1
|
Jejina A, Ayala Y, Hernández G, Suter B. Role of BicDR in bristle shaft construction, tracheal development, and support of BicD functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545245. [PMID: 37398393 PMCID: PMC10312712 DOI: 10.1101/2023.06.16.545245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cell polarization requires asymmetric localization of numerous mRNAs, proteins, and organelles. The movement of cargo towards the minus end of microtubules mostly depends on cytoplasmic dynein motors, which function as multiprotein complexes. In the dynein/dynactin/Bicaudal-D (DDB) transport machinery, Bicaudal-D (BicD) links the cargo to the motor. Here we focus on the role of BicD-related (BicDR) and its contribution to microtubule-dependent transport processes. Drosophila BicDR is required for the normal development of bristles and dorsal trunk tracheae. Together with BicD, it contributes to the organization and stability of the actin cytoskeleton in the not-yet-chitinized bristle shaft and the localization of Spn-F and Rab6 at the distal tip. We show that BicDR supports the function of BicD in bristle development and our results suggest that BicDR transports cargo more locally whereas BicD is more responsible for delivering functional cargo over the long distance to the distal tip. We identified the proteins that interact with BicDR and appear to be BicDR cargo in embryonic tissues. For one of them, EF1γ, we showed that EF1γ genetically interacts with BicD and BicDR in the construction of the bristles.
Collapse
Affiliation(s)
- Aleksandra Jejina
- Institute of Cell Biology, University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Yeniffer Ayala
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), Mexico City, Mexico
| | - Greco Hernández
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), Mexico City, Mexico
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Switzerland
| |
Collapse
|
2
|
Sato A. Chaperones, Canalization, and Evolution of Animal Forms. Int J Mol Sci 2018; 19:E3029. [PMID: 30287767 PMCID: PMC6213012 DOI: 10.3390/ijms19103029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Over half a century ago, British developmental biologist Conrad Hal Waddington proposed the idea of canalization, that is, homeostasis in development. Since the breakthrough that was made by Rutherford and Lindquist (1998), who proposed a role of Hsp90 in developmental buffering, chaperones have gained much attention in the study of canalization. However, recent studies have revealed that a number of other molecules are also potentially involved in canalization. Here, I introduce the emerging role of DnaJ chaperones in canalization. I also discuss how the expression levels of such buffering molecules can be altered, thereby altering organismal development. Since developmental robustness is maternally inherited in various organisms, I propose that dynamic bet hedging, an increase in within-clutch variation in offspring phenotypes that is caused by unpredictable environmental challenges to the mothers, plays a key role in altering the expression levels of buffering molecules. Investigating dynamic bet hedging at the molecular level and how it impacts upon morphological phenotypes will help our understanding of the molecular mechanisms of canalization and evolutionary processes.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Biology, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-0012, Japan.
- Marine Biological Association of the UK, The Laboratory, Plymouth PL1 2PB, UK.
| |
Collapse
|
3
|
Chen B, Feder ME, Kang L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol Ecol 2018; 27:3040-3054. [PMID: 29920826 DOI: 10.1111/mec.14769] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/03/2018] [Accepted: 06/07/2018] [Indexed: 12/27/2022]
Abstract
Heat-shock proteins (Hsps) and their cognates are primary mitigators of cell stress. With increasingly severe impacts of climate change and other human modifications of the biosphere, the ability of the heat-shock system to affect evolutionary fitness in environments outside the laboratory and to evolve in response is topic of growing importance. Since the last major reviews, several advances have occurred. First, demonstrations of the heat-shock response outside the laboratory now include many additional taxa and environments. Many of these demonstrations are only correlative, however. More importantly, technical advances in "omic" quantification of nucleic acids and proteins, genomewide association analysis, and manipulation of genes and their expression have enabled the field to move beyond correlation. Several consequent advances are already evident: The pathway from heat-shock gene expression to stress tolerance in nature can be extremely complex, mediated through multiple biological processes and systems, and even multiple species. The underlying genes are more numerous, diverse and variable than previously appreciated, especially with respect to their regulatory variation and epigenetic changes. The impacts and limitations (e.g., due to trade-offs) of natural selection on these genes have become more obvious and better established. At last, as evolutionary capacitors, Hsps may have distinctive impacts on the evolution of other genes and ecological consequences.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Martin E Feder
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Takahashi KH. Novel genetic capacitors and potentiators for the natural genetic variation of sensory bristles and their trait specificity in Drosophila melanogaster. Mol Ecol 2015; 24:5561-72. [PMID: 26441383 DOI: 10.1111/mec.13407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 11/30/2022]
Abstract
Cryptic genetic variation (CGV) is defined as the genetic variation that has little effect on phenotypic variation under a normal condition, but contributes to heritable variation under environmental or genetic perturbations. Genetic buffering systems that suppress the expression of CGV and store it in a population are called genetic capacitors, and the opposite systems are called genetic potentiators. One of the best-known candidates for a genetic capacitor and potentiator is the molecular chaperone protein, HSP90, and one of its characteristics is that it affects the genetic variation in various morphological traits. However, it remains unclear whether the wide-ranging effects of HSP90 on a broad range of traits are a general feature of genetic capacitors and potentiators. In the current study, I searched for novel genetic capacitors and potentiators for quantitative bristle traits of Drosophila melanogaster and then investigated the trait specificity of their genetic buffering effect. Three bristle traits of D. melanogaster were used as the target traits, and the genomic regions with genetic buffering effects were screened using the 61 genomic deficiencies examined previously for genetic buffering effects in wing shape. As a result, four and six deficiencies with significant effects on increasing and decreasing the broad-sense heritability of the bristle traits were identified, respectively. Of the 18 deficiencies with significant effects detected in the current study and/or by the previous study, 14 showed trait-specific effects, and four affected the genetic buffering of both bristle traits and wing shape. This suggests that most genetic capacitors and potentiators exert trait-specific effects, but that general capacitors and potentiators with effects on multiple traits also exist.
