1
|
Nestor BJ, Bird T, Severn-Ellis AA, Bayer PE, Ranathunge K, Prodhan MA, Dassanayake M, Batley J, Edwards D, Lambers H, Finnegan PM. Identification and expression analysis of Phosphate Transporter 1 (PHT1) genes in the highly phosphorus-use-efficient Hakea prostrata (Proteaceae). PLANT, CELL & ENVIRONMENT 2024; 47:5021-5038. [PMID: 39136390 DOI: 10.1111/pce.15088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/10/2024] [Accepted: 08/02/2024] [Indexed: 11/06/2024]
Abstract
Heavy and costly use of phosphorus (P) fertiliser is often needed to achieve high crop yields, but only a small amount of applied P fertiliser is available to most crop plants. Hakea prostrata (Proteaceae) is endemic to the P-impoverished landscape of southwest Australia and has several P-saving traits. We identified 16 members of the Phosphate Transporter 1 (PHT1) gene family (HpPHT1;1-HpPHT1;12d) in a long-read genome assembly of H. prostrata. Based on phylogenetics, sequence structure and expression patterns, we classified HpPHT1;1 as potentially involved in Pi uptake from soil and HpPHT1;8 and HpPHT1;9 as potentially involved in Pi uptake and root-to-shoot translocation. Three genes, HpPHT1;4, HpPHT1;6 and HpPHT1;8, lacked regulatory PHR1-binding sites (P1BS) in the promoter regions. Available expression data for HpPHT1;6 and HpPHT1;8 indicated they are not responsive to changes in P supply, potentially contributing to the high P sensitivity of H. prostrata. We also discovered a Proteaceae-specific clade of closely-spaced PHT1 genes that lacked conserved genetic architecture among genera, indicating an evolutionary hot spot within the genome. Overall, the genome assembly of H. prostrata provides a much-needed foundation for understanding the genetic mechanisms of novel adaptations to low P soils in southwest Australian plants.
Collapse
Affiliation(s)
- Benjamin J Nestor
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Centre for Applied Bioinformatics, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Toby Bird
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Anita A Severn-Ellis
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Centre for Applied Bioinformatics, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - M Asaduzzaman Prodhan
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Centre for Applied Bioinformatics, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Centre for Applied Bioinformatics, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Centre for Applied Bioinformatics, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Liu C, Wu P, Wu X, Zhao X, Chen F, Cheng X, Zhu H, Wang O, Xu M. AsmMix: an efficient haplotype-resolved hybrid de novo genome assembling pipeline. Front Genet 2024; 15:1421565. [PMID: 39130747 PMCID: PMC11310137 DOI: 10.3389/fgene.2024.1421565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Accurate haplotyping facilitates distinguishing allele-specific expression, identifying cis-regulatory elements, and characterizing genomic variations, which enables more precise investigations into the relationship between genotype and phenotype. Recent advances in third-generation single-molecule long read and synthetic co-barcoded read sequencing techniques have harnessed long-range information to simplify the assembly graph and improve assembly genomic sequence. However, it remains methodologically challenging to reconstruct the complete haplotypes due to high sequencing error rates of long reads and limited capturing efficiency of co-barcoded reads. We here present a pipeline, AsmMix, for generating both contiguous and accurate diploid genomes. It first assembles co-barcoded reads to generate accurate haplotype-resolved assemblies that may contain many gaps, while the long-read assembly is contiguous but susceptible to errors. Then two assembly sets are integrated into haplotype-resolved assemblies with reduced misassembles. Through extensive evaluation on multiple synthetic datasets, AsmMix consistently demonstrates high precision and recall rates for haplotyping across diverse sequencing platforms, coverage depths, read lengths, and read accuracies, significantly outperforming other existing tools in the field. Furthermore, we validate the effectiveness of our pipeline using a human whole genome dataset (HG002), and produce highly contiguous, accurate, and haplotype-resolved assemblies. These assemblies are evaluated using the GIAB benchmarks, confirming the accuracy of variant calling. Our results demonstrate that AsmMix offers a straightforward yet highly efficient approach that effectively leverages both long reads and co-barcoded reads for haplotype-resolved assembly.
Collapse
Affiliation(s)
- Chao Liu
- BGI, Tianjin, China
- BGI Research, Shenzhen, China
| | - Pei Wu
- BGI, Tianjin, China
- BGI Research, Shenzhen, China
| | - Xue Wu
- BGI Research, Shenzhen, China
| | | | | | | | - Hongmei Zhu
- BGI, Tianjin, China
- BGI Research, Shenzhen, China
| | - Ou Wang
- BGI Research, Shenzhen, China
| | - Mengyang Xu
- BGI Research, Shenzhen, China
- BGI Research, Qingdao, China
| |
Collapse
|
3
|
Tan Q, Huan X, Pan Z, Yang X, Wei Y, Zhou C, Wang W, Wang L. Comparative Transcriptome Analysis Reveals Key Functions of MiMYB Gene Family in Macadamia Nut Pericarp Formation. Int J Mol Sci 2024; 25:6840. [PMID: 38999950 PMCID: PMC11241416 DOI: 10.3390/ijms25136840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Macadamia nuts are one of the most important economic food items in the world. Pericarp thickness and flavonoid composition are the key quality traits of Macadamia nuts, but the underlying mechanism of pericarp formation is still unknown. In this study, three varieties with significantly different pericarp thicknesses, namely, A38, Guire No.1, and HAES 900, at the same stage of maturity, were used for transcriptome analysis, and the results showed that there were significant differences in their gene expression profile. A total of 3837 new genes were discovered, of which 1532 were functionally annotated. The GO, COG, and KEGG analysis showed that the main categories in which there were significant differences were flavonoid biosynthesis, phenylpropanoid biosynthesis, and the cutin, suberine, and wax biosynthesis pathways. Furthermore, 63 MiMYB transcription factors were identified, and 56 R2R3-MYB transcription factors were clustered into different subgroups compared with those in Arabidopsis R2R3-MYB. Among them, the S4, S6, and S7 subgroups were involved in flavonoid biosynthesis and pericarp formation. A total of 14 MiMYBs' gene expression were verified by RT-qPCR analysis. These results provide fundamental knowledge of the pericarp formation regulatory mechanism in macadamia nuts.
