, is one of the most important challenges to the grain industry as it affects the grain quality and also restricts the international movement of infected grain. It is a seed-, soil- and airborne disease with limited effect of chemical control. Currently, this disease is contained through the deployment of host resistance but further improvement is limited as only a few genotypes have been found to carry partial resistance. To identify genomic regions responsible for resistance in a set of 339 wheat accessions, genome-wide association study (GWAS) was undertaken using the DArTSeq® technology, in which 18 genomic regions for Karnal bunt resistance were identified, explaining 5–20% of the phenotypic variation. The identified quantitative trait loci (QTL) on chromosome 2BL showed consistently significant effects across all four experiments, whereas another QTL on 5BL was significant in three experiments. Additional QTLs were mapped on chromosomes 1DL, 2DL, 4AL, 5AS, 6BL, 6BS, 7BS and 7DL that have not been mapped previously, and on chromosomes 4B, 5AL, 5BL and 6BS, which have been reported in previous studies. Germplasm with less than 1% Karnal bunt infection have been identified and can be used for resistance breeding. The SNP markers linked to the genomic regions conferring resistance to Karnal bunt could be used to improve Karnal bunt resistance through marker-assisted selection.
Collapse
|