Collapse
Affiliation(s)
- Kazuo H Takahashi
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-si, Okayama-ken, 700-8530, Japan
| |
Collapse
|
5
|
|
6
|
Graham JH, Robb DT, Poe AR. Random phenotypic variation of yeast (Saccharomyces cerevisiae) single-gene knockouts fits a double pareto-lognormal distribution. PLoS One 2012; 7:e48964. [PMID: 23139826 PMCID: PMC3490920 DOI: 10.1371/journal.pone.0048964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/08/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Distributed robustness is thought to influence the buffering of random phenotypic variation through the scale-free topology of gene regulatory, metabolic, and protein-protein interaction networks. If this hypothesis is true, then the phenotypic response to the perturbation of particular nodes in such a network should be proportional to the number of links those nodes make with neighboring nodes. This suggests a probability distribution approximating an inverse power-law of random phenotypic variation. Zero phenotypic variation, however, is impossible, because random molecular and cellular processes are essential to normal development. Consequently, a more realistic distribution should have a y-intercept close to zero in the lower tail, a mode greater than zero, and a long (fat) upper tail. The double Pareto-lognormal (DPLN) distribution is an ideal candidate distribution. It consists of a mixture of a lognormal body and upper and lower power-law tails. OBJECTIVE AND METHODS If our assumptions are true, the DPLN distribution should provide a better fit to random phenotypic variation in a large series of single-gene knockout lines than other skewed or symmetrical distributions. We fit a large published data set of single-gene knockout lines in Saccharomyces cerevisiae to seven different probability distributions: DPLN, right Pareto-lognormal (RPLN), left Pareto-lognormal (LPLN), normal, lognormal, exponential, and Pareto. The best model was judged by the Akaike Information Criterion (AIC). RESULTS Phenotypic variation among gene knockouts in S. cerevisiae fits a double Pareto-lognormal (DPLN) distribution better than any of the alternative distributions, including the right Pareto-lognormal and lognormal distributions. CONCLUSIONS AND SIGNIFICANCE A DPLN distribution is consistent with the hypothesis that developmental stability is mediated, in part, by distributed robustness, the resilience of gene regulatory, metabolic, and protein-protein interaction networks. Alternatively, multiplicative cell growth, and the mixing of lognormal distributions having different variances, may generate a DPLN distribution.
Collapse
Affiliation(s)
- John H Graham
- Department of Biology, Berry College, Mount Berry, Georgia, USA.
| | | | | |
Collapse
|
7
|
Takahashi KH, Okada Y, Teramura K. Deficiency screening for genomic regions with effects on environmental sensitivity of the sensory bristles of Drosophila melanogaster. Evolution 2012; 66:2878-90. [PMID: 22946809 DOI: 10.1111/j.1558-5646.2012.01636.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Environmental canalization is defined as a reduction in the effect of external environmental perturbations on a phenotype, while phenotypic plasticity is defined as the production of different phenotypes in alternative environments. These terms describe different aspects of the same phenomenon, that is, the sensitivity of the phenotype to the environment. Genetic regulation of the environmental sensitivity has been a central topic in the field of evolutionary biology. In this study, we performed deficiency screening to detect genomic regions with effects on the environmental sensitivity of Drosophila melanogaster sensory bristles. We used a collection of isogenic deficiency strains established by the DrosDel Project for screening. We screened 423 genomic deficiencies that encompassed approximately 63.6% of the entire D. melanogaster genome. We identified 29 genomic deficiencies showing significant effects on environmental sensitivity, suggesting that multiple genomic regions may influence phenotypic variation. We also found significant correlations among the effects of deficiencies on environmental sensitivity for different bristle traits, suggesting that the same genetic mechanism can regulate environmental sensitivity of multiple traits. Current high-resolution mapping will facilitate the examination of individual candidate genes using mutations or RNAi approaches in future studies.