Collapse
Affiliation(s)
- Qiujin Tan
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China; (Q.T.)
| | - Xiuju Huan
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China; (Q.T.)
| | - Zhenzhen Pan
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China; (Q.T.)
| | - Xiaozhou Yang
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China; (Q.T.)
| | - Yuanrong Wei
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China; (Q.T.)
| | - Chunheng Zhou
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China; (Q.T.)
| | - Wenlin Wang
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China; (Q.T.)
| | - Lifeng Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
4
|
Tan Q, Zhou C, Xu P, Huang X, Pan Z, Wei Y, Wang W, Wang L. Effects of Substrate Composition on the Growth Traits of Grafted Seedling in Macadamia ( Macadamia integrifolia) Nuts. PLANTS (BASEL, SWITZERLAND) 2024; 13:1700. [PMID: 38931133 PMCID: PMC11207545 DOI: 10.3390/plants13121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Macadamia nut plantings in China are expanding year by year. In order to breed and promote superior varieties, this study analyzed the effects of different rootstocks and scions on the survival rate of grafted seedlings, and then selected the best substrate composition for plant growth. The results showed that the survival rate of the HAES788 variety as rootstock and Guire No. 1 as scion was the highest, reaching 96%. The optimal grafting time in December was better than that in March. Furthermore, among 16 substrate formulations, T12, T13, T15, and T16 had advantages of agglomerated soil and more well-developed root systems compared to the CK made of loess. The plant height, stem diameter, leaf length, leaf width, and dry weight of the aboveground and underground parts of the grafted seedlings planted in these substrate formulations were significantly higher than those plants planted in the CK. In addition, the substrate formulations T12, T13, T15, and T16 significantly improved the organic matter, total nitrogen, and total potassium content of the substrate soils, but little improvement was observed for total phosphorus content after 13 months. Overall, macadamia grafting times are best in December, with HAES788 and Guire No. 1 being the best rootstock and scion. The optimal substrate formulations are T12, T13, T15, and T16. This study provides a solid foundation for the production of high-quality macadamia plants.
Collapse
Affiliation(s)
- Qiujin Tan
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China (X.H.)
| | - Chunheng Zhou
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China (X.H.)
| | - Peng Xu
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China (X.H.)
| | - Xiyun Huang
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China (X.H.)
| | - Zhenzhen Pan
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China (X.H.)
| | - Yuanrong Wei
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China (X.H.)
| | - Wenlin Wang
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China (X.H.)
| | - Lifeng Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
5
|
McCartney AM, Koot E, Prebble JM, Jibran R, Mitchell C, Podolyan A, Fergus AJ, Arnst E, Herron KE, Houliston G, Buckley TR, Chagné D. A population genomics analysis of the Aotearoa New Zealand endemic rewarewa tree (Knightia excelsa). NPJ BIODIVERSITY 2024; 3:7. [PMID: 39242911 PMCID: PMC11332057 DOI: 10.1038/s44185-024-00038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/23/2024] [Indexed: 09/09/2024]
Abstract
Rewarewa (Knightia excelsa, Proteaceae) is a tree species endemic to Aotearoa New Zealand, with a natural distribution spanning Te Ika-a-Māui (North Island) and the top of Te Waipounamu (South Island). We used the pseudo-chromosome genome assembly of rewarewa as a reference and whole genome pooled sequencing from 35 populations sampled across Aotearoa New Zealand, including trees growing on Māori-owned land, to identify 1,443,255 single nucleotide polymorphisms (SNPs). Four genetic clusters located in the northern North Island (NNI), eastern North Island (NIE), western and southern North Island (NIWS), and the South Island (SI) were identified. Gene flow was revealed between the SI and NIE genetic clusters, plus bottleneck and contraction events within the genetic clusters since the mid-late Pleistocene, with divergence between North and South Island clusters estimated to have occurred ~115,000-230,000 years ago. Genotype environment analysis (GEA) was used to identify loci and genes linked with altitude, soil pH, soil carbon, slope, soil size, annual mean temperature, mean diurnal range, isothermality, annual precipitation, and precipitation seasonality. The location of the SNPs associated with these environmental variables was compared with the position of 52,192 gene-coding sequences that were predicted in the rewarewa genome using RNA sequencing. This new understanding of the genetic variation present in rewarewa and insights into the genetic control of adaptive traits will inform efforts to incorporate the species in restoration plantings and for marketing rewarewa honey based on provenance.
