1
|
Ali B, Mary‐Huard T, Charcosset A, Moreau L, Rincent R. Improvement in genomic prediction of maize with prior gene ontology information depends on traits and environmental conditions. THE PLANT GENOME 2025; 18:e20553. [PMID: 39779652 PMCID: PMC11711123 DOI: 10.1002/tpg2.20553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Classical genomic prediction approaches rely on statistical associations between traits and markers rather than their biological significance. Biologically informed selection of genomic regions can help prioritize polymorphisms by considering underlying biological processes, making prediction models robust and accurate. Gene ontology (GO) terms can be used for this purpose, and the information can be integrated into genomic prediction models through marker categorization. It allows likely causal markers to account for a certain portion of genetic variance independently from the remaining markers. We systematically tested a list of 5110 GO terms for their predictive performance for physiological (platform traits) and productivity traits (field grain yield) in a maize (Zea mays L.) panel using genomic features best linear unbiased prediction (GFBLUP) model. Predictive abilities were compared to the classical genomic best linear unbiased prediction (GBLUP). Predictive gains with categorizing markers based on a given GO term strongly depend on the trait and on the growth conditions, as a term can be useful for a given trait in a given condition or somewhat similar conditions but not useful for the same trait in a different condition. Overall, results of all GFBLUP models compared to GBLUP show that the former might be less efficient than the latter. Even though we could not identify a prior criterion to determine which GO terms can offer benefit to a given trait, we could a posteriori find biological interpretations of the results, meaning that GFBLUP could be helpful if more about the gene functions and their relationships with the growth conditions was known.
Collapse
Affiliation(s)
- Baber Ali
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Tristan Mary‐Huard
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- MIA Paris‐Saclay, INRAE, AgroParisTechUniversité Paris‐SaclayPalaiseauFrance
| | - Alain Charcosset
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Laurence Moreau
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Renaud Rincent
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| |
Collapse
|
2
|
Bose S, Banerjee S, Kumar S, Saha A, Nandy D, Hazra S. Review of applications of artificial intelligence (AI) methods in crop research. J Appl Genet 2024; 65:225-240. [PMID: 38216788 DOI: 10.1007/s13353-023-00826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/14/2024]
Abstract
Sophisticated and modern crop improvement techniques can bridge the gap for feeding the ever-increasing population. Artificial intelligence (AI) refers to the simulation of human intelligence in machines, which refers to the application of computational algorithms, machine learning (ML) and deep learning (DL) techniques. This is aimed to generalise patterns and relationships from historical data, employing various mathematical optimisation techniques thus making prediction models for facilitating selection of superior genotypes. These techniques are less resource intensive and can solve the problem based on the analysis of large-scale phenotypic datasets. ML for genomic selection (GS) uses high-throughput genotyping technologies to gather genetic information on a large number of markers across the genome. The prediction of GS models is based on the mathematical relation between genotypic and phenotypic data from the training population. ML techniques have emerged as powerful tools for genome editing through analysing large-scale genomic data and facilitating the development of accurate prediction models. Precise phenotyping is a prerequisite to advance crop breeding for solving agricultural production-related issues. ML algorithms can solve this problem through generating predictive models, based on the analysis of large-scale phenotypic datasets. DL models also have the potential reliability of precise phenotyping. This review provides a comprehensive overview on various ML and DL models, their applications, potential to enhance the efficiency, specificity and safety towards advanced crop improvement protocols such as genomic selection, genome editing, along with phenotypic prediction to promote accelerated breeding.
Collapse
Affiliation(s)
- Suvojit Bose
- Department of Vegetables and Spice Crops, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, 736165, West Bengal, India
| | | | - Soumya Kumar
- School of Agricultural Sciences, JIS University, Kolkata, 700109, West Bengal, India
| | - Akash Saha
- School of Agricultural Sciences, JIS University, Kolkata, 700109, West Bengal, India
| | - Debalina Nandy
- School of Agricultural Sciences, JIS University, Kolkata, 700109, West Bengal, India
| | - Soham Hazra
- Department of Agriculture, Brainware University, Barasat, 700125, West Bengal, India.