Collapse
Affiliation(s)
- Kazuo H Takahashi
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushima-naka 3-1-1, Kita-ku, Okayama 700-8530, Japan.
| | | | | |
Collapse
|
8
|
Chen B, Wagner A. Hsp90 is important for fecundity, longevity, and buffering of cryptic deleterious variation in wild fly populations. BMC Evol Biol 2012; 12:25. [PMID: 22369091 PMCID: PMC3305614 DOI: 10.1186/1471-2148-12-25] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the laboratory, the Drosophila melanogaster heat shock protein Hsp90 can buffer the phenotypic effects of genetic variation. Laboratory experiments either manipulate Hsp90 activity pharmacologically, or they induce mutations with strong effects in the gene Hsp83, the single-copy fly gene encoding Hsp90. It is unknown whether observations from such laboratory experiments are relevant in the wild. RESULTS We here study naturally occurring mutations in Hsp83, and their effects on fitness and phenotypic buffering in flies derived from wild populations. We examined more than 4500 flies from 42 Drosophila populations distributed world-wide for insertions or deletions of mobile DNA in or near the Hsp83 gene. The insertions we observed occur at low population frequencies, and reduce Hsp83 gene expression. In competition experiments, mutant flies performed much more poorly than wild-type flies. Mutant flies were also significantly less fecund and shorter-lived than wild-type flies, as well as less well buffered against cryptic deleterious variation, as we show through inbreeding experiments. Specifically, in Hsp83 mutant flies female fecundity dropped to much lower levels after inbreeding than in wild-type flies. At even slightly elevated temperatures, inbred mutant Hsp83 populations went extinct, whereas inbred wild-type populations persisted. CONCLUSIONS Our work shows that Hsp90, a regulator of the stress response and of signaling, helps buffer deleterious variation in fruit flies derived from wild population, and that its buffering role becomes even more important under heat stress.
Collapse
Affiliation(s)
- Bing Chen
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | | |
Collapse
|
9
|
Takahashi KH, Okada Y, Teramura K, Tsujino M. DEFICIENCY MAPPING OF THE GENOMIC REGIONS ASSOCIATED WITH EFFECTS ON DEVELOPMENTAL STABILITY IN DROSOPHILA MELANOGASTER. Evolution 2011; 65:3565-77. [DOI: 10.1111/j.1558-5646.2011.01400.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Takahashi KH, Daborn PJ, Hoffmann AA, Takano-Shimizu T. Environmental stress-dependent effects of deletions encompassing Hsp70Ba on canalization and quantitative trait asymmetry in Drosophila melanogaster. PLoS One 2011; 6:e17295. [PMID: 21541022 PMCID: PMC3081816 DOI: 10.1371/journal.pone.0017295] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/28/2011] [Indexed: 12/17/2022] Open
Abstract
Hsp70 genes may influence the expression of wing abnormalities in Drosophila melanogaster but their effects on variability in quantitative characters and developmental instability are unclear. In this study, we focused on one of the six Hsp70 genes, Hsp70Ba, and investigated its effects on within- and among-individual variability in orbital bristle number, sternopleural bristle number, wing size and wing shape under different environmental conditions. To do this, we studied a newly constructed deletion, Df(3R)ED5579, which encompasses Hsp70Ba and nine non-Hsp genes, in the heterozygous condition and another, Hsp70Ba(304), which deletes only Hsp70Ba, in the homozygous condition. We found no significant effect of both deletions on within-individual variation quantified by fluctuating asymmetry (FA) of morphological traits. On the other hand, the Hsp70Ba(304)/Hsp70Ba(304) genotype significantly increased among-individual variation quantified by coefficient of variation (CV) of bristle number and wing size in female, while the Df(3R)ED5579 heterozygote showed no significant effect. The expression level of Hsp70Ba in the deletion heterozygote was 6 to 20 times higher than in control homozygotes, suggesting that the overexpression of Hsp70Ba did not influence developmental stability or canalization significantly. These findings suggest that the absence of expression of Hsp70Ba increases CV of some morphological traits and that HSP70Ba may buffer against environmental perturbations on some quantitative traits.