Collapse
Grants
- C09X1806 Ministry of Business, Innovation and Employment
- C09X1806 Ministry of Business, Innovation and Employment
- C09X1806 Ministry of Business, Innovation and Employment
- C09X1806 Ministry of Business, Innovation and Employment
- C09X1806 Ministry of Business, Innovation and Employment
- C09X1806 Ministry of Business, Innovation and Employment
- C09X1806 Ministry of Business, Innovation and Employment
- C09X1806 Ministry of Business, Innovation and Employment
- C09X1806 Ministry of Business, Innovation and Employment
- C09X1806 Ministry of Business, Innovation and Employment
Collapse
Affiliation(s)
- Ann M McCartney
- Manaaki Whenua - Landcare Research, 231 Morrin Road, Saint Johns, Auckland, 1072, New Zealand
- Genomics Aotearoa, Aotearoa, New Zealand
- Genomics Institute, University of California, Santa Cruz, CA, 95060, USA
| | - Emily Koot
- Genomics Aotearoa, Aotearoa, New Zealand
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Batchelar Road, Fitzherbert, Palmerston North, 4474, New Zealand
| | - Jessica M Prebble
- Manaaki Whenua - Landcare Research, 54 Gerald Street, Lincoln, 7608, New Zealand
| | - Rubina Jibran
- Plant & Food Research, 120 Mt Albert Road, Sandringham, Auckland, 1025, New Zealand
| | - Caroline Mitchell
- Manaaki Whenua - Landcare Research, 54 Gerald Street, Lincoln, 7608, New Zealand
| | - Ana Podolyan
- Manaaki Whenua - Landcare Research, 54 Gerald Street, Lincoln, 7608, New Zealand
| | - Alexander J Fergus
- Manaaki Whenua - Landcare Research, 54 Gerald Street, Lincoln, 7608, New Zealand
| | - Elise Arnst
- Manaaki Whenua - Landcare Research, 54 Gerald Street, Lincoln, 7608, New Zealand
| | - Katie E Herron
- School of Biology and Environmental Science, University College, Dublin, Ireland
| | - Gary Houliston
- Manaaki Whenua - Landcare Research, 54 Gerald Street, Lincoln, 7608, New Zealand
| | - Thomas R Buckley
- Manaaki Whenua - Landcare Research, 231 Morrin Road, Saint Johns, Auckland, 1072, New Zealand
- Genomics Aotearoa, Aotearoa, New Zealand
| | - David Chagné
- Genomics Aotearoa, Aotearoa, New Zealand.
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Batchelar Road, Fitzherbert, Palmerston North, 4474, New Zealand.
| |
Collapse
|
6
|
Yang J, Ning C, Liu Z, Zheng C, Mao Y, Wu Q, Wang D, Liu M, Zhou S, Yang L, He L, Liu Y, He C, Chen J, Liu J. Genome-Wide Characterization of PEBP Gene Family and Functional Analysis of TERMINAL FLOWER 1 Homologs in Macadamia integrifolia. PLANTS (BASEL, SWITZERLAND) 2023; 12:2692. [PMID: 37514306 PMCID: PMC10385423 DOI: 10.3390/plants12142692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Edible Macadamia is one of the most important commercial nut trees cultivated in many countries, but its large tree size and long juvenile period pose barriers to commercial cultivation. The short domestication period and well-annotated genome of Macadamia integrifolia create great opportunities to breed commercial varieties with superior traits. Recent studies have shown that members of the phosphatidylethanolamine binding protein (PEBP) family play pivotal roles in regulating plant architecture and flowering time in various plants. In this study, thirteen members of MiPEBP were identified in the genome of M. integrifolia, and they are highly similarity in both motif and gene structure. A phylogenetic analysis divided the MiPEBP genes into three subfamilies: MFT-like, FT-like and TFL1-like. We subsequently identified two TERMINAL FLOWER 1 homologues from the TFL1-like subfamily, MiTFL1 and MiTFL1-like, both of which were highly expressed in stems and vegetative shoots, while MiTFL1-like was highly expressed in young leaves and early flowers. A subcellular location analysis revealed that both MiTFL1 and MiTFL1-like are localized in the cytoplasm and nucleus. The ectopic expression of MiTFL1 can rescue the early-flowering and terminal-flower phenotypes in the tfl1-14 mutant of Arabidopsis thaliana, and it indicates the conserved functions in controlling the inflorescence architecture and flowering time. This study will provide insight into the isolation of PEBP family members and the key targets for breeding M. integrifolia with improved traits in plant architecture and flowering time.