| |
Collapse
|
3
|
Tanaka R, Wu D, Li X, Tibbs-Cortes LE, Wood JC, Magallanes-Lundback M, Bornowski N, Hamilton JP, Vaillancourt B, Li X, Deason NT, Schoenbaum GR, Buell CR, DellaPenna D, Yu J, Gore MA. Leveraging prior biological knowledge improves prediction of tocochromanols in maize grain. THE PLANT GENOME 2023; 16:e20276. [PMID: 36321716 DOI: 10.1002/tpg2.20276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
With an essential role in human health, tocochromanols are mostly obtained by consuming seed oils; however, the vitamin E content of the most abundant tocochromanols in maize (Zea mays L.) grain is low. Several large-effect genes with cis-acting variants affecting messenger RNA (mRNA) expression are mostly responsible for tocochromanol variation in maize grain, with other relevant associated quantitative trait loci (QTL) yet to be fully resolved. Leveraging existing genomic and transcriptomic information for maize inbreds could improve prediction when selecting for higher vitamin E content. Here, we first evaluated a multikernel genomic best linear unbiased prediction (MK-GBLUP) approach for modeling known QTL in the prediction of nine tocochromanol grain phenotypes (12-21 QTL per trait) within and between two panels of 1,462 and 242 maize inbred lines. On average, MK-GBLUP models improved predictive abilities by 7.0-13.6% when compared with GBLUP. In a second approach with a subset of 545 lines from the larger panel, the highest average improvement in predictive ability relative to GBLUP was achieved with a multi-trait GBLUP model (15.4%) that had a tocochromanol phenotype and transcript abundances in developing grain for a few large-effect candidate causal genes (1-3 genes per trait) as multiple response variables. Taken together, our study illustrates the enhancement of prediction models when informed by existing biological knowledge pertaining to QTL and candidate causal genes.
Collapse
Affiliation(s)
- Ryokei Tanaka
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Di Wu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Xiaowei Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | | | - Joshua C Wood
- Institute for Plant Breeding, Genetics & Genomics, Center for Applied Genetic Technologies, Dep. of Crop & Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | | | - Nolan Bornowski
- Dep. of Plant Biology, Michigan State Univ., East Lansing, MI, 48824, USA
| | - John P Hamilton
- Institute for Plant Breeding, Genetics & Genomics, Center for Applied Genetic Technologies, Dep. of Crop & Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Brieanne Vaillancourt
- Institute for Plant Breeding, Genetics & Genomics, Center for Applied Genetic Technologies, Dep. of Crop & Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Xianran Li
- USDA ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA, 99164, USA
| | - Nicholas T Deason
- Dep. of Biochemistry and Molecular Biology, Michigan State Univ., East Lansing, MI, 48824, USA
| | | | - C Robin Buell
- Institute for Plant Breeding, Genetics & Genomics, Center for Applied Genetic Technologies, Dep. of Crop & Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Dean DellaPenna
- Dep. of Biochemistry and Molecular Biology, Michigan State Univ., East Lansing, MI, 48824, USA
| | - Jianming Yu
- Dep. of Agronomy, Iowa State Univ., Ames, IA, 50011, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Gao L, Kantar MB, Moxley D, Ortiz-Barrientos D, Rieseberg LH. Crop adaptation to climate change: An evolutionary perspective. MOLECULAR PLANT 2023; 16:1518-1546. [PMID: 37515323 DOI: 10.1016/j.molp.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The disciplines of evolutionary biology and plant and animal breeding have been intertwined throughout their development, with responses to artificial selection yielding insights into the action of natural selection and evolutionary biology providing statistical and conceptual guidance for modern breeding. Here we offer an evolutionary perspective on a grand challenge of the 21st century: feeding humanity in the face of climate change. We first highlight promising strategies currently under way to adapt crops to current and future climate change. These include methods to match crop varieties with current and predicted environments and to optimize breeding goals, management practices, and crop microbiomes to enhance yield and sustainable production. We also describe the promise of crop wild relatives and recent technological innovations such as speed breeding, genomic selection, and genome editing for improving environmental resilience of existing crop varieties or for developing new crops. Next, we discuss how methods and theory from evolutionary biology can enhance these existing strategies and suggest novel approaches. We focus initially on methods for reconstructing the evolutionary history of crops and their pests and symbionts, because such historical information provides an overall framework for crop-improvement efforts. We then describe how evolutionary approaches can be used to detect and mitigate the accumulation of deleterious mutations in crop genomes, identify alleles and mutations that underlie adaptation (and maladaptation) to agricultural environments, mitigate evolutionary trade-offs, and improve critical proteins. Continuing feedback between the evolution and crop biology communities will ensure optimal design of strategies for adapting crops to climate change.