Collapse
Affiliation(s)
- Kazuo H Takahashi
- Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka-ken, Japan.
| | | | | | | |
Collapse
|
11
|
Takahashi KH, Rako L, Takano-Shimizu T, Hoffmann AA, Lee SF. Effects of small Hsp genes on developmental stability and microenvironmental canalization. BMC Evol Biol 2010; 10:284. [PMID: 20846409 PMCID: PMC2949873 DOI: 10.1186/1471-2148-10-284] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/16/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Progression of development has to be insulated from the damaging impacts of environmental and genetic perturbations to produce highly predictable phenotypes. Molecular chaperones, such as the heat shock proteins (HSPs), are known to buffer various environmental stresses, and are deeply involved in protein homeostasis. These characteristics of HSPs imply that they might affect developmental buffering and canalization. RESULTS We examined the role of nine Hsp genes using the GAL4/UAS-RNAi system on phenotypic variation of various morphological traits in Drosophila melanogaster. The stability of bristle number, wing size and wing shape was characterized through fluctuating asymmetry (FA) and the coefficient of variation (CV), or among-individual variation. Progeny of the GAL4/Hsp-RNAi crosses tended to have reduced trait means for both wing size and wing shape. Transcriptional knockdown of Hsp67Bc and Hsp22 significantly increased FA of bristle number, while knockdown of Hsp67Ba significantly increased FA and among-individual variation of wing shape but only in males. Suppression of Hsp67Bb expression significantly increased among-individual variation of bristle number. The knockdown of gene expression was confirmed for Hsp67Ba, Hsp67Bc, Hsp22, and Hsp67Bb. Correlation between FA and CV or among-individual variation of each trait is weak and not significant except for the case of male wing shape. CONCLUSION Four small Hsp genes (Hsp22, Hsp67Ba, Hsp67Bb and Hsp67Bc) showed involvement in the processes of morphogenesis and developmental stability. Due to possible different functions in terms of developmental buffering of these small Hsps, phenotypic stability of an organism is probably maintained by multiple mechanisms triggered by different environmental and genetic stresses on different traits. This novel finding may lead to a better understanding of non-Hsp90 molecular mechanisms controlling variability in morphological traits.
Collapse
Affiliation(s)
- Kazuo H Takahashi
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, Bio21 Institute, The University of Melbourne, Parkville, Melbourne 3010, Australia
- Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka-ken 411-8540, Japan
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka 3-1-1, Kita-ku, Okayama City, Japan
| | - Lea Rako
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, Bio21 Institute, The University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Toshiyuki Takano-Shimizu
- Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka-ken 411-8540, Japan
| | - Ary A Hoffmann
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, Bio21 Institute, The University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Siu F Lee
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, Bio21 Institute, The University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
12
|
Sgrò CM, Wegener B, Hoffmann AA. A naturally occurring variant of Hsp90 that is associated with decanalization. Proc Biol Sci 2010; 277:2049-57. [PMID: 20200026 PMCID: PMC2880099 DOI: 10.1098/rspb.2010.0008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 02/12/2010] [Indexed: 11/12/2022] Open
Abstract
The heat shock protein Hsp90 has been the focus of many studies since it was suggested that it acts to mediate the buffering of phenotypic variation. Hsp90-mediated buffering may result in the accumulation of cryptic genetic variation that, when released either as a consequence of environmental or genetic stress, increases the evolvability of a population. Recent studies using laboratory-induced mutations of Hsp90 and/or chemical inhibition to disrupt Hsp90 function confirm that Hsp90 can buffer cryptic genetic variation. We have previously identified a naturally occurring variant in the charged linker region of the Hsp90 gene, and now examine whether this variant is associated with altered levels of trait variability. The variant is associated with the release of cryptic genetic variation for canalized morphological (bristle) traits, but not for uncanalized morphological (wing and bristle) traits, and the effect on canalized traits depends on culture temperature. This suggests that natural genetic variation in Hsp90 may mediate the evolution of canalized morphological traits even if it does not influence the expression of variation for uncanalized traits.