Collapse
Affiliation(s)
- Jing Yang
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Conghui Ning
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Ziyan Liu
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| | - Cheng Zheng
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Mingli Liu
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Liling Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Chengzhong He
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| |
Collapse
|
7
|
Wang P, Mo Y, Wang Y, Fei Y, Huang J, Ni J, Xu ZF. Macadamia germplasm and genomic database (MacadamiaGGD): A comprehensive platform for germplasm innovation and functional genomics in Macadamia. FRONTIERS IN PLANT SCIENCE 2022; 13:1007266. [PMID: 36388568 PMCID: PMC9646992 DOI: 10.3389/fpls.2022.1007266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
As an important nut crop species, macadamia continues to gain increased amounts of attention worldwide. Nevertheless, with the vast increase in macadamia omic data, it is becoming difficult for researchers to effectively process and utilize the information. In this work, we developed the first integrated germplasm and genomic database for macadamia (MacadamiaGGD), which includes five genomes of four species; three chloroplast and mitochondrial genomes; genome annotations; transcriptomic data for three macadamia varieties, germplasm data for four species and 262 main varieties; nine genetic linkage maps; and 35 single-nucleotide polymorphisms (SNPs). The database serves as a valuable collection of simple sequence repeat (SSR) markers, including both markers that are based on macadamia genomic sequences and developed in this study and markers developed previously. MacadamiaGGD is also integrated with multiple bioinformatic tools, such as search, JBrowse, BLAST, primer designer, sequence fetch, enrichment analysis, multiple sequence alignment, genome alignment, and gene homology annotation, which allows users to conveniently analyze their data of interest. MacadamiaGGD is freely available online (http://MacadamiaGGD.net). We believe that the database and additional information of the SSR markers can help scientists better understand the genomic sequence information of macadamia and further facilitate molecular breeding efforts of this species.
Collapse
Affiliation(s)
- Pan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, China
| | - Yi Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, China
| | - Yuchong Fei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, China
| | - Jianting Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, China
| | - Jun Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Teng J, Wang J, Zhang L, Wei C, Shen S, Xiao Q, Yue Y, Hao Y, Ge W, Wang J. Paleopolyploidies and Genomic Fractionation in Major Eudicot Clades. FRONTIERS IN PLANT SCIENCE 2022; 13:883140. [PMID: 35712579 PMCID: PMC9194900 DOI: 10.3389/fpls.2022.883140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Eudicots account for ~75% of living angiosperms, containing important food and energy crops. Recently, high-quality genome sequences of several eudicots including Aquilegia coerulea and Nelumbo nucifera have become available, providing an opportunity to investigate the early evolutionary characteristics of eudicots. We performed genomic hierarchical and event-related alignments to infer homology within and between representative species of eudicots. The results provide strong evidence for multiple independent polyploidization events during the early diversification of eudicots, three of which are likely to be allopolyploids: The core eudicot-common hexaploidy (ECH), Nelumbo-specific tetraploidy (NST), and Ranunculales-common tetraploidy (RCT). Using different genomes as references, we constructed genomic alignment to list the orthologous and paralogous genes produced by polyploidization and speciation. This could provide a fundamental framework for studying other eudicot genomes and gene(s) evolution. Further, we revealed significantly divergent evolutionary rates among these species. By performing evolutionary rate correction, we dated RCT to be ~118-134 million years ago (Mya), after Ranunculales diverged with core eudicots at ~123-139 Mya. Moreover, we characterized genomic fractionation resulting from gene loss and retention after polyploidizations. Notably, we revealed a high degree of divergence between subgenomes. In particular, synonymous nucleotide substitutions at synonymous sites (Ks) and phylogenomic analyses implied that A. coerulea might provide the subgenome(s) for the gamma-hexaploid hybridization.
Collapse
Affiliation(s)
- Jia Teng
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Jianyu Wang
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Lan Zhang
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Chendan Wei
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Shaoqi Shen
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Qimeng Xiao
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Yuanshuai Yue
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Yanan Hao
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Weina Ge
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Jinpeng Wang
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing, China
| |
Collapse
|
9
|
Paudel L, Kerr S, Prentis P, Tanurdžić M, Papanicolaou A, Plett JM, Cazzonelli CI. Horticultural innovation by viral-induced gene regulation of carotenogenesis. HORTICULTURE RESEARCH 2022; 9:uhab008. [PMID: 35043183 PMCID: PMC8769041 DOI: 10.1093/hr/uhab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
Multipartite viral vectors provide a simple, inexpensive and effective biotechnological tool to transiently manipulate (i.e. reduce or increase) gene expression in planta and characterise the function of genetic traits. The development of virus-induced gene regulation (VIGR) systems usually involve the targeted silencing or overexpression of genes involved in pigment biosynthesis or degradation in plastids, thereby providing rapid visual assessment of success in establishing RNA- or DNA-based VIGR systems in planta. Carotenoids pigments provide plant tissues with an array of yellow, orange, and pinkish-red colours. VIGR-induced transient manipulation of carotenoid-related gene expression has advanced our understanding of carotenoid biosynthesis, regulation, accumulation and degradation, as well as plastid signalling processes. In this review, we describe mechanisms of VIGR, the importance of carotenoids as visual markers of technology development, and knowledge gained through manipulating carotenogenesis in model plants as well as horticultural crops not always amenable to transgenic approaches. We outline how VIGR can be utilised in plants to fast-track the characterisation of gene function(s), accelerate fruit tree breeding programs, edit genomes, and biofortify plant products enriched in carotenoid micronutrients for horticultural innovation.