Collapse
Affiliation(s)
- Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michael B Kantar
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dylan Moxley
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences and Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Brzozowski LJ, Campbell MT, Hu H, Caffe M, Gutiérrez LA, Smith KP, Sorrells ME, Gore MA, Jannink JL. Generalizable approaches for genomic prediction of metabolites in plants. THE PLANT GENOME 2022; 15:e20205. [PMID: 35470586 DOI: 10.1002/tpg2.20205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Plant metabolites are important traits for plant breeders seeking to improve nutrition and agronomic performance yet integrating selection for metabolomic traits can be limited by phenotyping expense and degree of genetic characterization, especially of uncommon metabolites. As such, developing generalizable genomic selection methods based on biochemical pathway biology for metabolites that are transferable across plant populations would benefit plant breeding programs. We tested genomic prediction accuracy for >600 metabolites measured by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) in oat (Avena sativa L.) seed. Using a discovery germplasm panel, we conducted metabolite genome-wide association study (mGWAS) and selected loci to use in multikernel models that encompassed metabolome-wide mGWAS results or mGWAS from specific metabolite structures or biosynthetic pathways. Metabolite kernels developed from LC-MS metabolites in the discovery panel improved prediction accuracy of LC-MS metabolite traits in the validation panel consisting of more advanced breeding lines. No approach, however, improved prediction accuracy for GC-MS metabolites. We ranked model performance by metabolite and found that metabolites with similar polarity had consistent rankings of models. Overall, testing biological rationales for developing kernels for genomic prediction across populations contributes to developing frameworks for plant breeding for metabolite traits.
Collapse
Affiliation(s)
- Lauren J Brzozowski
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Malachy T Campbell
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Haixiao Hu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Melanie Caffe
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57006, USA
| | - Lucı A Gutiérrez
- Dep. of Agronomy, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kevin P Smith
- Dep. of Agronomy & Plant Genetics, Univ. of Minnesota, St. Paul, MN, 55108, USA
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Jean-Luc Jannink
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
6
|
Angelovici R, Kliebenstein D. A plant balancing act: Meshing new and existing metabolic pathways towards an optimized system. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102173. [PMID: 35144143 DOI: 10.1016/j.pbi.2022.102173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Specialized metabolic pathways evolve from existing pathways, creating new functionality potentially boosting fitness. However, how these pathways are integrated into a pre-existing working and well-balanced metabolic system is unclear. They could be integrated to the system as a functional appendage, or they could be fully embedded into primary metabolism by establishing new biochemical and regulatory connections. A full integration into the primary metabolic system requires substantial system re-wiring and because of this complexity, the latter is often not experimentally pursued. New studies provide evidence that some specialized metabolic pathways are fully embedded in primary metabolism with extensive new regulatory and biochemical connections. This suggests, that we should consider whether other specialized metabolic pathways could be fully integrated rather than being simple appendages. In this mini review, we survey compelling evidence supporting that some specialized metabolic pathways are fully integrated and ask if these metabolites now act as de-facto primary metabolites?
Collapse
Affiliation(s)
- Ruthie Angelovici
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Dan Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA; DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
7
|
Rice BR, Lipka AE. Diversifying maize genomic selection models. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:33. [PMID: 37309328 PMCID: PMC10236107 DOI: 10.1007/s11032-021-01221-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/07/2021] [Indexed: 06/14/2023]
Abstract
Genomic selection (GS) is one of the most powerful tools available for maize breeding. Its use of genome-wide marker data to estimate breeding values translates to increased genetic gains with fewer breeding cycles. In this review, we cover the history of GS and highlight particular milestones during its adaptation to maize breeding. We discuss how GS can be applied to developing superior maize inbreds and hybrids. Additionally, we characterize refinements in GS models that could enable the encapsulation of non-additive genetic effects, genotype by environment interactions, and multiple levels of the biological hierarchy, all of which could ultimately result in more accurate predictions of breeding values. Finally, we suggest the stages in a maize breeding program where it would be beneficial to apply GS. Given the current sophistication of high-throughput phenotypic, genotypic, and other -omic level data currently available to the maize community, now is the time to explore the implications of their incorporation into GS models and thus ensure that genetic gains are being achieved as quickly and efficiently as possible.