Collapse
Affiliation(s)
- Carla M Sgrò
- Centre for Environmental Stress and Adaptation Research, School of Biological Sciences, Monash University, Clayton, Melbourne, Australia.
| | | | | |
Collapse
|
13
|
|
14
|
Genomic consequences of background effects on scalloped mutant expressivity in the wing of Drosophila melanogaster. Genetics 2008; 181:1065-76. [PMID: 19064709 DOI: 10.1534/genetics.108.096453] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genetic background effects contribute to the phenotypic consequences of mutations and are pervasive across all domains of life that have been examined, yet little is known about how they modify genetic systems. In part this is due to the lack of tractable model systems that have been explicitly developed to study the genetic and evolutionary consequences of background effects. In this study we demonstrate that phenotypic expressivity of the scalloped(E3) (sd(E3)) mutation of Drosophila melanogaster is background dependent and is the result of at least one major modifier segregating between two standard lab wild-type strains. We provide evidence that at least one of the modifiers is linked to the vestigial region and demonstrate that the background effects modify the spatial distribution of known sd target genes in a genotype-dependent manner. In addition, microarrays were used to examine the consequences of genetic background effects on the global transcriptome. Expression differences between wild-type strains were found to be as large as or larger than the effects of mutations with substantial phenotypic effects, and expression differences between wild type and mutant varied significantly between genetic backgrounds. Significantly, we demonstrate that the epistatic interaction between sd(E3) and an optomotor blind mutation is background dependent. The results are discussed within the context of developing a complex but more realistic view of the consequences of genetic background effects with respect to mutational analysis and studies of epistasis and cryptic genetic variation segregating in natural populations.
Collapse
|
15
|
D'Ávila MF, Garcia RN, Loreto ELS, Valente VLDS. Analysis of phenotypes altered by temperature stress and hipermutability in Drosophila willistoni. IHERINGIA. SERIE ZOOLOGIA 2008. [DOI: 10.1590/s0073-47212008000300009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drosophila willistoni (Sturtevant, 1916) is a species of the willistoni group of Drosophila having wide distribution from the South of USA (Florida) and Mexico to the North of Argentina. It has been subject of many evolutionary studies within the group, due to its considerable ability to successfully occupy a wide range of environments and also because of its great genetic variability expressed by different markers. The D. willistoni 17A2 strain was collected in 1991 in the state of Rio Grande do Sul, Brazil (30°05'S, 51°39'W), and has been maintained since then at the Drosophila laboratory of UFRGS. Different to the other D. willistoni strains maintained in the laboratory, the 17A2 strain spontaneously produced mutant males white-like (white eyes) and sepia-like (brown eyes) in stocks held at 17°C. In order to discover if this strain is potentially hypermutable, we submitted it to temperature stress tests. Eighteen isofemale strains were used in our tests and, after the first generation, all the individuals produced in each strain were maintained at 29°C. Different phenotype alterations were observed in subsequent generations, similar to mutations already well characterized in D. melanogaster (white, sepia, blistered and curly). In addition, an uncommon phenotype alteration with an apparent fusion of the antennae was observed, but only in the isofemale line nº 31. This last alteration has not been previously described as a mutation in the D. melanogaster species. Our results indicate that the D. willistoni 17A2 strain is a candidate for hypermutability, which presents considerable cryptic genetic variability. Different factors may be operating for the formation of this effect, such as the mobilization of transposable elements, effect of inbreeding and alteration of the heat-shock proteins functions.
Collapse
|
16
|
Allen CE, Beldade P, Zwaan BJ, Brakefield PM. Differences in the selection response of serially repeated color pattern characters: standing variation, development, and evolution. BMC Evol Biol 2008; 8:94. [PMID: 18366752 PMCID: PMC2322975 DOI: 10.1186/1471-2148-8-94] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 03/26/2008] [Indexed: 11/10/2022] Open
Abstract
Background There is spectacular morphological diversity in nature but lineages typically display a limited range of phenotypes. Because developmental processes generate the phenotypic variation that fuels natural selection, they are a likely source of evolutionary biases, facilitating some changes and limiting others. Although shifts in developmental regulation are associated with morphological differences between taxa, it is unclear how underlying mechanisms affect the rate and direction of evolutionary change within populations under selection. Here we focus on two ecologically relevant features of butterfly wing color patterns, eyespot size and color composition, which are similarly and strongly correlated across the serially repeated eyespots. Though these two characters show similar patterns of standing variation and covariation within a population, they differ in key features of their underlying development. We targeted pairs of eyespots with artificial selection for coordinated (concerted selection) versus independent (antagonistic selection) change in their color composition and size and compared evolutionary responses of the two color pattern characters. Results The two characters respond to selection in strikingly different ways despite initially similar patterns of variation in all directions present in the starting population. Size (determined by local properties of a diffusing inductive signal) evolves flexibly in all selected directions. However, color composition (determined by a tissue-level response to the signal concentration gradient) evolves only in the direction of coordinated change. There was no independent evolutionary change in the color composition of two eyespots in response to antagonistic selection. Moreover, these differences in the directions of short-term evolutionary change in eyespot size and color composition within a single species are consistent with the observed wing pattern diversity in the genus. Conclusion Both characters respond rapidly to selection for coordinated change, but there are striking differences in their response to selection for antagonistic, independent change across eyespots. While many additional factors may contribute to both short- and long-term evolutionary response, we argue that the compartmentalization of developmental processes can influence the diversification of serial repeats such as butterfly eyespots, even under strong selection.