Collapse
Affiliation(s)
- Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Stephanie Kerr
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Peter Prentis
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
10
|
Chen SH, Rossetto M, van der Merwe M, Lu-Irving P, Yap JYS, Sauquet H, Bourke G, Amos TG, Bragg JG, Edwards RJ. Chromosome-level de novo genome assembly of Telopea speciosissima (New South Wales waratah) using long-reads, linked-reads and Hi-C. Mol Ecol Resour 2022; 22:1836-1854. [PMID: 35016262 DOI: 10.1111/1755-0998.13574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022]
Abstract
Telopea speciosissima, the New South Wales waratah, is an Australian endemic woody shrub in the family Proteaceae. Waratahs have great potential as a model clade to better understand processes of speciation, introgression and adaptation, and are significant from a horticultural perspective. Here, we report the first chromosome-level genome for T. speciosissima. Combining Oxford Nanopore long-reads, 10x Genomics Chromium linked-reads and Hi-C data, the assembly spans 823 Mb (scaffold N50 of 69.0 Mb) with 97.8% of Embryophyta BUSCOs "Complete". We present a new method in Diploidocus (https://github.com/slimsuite/diploidocus) for classifying, curating and QC-filtering scaffolds, which combines read depths, k-mer frequencies and BUSCO predictions. We also present a new tool, DepthSizer (https://github.com/slimsuite/depthsizer), for genome size estimation from the read depth of single-copy orthologues and estimate the genome size to be approximately 900 Mb. The largest 11 scaffolds contained 94.1% of the assembly, conforming to the expected number of chromosomes (2n = 22). Genome annotation predicted 40,158 protein-coding genes, 351 rRNAs and 728 tRNAs. We investigated CYCLOIDEA (CYC) genes, which have a role in determination of floral symmetry, and confirm the presence of two copies in the genome. Read depth analysis of 180 "Duplicated" BUSCO genes using a new tool, DepthKopy (https://github.com/slimsuite/depthkopy), suggests almost all are real duplications, increasing confidence in the annotation and highlighting a possible need to revise the BUSCO set for this lineage. The chromosome-level T. speciosissima reference genome (Tspe_v1) provides an important new genomic resource of Proteaceae to support the conservation of flora in Australia and further afield.
Collapse
Affiliation(s)
- Stephanie H Chen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales, Australia.,Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, New South Wales, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, New South Wales, Australia.,Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia
| | - Marlien van der Merwe
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, New South Wales, Australia
| | - Patricia Lu-Irving
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, New South Wales, Australia
| | - Jia-Yee S Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, New South Wales, Australia.,Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales, Australia.,School of Biological, Earth and Environmental Sciences, UNSW Sydney, New South Wales, Australia
| | - Greg Bourke
- Blue Mountains Botanic Garden, Mount Tomah, New South Wales, Australia
| | - Timothy G Amos
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jason G Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, New South Wales, Australia.,School of Biological, Earth and Environmental Sciences, UNSW Sydney, New South Wales, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
11
|
Signatures of selection in recently domesticated macadamia. Nat Commun 2022; 13:242. [PMID: 35017544 PMCID: PMC8752631 DOI: 10.1038/s41467-021-27937-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Macadamia is a high value nut crop that is recently domesticated, ideal for testing the effect of artificial selection. Here, we sequence the genome of Hawaiian cultivar ‘Kau’ and assemble into 794 Mb in 14 pseudo-chromosomes with 37,728 genes. Genome analysis reveals a whole-genome duplication event, occurred 46.8 million years ago. Gene expansions occurred in gene families involves in fatty acid biosynthesis. Gene duplication of MADS-Box transcription factors in proanthocyanidin biosynthesis are relevant for seed coat development. Genome re-sequencing of 112 accessions reveals the origin of Hawaiian cultivars from Mount Bauple in southeast Queensland in Australia. Selective sweeps are detected in macadamia cultivars, including genes involved in fatty acid biosynthesis, seed coat development, and heat stress response. Such strong effects of artificial selection in few generations reveals the genomic basis for ‘one-step operation’ for clonal crop domestication. The knowledge gained could accelerate domestication of new crops from wild species. Macadamia is a recently domesticated nut crop. Here, the authors report the genome assembly of Hawaiian cultivar ‘Kau’ and conduct population genomic analyses to reveal the origin of Hawaiian cultivars and the genomic basis for one-step operation for the clonal crop domestication.
Collapse
|
12
|
Sharma P, Murigneux V, Haimovitz J, Nock CJ, Tian W, Kharabian Masouleh A, Topp B, Alam M, Furtado A, Henry RJ. The genome of the endangered Macadamia jansenii displays little diversity but represents an important genetic resource for plant breeding. PLANT DIRECT 2021; 5:e364. [PMID: 34938939 DOI: 10.1101/2021.09.08/459545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/28/2023]
Abstract
Macadamia, a recently domesticated expanding nut crop in the tropical and subtropical regions of the world, is one of the most economically important genera in the diverse and widely adapted Proteaceae family. All four species of Macadamia are rare in the wild with the most recently discovered, M. jansenii, being endangered. The M. jansenii genome has been used as a model for testing sequencing methods using a wide range of long read sequencing techniques. Here, we report a chromosome level genome assembly, generated using a combination of Pacific Biosciences sequencing and Hi-C, comprising 14 pseudo-molecules, with a N50 of 52 Mb and a total genome assembly size of 758 Mb of which 56% is repetitive. Completeness assessment revealed that the assembly covered -97.1% of the conserved single copy genes. Annotation predicted 31,591 protein coding genes and allowed the characterization of genes encoding biosynthesis of cyanogenic glycosides, fatty acid metabolism, and anti-microbial proteins. Re-sequencing of seven other genotypes confirmed low diversity and low heterozygosity within this endangered species. Important morphological characteristics of this species such as small tree size and high kernel recovery suggest that M. jansenii is an important source of these commercial traits for breeding. As a member of a small group of families that are sister to the core eudicots, this high-quality genome also provides a key resource for evolutionary and comparative genomics studies.