Collapse
Affiliation(s)
- Brian R. Rice
- Department of Crop Sciences, University of Illinois, Urbana, IL USA
| | | |
Collapse
|
8
|
Campbell MT, Hu H, Yeats TH, Brzozowski LJ, Caffe-Treml M, Gutiérrez L, Smith KP, Sorrells ME, Gore MA, Jannink JL. Improving Genomic Prediction for Seed Quality Traits in Oat (Avena sativa L.) Using Trait-Specific Relationship Matrices. Front Genet 2021; 12:643733. [PMID: 33868378 PMCID: PMC8044359 DOI: 10.3389/fgene.2021.643733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
The observable phenotype is the manifestation of information that is passed along different organization levels (transcriptional, translational, and metabolic) of a biological system. The widespread use of various omic technologies (RNA-sequencing, metabolomics, etc.) has provided plant genetics and breeders with a wealth of information on pertinent intermediate molecular processes that may help explain variation in conventional traits such as yield, seed quality, and fitness, among others. A major challenge is effectively using these data to help predict the genetic merit of new, unobserved individuals for conventional agronomic traits. Trait-specific genomic relationship matrices (TGRMs) model the relationships between individuals using genome-wide markers (SNPs) and place greater emphasis on markers that most relevant to the trait compared to conventional genomic relationship matrices. Given that these approaches define relationships based on putative causal loci, it is expected that these approaches should improve predictions for related traits. In this study we evaluated the use of TGRMs to accommodate information on intermediate molecular phenotypes (referred to as endophenotypes) and to predict an agronomic trait, total lipid content, in oat seed. Nine fatty acids were quantified in a panel of 336 oat lines. Marker effects were estimated for each endophenotype, and were used to construct TGRMs. A multikernel TRGM model (MK-TRGM-BLUP) was used to predict total seed lipid content in an independent panel of 210 oat lines. The MK-TRGM-BLUP approach significantly improved predictions for total lipid content when compared to a conventional genomic BLUP (gBLUP) approach. Given that the MK-TGRM-BLUP approach leverages information on the nine fatty acids to predict genetic values for total lipid content in unobserved individuals, we compared the MK-TGRM-BLUP approach to a multi-trait gBLUP (MT-gBLUP) approach that jointly fits phenotypes for fatty acids and total lipid content. The MK-TGRM-BLUP approach significantly outperformed MT-gBLUP. Collectively, these results highlight the utility of using TGRM to accommodate information on endophenotypes and improve genomic prediction for a conventional agronomic trait.
Collapse
Affiliation(s)
- Malachy T. Campbell
- Plant Breeding & Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Haixiao Hu
- Plant Breeding & Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Trevor H. Yeats
- Plant Breeding & Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Lauren J. Brzozowski
- Plant Breeding & Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Melanie Caffe-Treml
- Seed Technology Lab 113, Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Lucía Gutiérrez
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin P. Smith
- Department of Agronomy & Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Mark E. Sorrells
- Plant Breeding & Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Michael A. Gore
- Plant Breeding & Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Jean-Luc Jannink
- Plant Breeding & Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- R.W. Holley Center for Agriculture & Health, US Department of Agriculture, Agricultural Research Service, Ithaca, NY, United States
| |
Collapse
|
9
|
Campbell MT, Hu H, Yeats TH, Caffe-Treml M, Gutiérrez L, Smith KP, Sorrells ME, Gore MA, Jannink JL. Translating insights from the seed metabolome into improved prediction for lipid-composition traits in oat (Avena sativa L.). Genetics 2021; 217:iyaa043. [PMID: 33789350 PMCID: PMC8045723 DOI: 10.1093/genetics/iyaa043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Oat (Avena sativa L.) seed is a rich resource of beneficial lipids, soluble fiber, protein, and antioxidants, and is considered a healthful food for humans. Little is known regarding the genetic controllers of variation for these compounds in oat seed. We characterized natural variation in the mature seed metabolome using untargeted metabolomics on 367 diverse lines and leveraged this information to improve prediction for seed quality traits. We used a latent factor approach to define unobserved variables that may drive covariance among metabolites. One hundred latent factors were identified, of which 21% were enriched for compounds associated with lipid metabolism. Through a combination of whole-genome regression and association mapping, we show that latent factors that generate covariance for many metabolites tend to have a complex genetic architecture. Nonetheless, we recovered significant associations for 23% of the latent factors. These associations were used to inform a multi-kernel genomic prediction model, which was used to predict seed lipid and protein traits in two independent studies. Predictions for 8 of the 12 traits were significantly improved compared to genomic best linear unbiased prediction when this prediction model was informed using associations from lipid-enriched factors. This study provides new insights into variation in the oat seed metabolome and provides genomic resources for breeders to improve selection for health-promoting seed quality traits. More broadly, we outline an approach to distill high-dimensional "omics" data to a set of biologically meaningful variables and translate inferences on these data into improved breeding decisions.
Collapse
Affiliation(s)
- Malachy T Campbell
- Plant Breeding & Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Haixiao Hu
- Plant Breeding & Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Trevor H Yeats
- Plant Breeding & Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Melanie Caffe-Treml
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD 57007, USA
| | - Lucía Gutiérrez
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin P Smith
- Department of Agronomy & Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Mark E Sorrells
- Plant Breeding & Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Michael A Gore
- Plant Breeding & Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jean-Luc Jannink
- Plant Breeding & Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- R.W. Holley Center for Agriculture & Health US Department of Agriculture, Agricultural Research Service, Ithaca, NY 14853, USA
| |
Collapse
|