Collapse
Affiliation(s)
- Cerisse E Allen
- Institute of Biology, Leiden University, PO Box 9516 2300 RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Sangster TA, Salathia N, Undurraga S, Milo R, Schellenberg K, Lindquist S, Queitsch C. HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. Proc Natl Acad Sci U S A 2008; 105:2963-8. [PMID: 18287065 PMCID: PMC2268568 DOI: 10.1073/pnas.0712200105] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Indexed: 11/18/2022] Open
Abstract
Modulation of the activity of the molecular chaperone HSP90 has been extensively discussed as a means to alter phenotype in many traits and organisms. Such changes can be due to the exposure of cryptic genetic variation, which in some instances may also be accomplished by mild environmental alteration. Should such polymorphisms be widespread, natural selection may be more effective at producing phenotypic change in suboptimal environments. However, the frequency and identity of buffered polymorphisms in natural populations are unknown. Here, we employ quantitative genetic dissection of an Arabidopsis thaliana developmental response, hypocotyl elongation in the dark, to detail the underpinnings of genetic variation responsive to HSP90 modulation. We demonstrate that HSP90-dependent alleles occur in continuously distributed, environmentally responsive traits and are amenable to quantitative genetic mapping techniques. Furthermore, such alleles are frequent in natural populations and can have significant effects on natural phenotypic variation. We also find that HSP90 modulation has both general and allele-specific effects on developmental stability; that is, developmental stability is a phenotypic trait that can be affected by natural variation. However, effects of revealed variation on trait means outweigh effects of decreased developmental stability, and the HSP90-dependent trait alterations could be acted on by natural selection. Thus, HSP90 may centrally influence canalization, assimilation, and the rapid evolutionary alteration of phenotype through the concealment and exposure of cryptic genetic variation.
Collapse
Affiliation(s)
- Todd A. Sangster
- *Committee on Genetics, University of Chicago, Chicago, IL 60637
- Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, Cambridge, MA 02142
| | - Neeraj Salathia
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Soledad Undurraga
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Ron Milo
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115; and
| | - Kurt Schellenberg
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, Cambridge, MA 02142
| | | |
Collapse
|
18
|
Sangster TA, Salathia N, Lee HN, Watanabe E, Schellenberg K, Morneau K, Wang H, Undurraga S, Queitsch C, Lindquist S. HSP90-buffered genetic variation is common in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2008; 105:2969-74. [PMID: 18287064 PMCID: PMC2268569 DOI: 10.1073/pnas.0712210105] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Indexed: 01/17/2023] Open
Abstract
HSP90 is a protein chaperone particularly important in the maturation of a diverse set of proteins that regulate key steps in a multitude of biological processes. Alterations in HSP90 function produce altered phenotypes at low penetrance in natural populations. Previous work has shown that at least some of these phenotypes are due to genetic variation that remains phenotypically cryptic until it is revealed by the impairment of HSP90 function. Exposure of such "buffered" genetic polymorphisms can also be accomplished by environmental stress, linking the appearance of new phenotypes to defects in protein homeostasis. Should such polymorphisms be widespread, natural selection may be more effective at producing phenotypic change in suboptimal environments. In evaluating this hypothesis, a key unknown factor is the frequency with which HSP90-buffered polymorphisms occur in natural populations. Here, we present Arabidopsis thaliana populations suitable for genetic mapping that have constitutively reduced HSP90 levels. We employ quantitative genetic techniques to examine the HSP90-dependent polymorphisms affecting a host of plastic plant life-history traits. Our results demonstrate that HSP90-dependent natural variation is present at high frequencies in A. thaliana, with an expectation that at least one HSP90-dependent polymorphism will affect nearly every quantitative trait in progeny of two different wild lines. Hence, HSP90 is likely to occupy a central position in the translation of genotypic variation into phenotypic differences.