Collapse
Affiliation(s)
- Priyanka Sharma
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
| | | | | | - Catherine J Nock
- Southern Cross Plant Science Southern Cross University Lismore New South Wales Australia
| | - Wei Tian
- BGI-Shenzhen Shenzhen Guangdong Province China
- BGI International Pty Ltd Herston Queensland Australia
| | | | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture University of Queensland Brisbane Australia
| |
Collapse
|
13
|
Sharma P, Murigneux V, Haimovitz J, Nock CJ, Tian W, Kharabian Masouleh A, Topp B, Alam M, Furtado A, Henry RJ. The genome of the endangered Macadamia jansenii displays little diversity but represents an important genetic resource for plant breeding. PLANT DIRECT 2021; 5:e364. [PMID: 34938939 PMCID: PMC8671617 DOI: 10.1002/pld3.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/05/2023]
Abstract
Macadamia, a recently domesticated expanding nut crop in the tropical and subtropical regions of the world, is one of the most economically important genera in the diverse and widely adapted Proteaceae family. All four species of Macadamia are rare in the wild with the most recently discovered, M. jansenii, being endangered. The M. jansenii genome has been used as a model for testing sequencing methods using a wide range of long read sequencing techniques. Here, we report a chromosome level genome assembly, generated using a combination of Pacific Biosciences sequencing and Hi-C, comprising 14 pseudo-molecules, with a N50 of 52 Mb and a total genome assembly size of 758 Mb of which 56% is repetitive. Completeness assessment revealed that the assembly covered -97.1% of the conserved single copy genes. Annotation predicted 31,591 protein coding genes and allowed the characterization of genes encoding biosynthesis of cyanogenic glycosides, fatty acid metabolism, and anti-microbial proteins. Re-sequencing of seven other genotypes confirmed low diversity and low heterozygosity within this endangered species. Important morphological characteristics of this species such as small tree size and high kernel recovery suggest that M. jansenii is an important source of these commercial traits for breeding. As a member of a small group of families that are sister to the core eudicots, this high-quality genome also provides a key resource for evolutionary and comparative genomics studies.
Collapse
Affiliation(s)
- Priyanka Sharma
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
| | | | | | - Catherine J. Nock
- Southern Cross Plant ScienceSouthern Cross UniversityLismoreNew South WalesAustralia
| | - Wei Tian
- BGI‐ShenzhenShenzhenGuangdong ProvinceChina
- BGI International Pty LtdHerstonQueenslandAustralia
| | | | - Bruce Topp
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
- ARC Centre of Excellence for Plant Success in Nature and AgricultureUniversity of QueenslandBrisbaneAustralia
| |
Collapse
|
14
|
Savadi S, Mangalassery S, Sandesh MS. Advances in genomics and genome editing for breeding next generation of fruit and nut crops. Genomics 2021; 113:3718-3734. [PMID: 34517092 DOI: 10.1016/j.ygeno.2021.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Fruit tree crops are an essential part of the food production systems and are key to achieve food and nutrition security. Genetic improvement of fruit trees by conventional breeding has been slow due to the long juvenile phase. Advancements in genomics and molecular biology have paved the way for devising novel genetic improvement tools like genome editing, which can accelerate the breeding of these perennial crops to a great extent. In this article, advancements in genomics of fruit trees covering genome sequencing, transcriptome sequencing, genome editing technologies (GET), CRISPR-Cas system based genome editing, potential applications of CRISPR-Cas9 in fruit tree crops improvement, the factors influencing the CRISPR-Cas editing efficiency and the challenges for CRISPR-Cas9 applications in fruit tree crops improvement are reviewed. Besides, base editing, a recently emerging more precise editing system, and the future perspectives of genome editing in the improvement of fruit and nut crops are covered.
Collapse
Affiliation(s)
- Siddanna Savadi
- ICAR- Directorate of Cashew Research (DCR), Puttur 574 202, Dakshina Kannada, Karnataka, India.