Collapse
Affiliation(s)
- Todd A. Sangster
- *Committee on Genetics, University of Chicago, Chicago, IL 60637
- Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, Cambridge, MA 02142; and
| | - Neeraj Salathia
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Hana N. Lee
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Etsuko Watanabe
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Kurt Schellenberg
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Keith Morneau
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Hui Wang
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Soledad Undurraga
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | | | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, Cambridge, MA 02142; and
| |
Collapse
|
19
|
Yassin A, Abou-Youssef AY, Bitner-Mathe B, Capy P, David JR. Mesosternal bristle number in a cosmopolitan drosophilid: an X-linked variable trait independent of sternopleural bristles. J Genet 2007; 86:149-58. [PMID: 17968142 DOI: 10.1007/s12041-007-0019-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesosternal (MS) bristles in Drosophila are a pair of machrochaetae found at the sternal end of the sternopleural (STP) microchaetae, and are thought to be invariable. In a closely related drosophilid genus, Zaprionus, their number is four and, in contrast to Drosophila, they show interspecific and intraspecific variability. The genetic basis of MS bristle number variability was studied in Z. indianus, the only cosmopolitan species of the genus. The trait responded rapidly to selection and two lines were obtained, one lacking any bristles (0-0) and the other bearing the normal phenotype (2-2). Other symmetrical phenotypes, (1-1) and (3-3), could also be selected for, but with lesser success. By contrast, STP bristle number did not vary significantly between the two lines (0-0) and (2-2), revealing its genetic independence from MS bristle number. Reciprocal crosses between these two lines showed that MS bristle number is mainly influenced by a major gene on the X chromosome (i.e. F(1) males always resembled their mothers) with codominant expression (i.e. heterozygous F(1) females harboured an average phenotype of 2 bristles). However, trait penetrance was incomplete and backcrosses revealed that this variability was partly due to genetic modifiers, most likely autosomal. The canalization of MS bristle number was investigated under different temperatures, and the increased appearance of abnormal phenotypes mainly occurred at extreme temperatures. There was a bias, however, towards bristle loss, as shown by a liability (developmental map) analysis. Finally, when ancestral and introduced populations were compared, the latter were far less stable, suggesting that genetic bottlenecks may perturb the MS bristle number canalization system. MS bristle number, thus, appears to be an excellent model for investigating developmental canalization at both the quantitative and the molecular level.
Collapse
Affiliation(s)
- Amir Yassin
- CNRS, Lab. Evolution, Genomes et Speciation, 91198 Gif-sur-Yvette Cedex, France.
| | | | | | | | | |
Collapse
|
20
|
KELLERMANN VANESSAM, HOFFMANN ARYA, SGRÒ CARLAM. Hsp90 inhibition and the expression of phenotypic variability in the rainforest species Drosophila birchii. Biol J Linn Soc Lond 2007. [DOI: 10.1111/j.1095-8312.2007.00875.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Hall MC, Dworkin I, Ungerer MC, Purugganan M. Genetics of microenvironmental canalization in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2007; 104:13717-22. [PMID: 17698961 PMCID: PMC1959448 DOI: 10.1073/pnas.0701936104] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Indexed: 11/18/2022] Open
Abstract
Canalization is a fundamental feature of many developmental systems, yet the genetic basis for this property remains elusive. We examine the genetic basis of microenvironmental canalization in the model plant Arabidopsis thaliana, focusing on differential developmental stability between genotypes in one fitness and four quantitative morphological traits. We measured developmental stability in genetically identical replicates of two populations of recombinant inbred (RI) lines and one population of geographically widespread accessions of A. thaliana grown in two different photoperiod-controlled environments. We were able to map quantitative trait loci associated with developmental stability. We also identified a candidate gene, ERECTA, that may contribute to microenvironmental canalization in rosette leaf number under long-day photoperiods, and analysis of mutant lines indicates that the er-105 allele results in increased canalization for this trait. ERECTA, which encodes a signaling protein, appears to act as an ecological amplifier by transducing developmental noise (e.g., microenvironmental variation) into phenotypic differentiation. We also measured genotypic selection on four plant architecture traits and find evidence for selection for both increased and decreased canalization at various traits.