| | | | - M S Sandesh
- ICAR- Directorate of Cashew Research (DCR), Puttur 574 202, Dakshina Kannada, Karnataka, India
| |
Collapse
|
15
|
McCartney AM, Hilario E, Choi S, Guhlin J, Prebble JM, Houliston G, Buckley TR, Chagné D. An exploration of assembly strategies and quality metrics on the accuracy of the rewarewa (Knightia excelsa) genome. Mol Ecol Resour 2021; 21:2125-2144. [PMID: 33955186 PMCID: PMC8362059 DOI: 10.1111/1755-0998.13406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/18/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
We used long read sequencing data generated from Knightia excelsa, a nectar-producing Proteaceae tree endemic to Aotearoa (New Zealand), to explore how sequencing data type, volume and workflows can impact final assembly accuracy and chromosome reconstruction. Establishing a high-quality genome for this species has specific cultural importance to Māori and commercial importance to honey producers in Aotearoa. Assemblies were produced by five long read assemblers using data subsampled based on read lengths, two polishing strategies and two Hi-C mapping methods. Our results from subsampling the data by read length showed that each assembler tested performed differently depending on the coverage and the read length of the data. Subsampling highlighted that input data with longer read lengths but perhaps lower coverage constructed more contiguous, kmers and gene-complete assemblies than short read length input data with higher coverage. The final genome assembly was constructed into 14 pseudochromosomes using an initial flye long read assembly, a racon/medaka/pilon combined polishing strategy, salsa2 and allhic scaffolding, juicebox curation, and Macadamia linkage map validation. We highlighted the importance of developing assembly workflows based on the volume and read length of sequencing data and established a robust set of quality metrics for generating high-quality assemblies. Scaffolding analyses highlighted that problems found in the initial assemblies could not be resolved accurately by Hi-C data and that assembly scaffolding was more successful when the underlying contig assembly was of higher accuracy. These findings provide insight into how quality assessment tools can be implemented throughout genome assembly pipelines to inform the de novo reconstruction of a high-quality genome assembly for nonmodel organisms.
Collapse
Affiliation(s)
- Ann M. McCartney
- Manaaki Whenua ‐ Landcare ResearchAucklandNew Zealand
- Genomics AotearoaDunedinNew Zealand
| | - Elena Hilario
- Genomics AotearoaDunedinNew Zealand
- The New Zealand Institute for Plant and Food Research (Plant & Food Research)SandringhamNew Zealand
| | - Seung‐Sub Choi
- Manaaki Whenua ‐ Landcare ResearchAucklandNew Zealand
- Genomics AotearoaDunedinNew Zealand
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Joseph Guhlin
- Genomics AotearoaDunedinNew Zealand
- University of OtagoDunedinNew Zealand
| | - Jessica M. Prebble
- Genomics AotearoaDunedinNew Zealand
- Manaaki Whenua Landcare ResearchLincolnNew Zealand
| | - Gary Houliston
- Genomics AotearoaDunedinNew Zealand
- Manaaki Whenua Landcare ResearchLincolnNew Zealand
| | - Thomas R. Buckley
- Manaaki Whenua ‐ Landcare ResearchAucklandNew Zealand
- Genomics AotearoaDunedinNew Zealand
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - David Chagné
- Genomics AotearoaDunedinNew Zealand
- Plant & Food ResearchFitzherbert, Palmerston NorthNew Zealand
| |
Collapse
|
16
|
Sharma P, Al-Dossary O, Alsubaie B, Al-Mssallem I, Nath O, Mitter N, Rodrigues Alves Margarido G, Topp B, Murigneux V, Kharabian Masouleh A, Furtado A, Henry RJ. Improvements in the sequencing and assembly of plant genomes. GIGABYTE 2021; 2021:gigabyte24. [PMID: 36824328 PMCID: PMC9631998 DOI: 10.46471/gigabyte.24] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
Advances in DNA sequencing have made it easier to sequence and assemble plant genomes. Here, we extend an earlier study, and compare recent methods for long read sequencing and assembly. Updated Oxford Nanopore Technology software improved assemblies. Using more accurate sequences produced by repeated sequencing of the same molecule (Pacific Biosciences HiFi) resulted in less fragmented assembly of sequencing reads. Using data for increased genome coverage resulted in longer contigs, but reduced total assembly length and improved genome completeness. The original model species, Macadamia jansenii, was also compared with three other Macadamia species, as well as avocado (Persea americana) and jojoba (Simmondsia chinensis). In these angiosperms, increasing sequence data volumes caused a linear increase in contig size, decreased assembly length and further improved already high completeness. Differences in genome size and sequence complexity influenced the success of assembly. Advances in long read sequencing technology continue to improve plant genome sequencing and assembly. However, results were improved by greater genome coverage, with the amount needed to achieve a particular level of assembly being species dependent.
Collapse
Affiliation(s)
- Priyanka Sharma
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Othman Al-Dossary
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Bader Alsubaie
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Ibrahim Al-Mssallem
- College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Onkar Nath
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Gabriel Rodrigues Alves Margarido
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil
| | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | | | | | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
17
|
O'Connor KM, Hayes BJ, Hardner CM, Alam M, Henry RJ, Topp BL. Genomic selection and genetic gain for nut yield in an Australian macadamia breeding population. BMC Genomics 2021; 22:370. [PMID: 34016055 PMCID: PMC8139092 DOI: 10.1186/s12864-021-07694-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Background Improving yield prediction and selection efficiency is critical for tree breeding. This is vital for macadamia trees with the time from crossing to production of new cultivars being almost a quarter of a century. Genomic selection (GS) is a useful tool in plant breeding, particularly with perennial trees, contributing to an increased rate of genetic gain and reducing the length of the breeding cycle. We investigated the potential of using GS methods to increase genetic gain and accelerate selection efficiency in the Australian macadamia breeding program with comparison to traditional breeding methods. This study evaluated the prediction accuracy of GS in a macadamia breeding population of 295 full-sib progeny from 32 families (29 parents, reciprocals combined), along with a subset of parents. Historical yield data for tree ages 5 to 8years were used in the study, along with a set of 4113 SNP markers. The traits of focus were average nut yield from tree ages 5 to 8years and yield stability, measured as the standard deviation of yield over these 4 years. GBLUP GS models were used to obtain genomic estimated breeding values for each genotype, with a five-fold cross-validation method and two techniques: prediction across related populations and prediction across unrelated populations. Results Narrow-sense heritability of yield and yield stability was low (h2=0.30 and 0.04, respectively). Prediction accuracy for yield was 0.57 for predictions across related populations and 0.14 when predicted across unrelated populations. Accuracy of prediction of yield stability was high (r=0.79) for predictions across related populations. Predicted genetic gain of yield using GS in related populations was 474g/year, more than double that of traditional breeding methods (226g/year), due to the halving of generation length from 8 to 4years. Conclusions The results of this study indicate that the incorporation of GS for yield into the Australian macadamia breeding program may accelerate genetic gain due to reduction in generation length, though the cost of genotyping appears to be a constraint at present. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07694-z.
Collapse
Affiliation(s)
- Katie M O'Connor
- Queensland Department of Agriculture and Fisheries, Maroochy Research Facility, 47 Mayers Road, Nambour, QLD, 4560, Australia. .,Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Maroochy Research Facility, 47 Mayers Road, Nambour, QLD, 4560, Australia.
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Craig M Hardner
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Maroochy Research Facility, 47 Mayers Road, Nambour, QLD, 4560, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bruce L Topp
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Maroochy Research Facility, 47 Mayers Road, Nambour, QLD, 4560, Australia
| |
Collapse
|
18
|
Murigneux V, Rai SK, Furtado A, Bruxner TJC, Tian W, Harliwong I, Wei H, Yang B, Ye Q, Anderson E, Mao Q, Drmanac R, Wang O, Peters BA, Xu M, Wu P, Topp B, Coin LJM, Henry RJ. Comparison of long-read methods for sequencing and assembly of a plant genome. Gigascience 2020; 9:giaa146. [PMID: 33347571 PMCID: PMC7751402 DOI: 10.1093/gigascience/giaa146] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/07/2020] [Accepted: 11/22/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology, as well as the most appropriate software for assembly and polishing. It is thus important to benchmark different approaches applied to the same sample. RESULTS Here, we report a comparison of 3 long-read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION), and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of Pacific Biosciences and Nanopore reads. Results obtained from combining long-read technologies or short-read and long-read technologies are also presented. The assemblies were compared for contiguity, base accuracy, and completeness, as well as sequencing costs and DNA material requirements. CONCLUSIONS The 3 long-read technologies produced highly contiguous and complete genome assemblies of M. jansenii. At the time of sequencing, the cost associated with each method was significantly different, but continuous improvements in technologies have resulted in greater accuracy, increased throughput, and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies.
Collapse
Affiliation(s)
- Valentine Murigneux
- Genome Innovation Hub, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Subash Kumar Rai
- Genome Innovation Hub, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy J C Bruxner
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Wei Tian
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Ivon Harliwong
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Hanmin Wei
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Bicheng Yang
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Qianyu Ye
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Ellis Anderson
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Qing Mao
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Radoje Drmanac
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Ou Wang
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
| | - Brock A Peters
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Mengyang Xu
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Qingdao, Building 2, No. 2 Hengyunshan Road, Qingdao 266555, China
| | - Pei Wu
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Tianjin, Airport Business Park, Building E3, Airport Economics Area, Tianjin 300308, China
| | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lachlan J M Coin
- Genome Innovation Hub, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3004, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
19
|
Murigneux V, Rai SK, Furtado A, Bruxner TJC, Tian W, Harliwong I, Wei H, Yang B, Ye Q, Anderson E, Mao Q, Drmanac R, Wang O, Peters BA, Xu M, Wu P, Topp B, Coin LJM, Henry RJ. Comparison of long-read methods for sequencing and assembly of a plant genome. Gigascience 2020; 9:6042729. [PMID: 33347571 DOI: 10.1101/2020.03.16.992933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/07/2020] [Accepted: 11/22/2020] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology, as well as the most appropriate software for assembly and polishing. It is thus important to benchmark different approaches applied to the same sample. RESULTS Here, we report a comparison of 3 long-read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION), and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of Pacific Biosciences and Nanopore reads. Results obtained from combining long-read technologies or short-read and long-read technologies are also presented. The assemblies were compared for contiguity, base accuracy, and completeness, as well as sequencing costs and DNA material requirements. CONCLUSIONS The 3 long-read technologies produced highly contiguous and complete genome assemblies of M. jansenii. At the time of sequencing, the cost associated with each method was significantly different, but continuous improvements in technologies have resulted in greater accuracy, increased throughput, and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies.
Collapse
Affiliation(s)
- Valentine Murigneux
- Genome Innovation Hub, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Subash Kumar Rai
- Genome Innovation Hub, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy J C Bruxner
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Wei Tian
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Ivon Harliwong
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Hanmin Wei
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Bicheng Yang
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Qianyu Ye
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Ellis Anderson
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Qing Mao
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Radoje Drmanac
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Ou Wang
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
| | - Brock A Peters
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Mengyang Xu
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Qingdao, Building 2, No. 2 Hengyunshan Road, Qingdao 266555, China
| | - Pei Wu
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Tianjin, Airport Business Park, Building E3, Airport Economics Area, Tianjin 300308, China
| | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lachlan J M Coin
- Genome Innovation Hub, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3004, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|