Collapse
Affiliation(s)
- Megan C. Hall
- *Center for Comparative Functional Genomics, Department of Biology, 100 Washington Square East, New York University, New York, NY 10003
- Department of Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695
| | - Ian Dworkin
- Department of Zoology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824-1115; and
| | - Mark C. Ungerer
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Michael Purugganan
- *Center for Comparative Functional Genomics, Department of Biology, 100 Washington Square East, New York University, New York, NY 10003
| |
Collapse
|
22
|
Gibert JM, Peronnet F, Schlötterer C. Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network. PLoS Genet 2007; 3:e30. [PMID: 17305433 PMCID: PMC1797818 DOI: 10.1371/journal.pgen.0030030] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 01/02/2007] [Indexed: 11/18/2022] Open
Abstract
Phenotypic plasticity is the ability of a genotype to produce contrasting phenotypes in different environments. Although many examples have been described, the responsible mechanisms are poorly understood. In particular, it is not clear how phenotypic plasticity is related to buffering, the maintenance of a constant phenotype against genetic or environmental variation. We investigate here the genetic basis of a particularly well described plastic phenotype: the abdominal pigmentation in female Drosophila melanogaster. Cold temperature induces a dark pigmentation, in particular in posterior segments, while higher temperature has the opposite effect. We show that the homeotic gene Abdominal-B (Abd-B) has a major role in the plasticity of pigmentation in the abdomen. Abd-B plays opposite roles on melanin production through the regulation of several pigmentation enzymes. This makes the control of pigmentation very unstable in the posterior abdomen, and we show that the relative spatio-temporal expression of limiting pigmentation enzymes in this region of the body is thermosensitive. Temperature acts on melanin production by modulating a chromatin regulator network, interacting genetically with the transcription factor bric-à-brac (bab), a target of Abd-B and Hsp83, encoding the chaperone Hsp90. Genetic disruption of this chromatin regulator network increases the effect of temperature and the instability of the pigmentation pattern in the posterior abdomen. Colocalizations on polytene chromosomes suggest that BAB and these chromatin regulators cooperate in the regulation of many targets, including several pigmentation enzymes. We show that they are also involved in sex comb development in males and that genetic destabilization of this network is also strongly modulated by temperature for this phenotype. Thus, we propose that phenotypic plasticity of pigmentation is a side effect reflecting a global impact of temperature on epigenetic mechanisms. Furthermore, the thermosensitivity of this network may be related to the high evolvability of several secondary sexual characters in the genus Drosophila. The phenotype of an individual is not fully controlled by its genes. Environmental conditions (food, light, temperature, pathogens, etc.) can also contribute to phenotypic variation. This phenomenon is called phenotypic plasticity. We investigate here the genetic basis of the phenotypic plasticity of pigmentation in the fruit fly Drosophila melanogaster. Drosophila pigmentation is strongly modulated by temperature, in particular in the posterior abdominal segments of females. The development of these segments is controlled by the homeotic gene Abdominal-B (Abd-B). Abd-B sensitizes pigmentation patterning in this region of the body by repressing several crucial pigmentation enzymes. It makes the regulation of their spatio-temporal expression in the posterior abdomen particularly sensitive to temperature variation. We show that temperature modulates the mechanisms regulating the dynamic structure of the chromosomes. Chromosomal domains can be compacted and transcriptionally silent, or opened and transcriptionally active. Temperature interacts with a network of chromatin regulators and affects not only the regulation of pigmentation enzymes but several traits under the control of this network. Thus, we conclude that the phenotypic plasticity of female abdominal pigmentation in Drosophila is a visible consequence for a particularly sensitive phenotype, of a general effect of temperature on the regulation of chromosome architecture.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, Vienna, Austria.
| | | | | |
Collapse
|
23
|
Debat V, Milton CC, Rutherford S, Klingenberg CP, Hoffmann AA. HSP90 AND THE QUANTITATIVE VARIATION OF WING SHAPE IN DROSOPHILA MELANOGASTER. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01887.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Dworkin I, Gibson G. Epidermal growth factor receptor and transforming growth factor-beta signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics 2006; 173:1417-31. [PMID: 16648592 PMCID: PMC1526698 DOI: 10.1534/genetics.105.053868] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wing development in Drosophila is a common model system for the dissection of genetic networks and their roles during development. In particular, the RTK and TGF-beta regulatory networks appear to be involved with numerous aspects of wing development, including patterning, cell determination, growth, proliferation, and survival in the developing imaginal wing disc. However, little is known as to how subtle changes in the function of these genes may contribute to quantitative variation for wing shape, per se. In this study 50 insertional mutations, representing 43 loci in the RTK, Hedgehog, TGF-beta pathways, and their genetically interacting factors were used to study the role of these networks on wing shape. To concurrently examine how genetic background modulates the effects of the mutation, each insertion was introgressed into two wild-type genetic backgrounds. Using geometric morphometric methods, it is shown that the majority of these mutations have profound effects on shape but not size of the wing when measured as heterozygotes. To examine the relationships between how each mutation affects wing shape hierarchical clustering was used. Unlike previous observations of environmental canalization, these mutations did not generally increase within-line variation relative to their wild-type counterparts. These results provide an entry point into the genetics of wing shape and are discussed within the framework of the dissection of complex phenotypes.
Collapse
Affiliation(s)
- Ian Dworkin
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | |
Collapse
|
25
|
Debat V, Milton CC, Rutherford S, Klingenberg CP, Hoffmann AA. HSP90 AND THE QUANTITATIVE VARIATION OF WING SHAPE IN DROSOPHILA MELANOGASTER. Evolution 2006. [DOI: 10.1554/06-045.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|